期刊文献+
共找到511,116篇文章
< 1 2 250 >
每页显示 20 50 100
Insights into microbiota community dynamics and flavor development mechanism during golden pomfret(Trachinotus ovatus)fermentation based on single-molecule real-time sequencing and molecular networking analysis 被引量:1
1
作者 Yueqi Wang Qian Chen +5 位作者 Huan Xiang Dongxiao Sun-Waterhouse Shengjun Chen Yongqiang Zhao Laihao Li Yanyan Wu 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期101-114,共14页
Popular fermented golden pomfret(Trachinotus ovatus)is prepared via spontaneous fermentation;however,the mechanisms underlying the regulation of its flavor development remain unclear.This study shows the roles of the ... Popular fermented golden pomfret(Trachinotus ovatus)is prepared via spontaneous fermentation;however,the mechanisms underlying the regulation of its flavor development remain unclear.This study shows the roles of the complex microbiota and the dynamic changes in microbial community and flavor compounds during fish fermentation.Single-molecule real-time sequencing and molecular networking analysis revealed the correlations among different microbial genera and the relationships between microbial taxa and volatile compounds.Mechanisms underlying flavor development were also elucidated via KEGG based functional annotations.Clostridium,Shewanella,and Staphylococcus were the dominant microbial genera.Forty-nine volatile compounds were detected in the fermented fish samples,with thirteen identified as characteristic volatile compounds(ROAV>1).Volatile profiles resulted from the interactions among the microorganisms and derived enzymes,with the main metabolic pathways being amino acid biosynthesis/metabolism,carbon metabolism,and glycolysis/gluconeogenesis.This study demonstrated the approaches for distinguishing key microbiota associated with volatile compounds and monitoring the industrial production of high-quality fermented fish products. 展开更多
关键词 Fermented golden pomfret Microbiota community Volatile compound Co-occurrence network Metabolic pathway
下载PDF
Threshold-Based Software-Defined Networking(SDN)Solution for Healthcare Systems against Intrusion Attacks
2
作者 Laila M.Halman Mohammed J.F.Alenazi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1469-1483,共15页
The healthcare sector holds valuable and sensitive data.The amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast pace.Due to their nature,software-defined networks(SDNs)are ... The healthcare sector holds valuable and sensitive data.The amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast pace.Due to their nature,software-defined networks(SDNs)are widely used in healthcare systems,as they ensure effective resource utilization,safety,great network management,and monitoring.In this sector,due to the value of thedata,SDNs faceamajor challengeposed byawide range of attacks,such as distributed denial of service(DDoS)and probe attacks.These attacks reduce network performance,causing the degradation of different key performance indicators(KPIs)or,in the worst cases,a network failure which can threaten human lives.This can be significant,especially with the current expansion of portable healthcare that supports mobile and wireless devices for what is called mobile health,or m-health.In this study,we examine the effectiveness of using SDNs for defense against DDoS,as well as their effects on different network KPIs under various scenarios.We propose a threshold-based DDoS classifier(TBDC)technique to classify DDoS attacks in healthcare SDNs,aiming to block traffic considered a hazard in the form of a DDoS attack.We then evaluate the accuracy and performance of the proposed TBDC approach.Our technique shows outstanding performance,increasing the mean throughput by 190.3%,reducing the mean delay by 95%,and reducing packet loss by 99.7%relative to normal,with DDoS attack traffic. 展开更多
关键词 network resilience network management attack prediction software defined networking(SDN) distributed denial of service(DDoS) healthcare
下载PDF
The Caching and Pricing Strategy for Information-Centric Networking with Advertisers’Participation
3
作者 Zheng Quan Yan Wenliang +4 位作者 Wu Rong Tan Xiaobin Yang Jian Yuan Liu Xu Zhenghuan 《China Communications》 SCIE CSCD 2024年第3期283-295,共13页
