期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
面向数据隐私差异的隐私保护数据发布方法 被引量:1
1
作者 俞艺涵 周大伟 +1 位作者 李洪成 吴晓平 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第9期57-63,共7页
针对关系型数据中多维敏感属性隐私差异所引起的隐私保护效用降低问题,提出了一种能有效表达多维敏感属性隐私差异的隐私保护数据发布方法.基于一种多维桶分组技术(MSB)对数据集的多维敏感属性隐私差异以及记录价值进行量化区分,给出记... 针对关系型数据中多维敏感属性隐私差异所引起的隐私保护效用降低问题,提出了一种能有效表达多维敏感属性隐私差异的隐私保护数据发布方法.基于一种多维桶分组技术(MSB)对数据集的多维敏感属性隐私差异以及记录价值进行量化区分,给出记录分组优先级参数的计算方法,进而可实现基于记录分组优先级参数多维桶记录分组(TPSB)算法的隐私保护数据发布.实验结果表明:在权重参数合理赋值条件下,该方法在保证数据发布效率的同时可有效提升数据发布的质量. 展开更多
关键词 隐私保护 数据发布 多维敏感属性 隐私差异 多维桶分组
原文传递
Privacy-Preserving Data Publishing for Multiple Numerical Sensitive Attributes 被引量:6
2
作者 Qinghai Liu Hong Shen Yingpeng Sang 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2015年第3期246-254,共9页
Anonymized data publication has received considerable attention from the research community in recent years. For numerical sensitive attributes, most of the existing privacy-preserving data publishing techniques conce... Anonymized data publication has received considerable attention from the research community in recent years. For numerical sensitive attributes, most of the existing privacy-preserving data publishing techniques concentrate on microdata with multiple categorical sensitive attributes or only one numerical sensitive attribute. However, many real-world applications can contain multiple numerical sensitive attributes. Directly applying the existing privacy-preserving techniques for single-numerical-sensitive-attribute and multiple-categorical-sensitive- attributes often causes unexpected disclosure of private information. These techniques are particularly prone to the proximity breach, which is a privacy threat specific to numerical sensitive attributes in data publication, in this paper, we propose a privacy-preserving data publishing method, namely MNSACM, which uses the ideas of clustering and Multi-Sensitive Bucketization (MSB) to publish microdata with multiple numerical sensitive attributes. We use an example to show the effectiveness of this method in privacy protection when using multiple numerical sensitive attributes. 展开更多
关键词 PRIVACY-PRESERVING K-ANONYMITY numerical sensitive attribute CLUSTERING multi-sensitive bucketizationmsb
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部