As users’access to the network has evolved into the acquisition of mass contents instead of IP addresses,the IP network architecture based on end-to-end communication cannot meet users’needs.Therefore,the Informatio... As users’access to the network has evolved into the acquisition of mass contents instead of IP addresses,the IP network architecture based on end-to-end communication cannot meet users’needs.Therefore,the Information-Centric Networking(ICN)came into being.From a technical point of view,ICN is a promising future network architecture.Researching and customizing a reasonable pricing mechanism plays a positive role in promoting the deployment of ICN.The current research on ICN pricing mechanism is focused on paid content.Therefore,we study an ICN pricing model for free content,which uses game theory based on Nash equilibrium to analysis.In this work,advertisers are considered,and an advertiser model is established to describe the economic interaction between advertisers and ICN entities.This solution can formulate the best pricing strategy for all ICN entities and maximize the benefits of each entity.Our extensive analysis and numerical results show that the proposed pricing framework is significantly better than existing solutions when it comes to free content. 展开更多
关键词 ADVERTISERS CACHE free content Information-Centric networking pricing strategy
下载PDF
A Novel Locomotion Rule Rmbedding Long Short-Term Memory Network with Attention for Human Locomotor Intent Classification Using Multi-Sensors Signals
4
作者 Jiajie Shen Yan Wang Dongxu Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第6期4349-4370,共22页
Locomotor intent classification has become a research hotspot due to its importance to the development of assistive robotics and wearable devices.Previous work have achieved impressive performance in classifying stead... Locomotor intent classification has become a research hotspot due to its importance to the development of assistive robotics and wearable devices.Previous work have achieved impressive performance in classifying steady locomotion states.However,it remains challenging for these methods to attain high accuracy when facing transitions between steady locomotion states.Due to the similarities between the information of the transitions and their adjacent steady states.Furthermore,most of these methods rely solely on data and overlook the objective laws between physical activities,resulting in lower accuracy,particularly when encountering complex locomotion modes such as transitions.To address the existing deficiencies,we propose the locomotion rule embedding long short-term memory(LSTM)network with Attention(LREAL)for human locomotor intent classification,with a particular focus on transitions,using data from fewer sensors(two inertial measurement units and four goniometers).The LREAL network consists of two levels:One responsible for distinguishing between steady states and transitions,and the other for the accurate identification of locomotor intent.Each classifier in these levels is composed of multiple-LSTM layers and an attention mechanism.To introduce real-world motion rules and apply constraints to the network,a prior knowledge was added to the network via a rule-modulating block.The method was tested on the ENABL3S dataset,which contains continuous locomotion date for seven steady and twelve transitions states.Experimental results showed that the LREAL network could recognize locomotor intents with an average accuracy of 99.03%and 96.52%for the steady and transitions states,respectively.It is worth noting that the LREAL network accuracy for transition-state recognition improved by 0.18%compared to other state-of-the-art network,while using data from fewer sensors. 展开更多
关键词 Lower-limb prosthetics deep neural networks motion classification
下载PDF
Open-Source Software Defined Networking Controllers:State-of-the-Art,Challenges and Solutions for Future Network Providers
5
作者 Johari Abdul Rahim Rosdiadee Nordin Oluwatosin Ahmed Amodu 《Computers, Materials & Continua》 SCIE EI 2024年第7期747-800,共54页
Software Defined Networking(SDN)is programmable by separation of forwarding control through the centralization of the controller.The controller plays the role of the‘brain’that dictates the intelligent part of SDN t... Software Defined Networking(SDN)is programmable by separation of forwarding control through the centralization of the controller.The controller plays the role of the‘brain’that dictates the intelligent part of SDN technology.Various versions of SDN controllers exist as a response to the diverse demands and functions expected of them.There are several SDN controllers available in the open market besides a large number of commercial controllers;some are developed tomeet carrier-grade service levels and one of the recent trends in open-source SDN controllers is the Open Network Operating System(ONOS).This paper presents a comparative study between open source SDN controllers,which are known as Network Controller Platform(NOX),Python-based Network Controller(POX),component-based SDN framework(Ryu),Java-based OpenFlow controller(Floodlight),OpenDayLight(ODL)and ONOS.The discussion is further extended into ONOS architecture,as well as,the evolution of ONOS controllers.This article will review use cases based on ONOS controllers in several application deployments.Moreover,the opportunities and challenges of open source SDN controllers will be discussed,exploring carriergrade ONOS for future real-world deployments,ONOS unique features and identifying the suitable choice of SDN controller for service providers.In addition,we attempt to provide answers to several critical questions relating to the implications of the open-source nature of SDN controllers regarding vendor lock-in,interoperability,and standards compliance,Similarly,real-world use cases of organizations using open-source SDN are highlighted and how the open-source community contributes to the development of SDN controllers.Furthermore,challenges faced by open-source projects,and considerations when choosing an open-source SDN controller are underscored.Then the role of Artificial Intelligence(AI)and Machine Learning(ML)in the evolution of open-source SDN controllers in light of recent research is indicated.In addition,the challenges and limitations associated with deploying open-source SDN controllers in production networks,how can they be mitigated,and finally how opensource SDN controllers handle network security and ensure that network configurations and policies are robust and resilient are presented.Potential opportunities and challenges for future Open SDN deployment are outlined to conclude the article. 展开更多
关键词 ONOS open source software SDN software defined networking
下载PDF
Information Centric Networking Based Cooperative Caching Framework for 5G Communication Systems
6
作者 R.Mahaveerakannan Thanarajan Tamilvizhi +2 位作者 Sonia Jenifer Rayen Osamah Ibrahim Khalaf Habib Hamam 《Computers, Materials & Continua》 SCIE EI 2024年第9期3945-3966,共22页
The demands on conventional communication networks are increasing rapidly because of the exponential expansion of connected multimedia content.In light of the data-centric aspect of contemporary communication,the info... The demands on conventional communication networks are increasing rapidly because of the exponential expansion of connected multimedia content.In light of the data-centric aspect of contemporary communication,the information-centric network(ICN)paradigm offers hope for a solution by emphasizing content retrieval by name instead of location.If 5G networks are to meet the expected data demand surge from expanded connectivity and Internet of Things(IoT)devices,then effective caching solutions will be required tomaximize network throughput andminimize the use of resources.Hence,an ICN-based Cooperative Caching(ICN-CoC)technique has been used to select a cache by considering cache position,content attractiveness,and rate prediction.The findings show that utilizing our suggested approach improves caching regarding the Cache Hit Ratio(CHR)of 84.3%,Average Hop Minimization Ratio(AHMR)of 89.5%,and Mean Access Latency(MAL)of 0.4 s.Within a framework,it suggests improved caching strategies to handle the difficulty of effectively controlling data consumption in 5G networks.These improvements aim to make the network run more smoothly by enhancing content delivery,decreasing latency,and relieving congestion.By improving 5G communication systems’capacity tomanage the demands faced by modern data-centric applications,the research ultimately aids in advancement. 展开更多
关键词 Information-centric networking caching schemes 5G communication non-negative matrix factorization(NMF) weighted clustering algorithm
下载PDF
Networking Observation and Applications of Chinese Ocean Satellites
7
作者 ZOU Bin LIU Yuxin 《空间科学学报》 CAS CSCD 北大核心 2024年第4期722-730,共9页
This paper presents the networking observation capabilities of Chinese ocean satellites and their diverse applications in ocean disaster prevention,ecological monitoring,and resource development.Since the inaugural la... This paper presents the networking observation capabilities of Chinese ocean satellites and their diverse applications in ocean disaster prevention,ecological monitoring,and resource development.Since the inaugural launch in 2002,China has achieved substantial advancements in ocean satellite technology,forming an observation system composed of the HY-1,HY-2,and HY-3 series satellites.These satellites are integral to global ocean environmental monitoring due to their high resolution,extensive coverage,and frequent observations.Looking forward,China aims to further enhance and expand its ocean satellite capabilities through ongoing projects to support global environmental protection and sustainable development. 展开更多
关键词 Chinese ocean satellites networking observation Ocean forecasting Ocean disaster prevention and mitigation Ocean ecological monitoring Ocean resource development Polar monitoring Terrestrial applications
下载PDF
A Machine Learning-Based Attack Detection and Prevention System in Vehicular Named Data Networking 被引量:1
8
作者 Arif Hussain Magsi Ali Ghulam +3 位作者 Saifullah Memon Khalid Javeed Musaed Alhussein Imad Rida 《Computers, Materials & Continua》 SCIE EI 2023年第11期1445-1465,共21页
Named Data Networking(NDN)is gaining a significant attention in Vehicular Ad-hoc Networks(VANET)due to its in-network content caching,name-based routing,and mobility-supporting characteristics.Nevertheless,existing ND... Named Data Networking(NDN)is gaining a significant attention in Vehicular Ad-hoc Networks(VANET)due to its in-network content caching,name-based routing,and mobility-supporting characteristics.Nevertheless,existing NDN faces three significant challenges,including security,privacy,and routing.In particular,security attacks,such as Content Poisoning Attacks(CPA),can jeopardize legitimate vehicles with malicious content.For instance,attacker host vehicles can serve consumers with invalid information,which has dire consequences,including road accidents.In such a situation,trust in the content-providing vehicles brings a new challenge.On the other hand,ensuring privacy and preventing unauthorized access in vehicular(VNDN)is another challenge.Moreover,NDN’s pull-based content retrieval mechanism is inefficient for delivering emergency messages in VNDN.In this connection,our contribution is threefold.Unlike existing rule-based reputation evaluation,we propose a Machine Learning(ML)-based reputation evaluation mechanism that identifies CPA attackers and legitimate nodes.Based on ML evaluation results,vehicles accept or discard served content.Secondly,we exploit a decentralized blockchain system to ensure vehicles’privacy by maintaining their information in a secure digital ledger.Finally,we improve the default routing mechanism of VNDN from pull to a push-based content dissemination using Publish-Subscribe(Pub-Sub)approach.We implemented and evaluated our ML-based classification model on a publicly accessible BurST-Asutralian dataset for Misbehavior Detection(BurST-ADMA).We used five(05)hybrid ML classifiers,including Logistic Regression,Decision Tree,K-Nearest Neighbors,Random Forest,and Gaussian Naive Bayes.The qualitative results indicate that Random Forest has achieved the highest average accuracy rate of 100%.Our proposed research offers the most accurate solution to detect CPA in VNDN for safe,secure,and reliable vehicle communication. 展开更多
关键词 Named data networking vehicular networks REPUTATION CACHING MACHINE-LEARNING
下载PDF
UltraStar:A Lightweight Simulator of Ultra-Dense LEO Satellite Constellation Networking for 6G 被引量:2
9
作者 Xiaoyu Liu Ting Ma +3 位作者 Zhixuan Tang Xiaohan Qin Haibo Zhou Xuemin(Sherman)Shen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第3期632-645,共14页
The mega-constellation network has gained significant attention recently due to its great potential in providing ubiquitous and high-capacity connectivity in sixth-generation(6G)wireless communication systems.However,... The mega-constellation network has gained significant attention recently due to its great potential in providing ubiquitous and high-capacity connectivity in sixth-generation(6G)wireless communication systems.However,the high dynamics of network topology and large scale of mega-constellation pose new challenges to the constellation simulation and performance evaluation.In this paper,we introduce UltraStar,a lightweight network simulator,which aims to facilitate the complicated simulation for the emerging mega-constellation of unprecedented scale.Particularly,a systematic and extensible architecture is proposed,where the joint requirement for network simulation,quantitative evaluation,data statistics and visualization is fully considered.For characterizing the network,we make lightweight abstractions of physical entities and models,which contain basic representatives of networking nodes,structures and protocol stacks.Then,to consider the high dynamics of Walker constellations,we give a two-stage topology maintenance method for constellation initialization and orbit prediction.Further,based on the discrete event simulation(DES)theory,a new set of discrete events is specifically designed for basic network processes,so as to maintain network state changes over time.Finally,taking the first-generation Starlink of 11927 low earth orbit(LEO)satellites as an example,we use UltraStar to fully evaluate its network performance for different deployment stages,such as characteristics of constellation topology,performance of end-to-end service and effects of network-wide traffic interaction.The simulation results not only demonstrate its superior performance,but also verify the effectiveness of UltraStar. 展开更多
关键词 Discrete event simulation(DES) mega-constellation network dynamics performance evaluation simulation architecture design
下载PDF
Long-lasting,reinforced electrical networking in a high-loading Li_(2)S cathode for high-performance lithium–sulfur batteries 被引量:3
10
作者 Hun Kim Kyeong-Jun Min +4 位作者 Sangin Bang Jang-Yeon Hwang Jung Ho Kim Chong SYoon Yang-Kook Sun 《Carbon Energy》 SCIE CSCD 2023年第8期1-14,共14页
Realizing a lithium sulfide(Li_(2)S)cathode with both high energy density and a long lifespan requires an innovative cathode design that maximizes electrochemical performance and resists electrode deterioration.Herein... Realizing a lithium sulfide(Li_(2)S)cathode with both high energy density and a long lifespan requires an innovative cathode design that maximizes electrochemical performance and resists electrode deterioration.Herein,a high-loading Li_(2)S-based cathode with micrometric Li_(2)S particles composed of two-dimensional graphene(Gr)and one-dimensional carbon nanotubes(CNTs)in a compact geometry is developed,and the role of CNTs in stable cycling of high-capacity Li–S batteries is emphasized.In a dimensionally combined carbon matrix,CNTs embedded within the Gr sheets create robust and sustainable electron diffusion pathways while suppressing the passivation of the active carbon surface.As a unique point,during the first charging process,the proposed cathode is fully activated through the direct conversion of Li_(2)S into S_(8) without inducing lithium polysulfide formation.The direct conversion of Li_(2)S into S_(8) in the composite cathode is ubiquitously investigated using the combined study of in situ Raman spectroscopy,in situ optical microscopy,and cryogenic transmission electron microscopy.The composite cathode demonstrates unprecedented electrochemical properties even with a high Li_(2)S loading of 10 mg cm^(–2);in particular,the practical and safe Li–S full cell coupled with a graphite anode shows ultra-long-term cycling stability over 800 cycles. 展开更多
关键词 carbon nanotubes electrical network high energy high loading Li_(2)S cathode lithium-sulfur batteries
下载PDF
Screening biomarkers for spinal cord injury using weighted gene co-expression network analysis and machine learning 被引量:4
11
作者 Xiaolu Li Ye Yang +3 位作者 Senming Xu Yuchang Gui Jianmin Chen Jianwen Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2723-2734,共12页
Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is s... Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is still limited understanding of the peripheral immune inflammato ry response in spinal cord inju ry.In this study.we obtained microRNA expression profiles from the peripheral blood of patients with spinal co rd injury using high-throughput sequencing.We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus(GEO)database(GSE151371).We identified 54 differentially expressed microRNAs and 1656 diffe rentially expressed genes using bioinformatics approaches.Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways,such as neutrophil extracellular trap formation pathway,T cell receptor signaling pathway,and nuclear factor-κB signal pathway,we re abnormally activated or inhibited in spinal cord inju ry patient samples.We applied an integrated strategy that combines weighted gene co-expression network analysis,LASSO logistic regression,and SVM-RFE algorithm and identified three biomarke rs associated with spinal cord injury:ANO10,BST1,and ZFP36L2.We verified the expression levels and diagnostic perfo rmance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve.Quantitative polymerase chain reaction results showed that ANO20 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients.We also constructed a small RNA-mRNA interaction network using Cytoscape.Additionally,we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal co rd injury patients using the CIBERSORT tool.The proportions of naive B cells,plasma cells,monocytes,and neutrophils were increased while the proportions of memory B cells,CD8^(+)T cells,resting natural killer cells,resting dendritic cells,and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects,and ANO10,BST1 and ZFP26L2we re closely related to the proportion of certain immune cell types.The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal co rd inju ry and suggest that ANO10,BST2,and ZFP36L2 are potential biomarkers for spinal cord injury.The study was registe red in the Chinese Clinical Trial Registry(registration No.ChiCTR2200066985,December 12,2022). 展开更多
关键词 bioinformatics analysis BIOMARKER CIBERSORT GEO dataset LASSO miRNA-mRNA network RNA sequencing spinal cord injury SVM-RFE weighted gene co-expression network analysis
下载PDF
Pluggable multitask diffractive neural networks based on cascaded metasurfaces 被引量:2
12
作者 Cong He Dan Zhao +8 位作者 Fei Fan Hongqiang Zhou Xin Li Yao Li Junjie Li Fei Dong Yin-Xiao Miao Yongtian Wang Lingling Huang 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第2期23-31,共9页
Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been c... Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been considered as one of the powerful tools in promoting the fields of imaging processing and object recognition.However,the existing optical system architecture cannot be reconstructed to the realization of multi-functional artificial intelligence systems simultaneously.To push the development of this issue,we propose the pluggable diffractive neural networks(P-DNN),a general paradigm resorting to the cascaded metasurfaces,which can be applied to recognize various tasks by switching internal plug-ins.As the proof-of-principle,the recognition functions of six types of handwritten digits and six types of fashions are numerical simulated and experimental demonstrated at near-infrared regimes.Encouragingly,the proposed paradigm not only improves the flexibility of the optical neural networks but paves the new route for achieving high-speed,low-power and versatile artificial intelligence systems. 展开更多
关键词 optical neural networks diffractive deep neural networks cascaded metasurfaces
下载PDF
Mission scheduling of multi-sensor collaborative observation for space surveillance network
13
作者 LONG Xi CAI Weiwei +1 位作者 YANG Leping WANG Tianyu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第4期906-923,共18页
With increased dependence on space assets,scheduling and tasking of the space surveillance network(SSN)are vitally important.The multi-sensor collaborative observation scheduling(MCOS)problem is a multi-constraint and... With increased dependence on space assets,scheduling and tasking of the space surveillance network(SSN)are vitally important.The multi-sensor collaborative observation scheduling(MCOS)problem is a multi-constraint and high-conflict complex combinatorial optimization problem that is nondeterministic polynomial(NP)-hard.This research establishes a sub-time window constraint satisfaction problem(STWCSP)model with the objective of maximizing observation profit.Considering the significant effect of genetic algorithms(GA)on solving the problem of resource allocation,an evolution heuristic(EH)algorithm containing three strategies that focus on the MCOS problem is proposed.For each case,a task scheduling sequence is first obtained via an improved GA with penalty(GAPE)algorithm,and then a mission planning algorithm(heuristic rule)is used to determine the specific observation time.Compared to the model without sub-time windows and some other algorithms,a series of experiments illustrate the STWCSP model has better performance in terms of total profit.Experiments about strategy and parameter sensitivity validate its excellent performance in terms of EH algorithms. 展开更多
关键词 multi-sensor observation resource scheduling subtime window evolution heuristic algorithm
下载PDF
Social-ecological perspective on the suicidal behaviour factors of early adolescents in China:a network analysis 被引量:2
14
作者 Yuan Li Peiying Li +5 位作者 Mengyuan Yuan Yonghan Li Xueying Zhang Juan Chen Gengfu Wang Puyu Su 《General Psychiatry》 CSCD 2024年第1期143-150,共8页
Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To expl... Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To explore the risk and protective factors of suicidal behaviours(ie,suicidal ideation,plans and attempts)in early adolescence in China using a social-ecological perspective.Methods Using data from the cross-sectional project‘Healthy and Risky Behaviours Among Middle School Students in Anhui Province,China',stratified random cluster sampling was used to select 5724 middle school students who had completed self-report questionnaires in November 2020.Network analysis was employed to examine the correlates of suicidal ideation,plans and attempts at four levels,namely individual(sex,academic performance,serious physical llness/disability,history of self-harm,depression,impulsivity,sleep problems,resilience),family(family economic status,relationship with mother,relationship with father,family violence,childhood abuse,parental mental illness),school(relationship with teachers,relationship with classmates,school-bullying victimisation and perpetration)and social(social support,satisfaction with society).Results In total,37.9%,19.0%and 5.5%of the students reported suicidal ideation,plans and attempts in the past 6 months,respectively.The estimated network revealed that suicidal ideation,plans and attempts were collectively associated with a history of self-harm,sleep problems,childhood abuse,school bullying and victimisation.Centrality analysis indicated that the most influential nodes in the network were history of self-harm and childhood abuse.Notably,the network also showed unique correlates of suicidal ideation(sex,weight=0.60;impulsivity,weight=0.24;family violence,weight=0.17;relationship with teachers,weight=-0.03;school-bullying perpetration,weight=0.22),suicidal plans(social support,weight=-0.15)and suicidal attempts(relationship with mother,weight=-0.10;parental mental llness,weight=0.61).Conclusions This study identified the correlates of suicidal ideation,plans and attempts,and provided practical implications for suicide prevention for young adolescents in China.Firstly,this study highlighted the importance of joint interventions across multiple departments.Secondly,the common risk factors of suicidal ideation,plans and attempts were elucidated.Thirdly,this study proposed target interventions to address the unique influencing factors of suicidal ideation,plans and attempts. 展开更多
关键词 network ANALYSIS PREVENTION
下载PDF
Image super‐resolution via dynamic network 被引量:1
15
作者 Chunwei Tian Xuanyu Zhang +2 位作者 Qi Zhang Mingming Yang Zhaojie Ju 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第4期837-849,共13页
Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely exp... Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely express predicted high‐quality images for complex scenes.A dynamic network for image super‐resolution(DSRNet)is presented,which contains a residual enhancement block,wide enhancement block,feature refine-ment block and construction block.The residual enhancement block is composed of a residual enhanced architecture to facilitate hierarchical features for image super‐resolution.To enhance robustness of obtained super‐resolution model for complex scenes,a wide enhancement block achieves a dynamic architecture to learn more robust information to enhance applicability of an obtained super‐resolution model for varying scenes.To prevent interference of components in a wide enhancement block,a refine-ment block utilises a stacked architecture to accurately learn obtained features.Also,a residual learning operation is embedded in the refinement block to prevent long‐term dependency problem.Finally,a construction block is responsible for reconstructing high‐quality images.Designed heterogeneous architecture can not only facilitate richer structural information,but also be lightweight,which is suitable for mobile digital devices.Experimental results show that our method is more competitive in terms of performance,recovering time of image super‐resolution and complexity.The code of DSRNet can be obtained at https://github.com/hellloxiaotian/DSRNet. 展开更多
关键词 CNN dynamic network image super‐resolution lightweight network
下载PDF
Mapping Network-Coordinated Stacked Gated Recurrent Units for Turbulence Prediction 被引量:1
16
作者 Zhiming Zhang Shangce Gao +2 位作者 MengChu Zhou Mengtao Yan Shuyang Cao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1331-1341,共11页
Accurately predicting fluid forces acting on the sur-face of a structure is crucial in engineering design.However,this task becomes particularly challenging in turbulent flow,due to the complex and irregular changes i... Accurately predicting fluid forces acting on the sur-face of a structure is crucial in engineering design.However,this task becomes particularly challenging in turbulent flow,due to the complex and irregular changes in the flow field.In this study,we propose a novel deep learning method,named mapping net-work-coordinated stacked gated recurrent units(MSU),for pre-dicting pressure on a circular cylinder from velocity data.Specifi-cally,our coordinated learning strategy is designed to extract the most critical velocity point for prediction,a process that has not been explored before.In our experiments,MSU extracts one point from a velocity field containing 121 points and utilizes this point to accurately predict 100 pressure points on the cylinder.This method significantly reduces the workload of data measure-ment in practical engineering applications.Our experimental results demonstrate that MSU predictions are highly similar to the real turbulent data in both spatio-temporal and individual aspects.Furthermore,the comparison results show that MSU predicts more precise results,even outperforming models that use all velocity field points.Compared with state-of-the-art methods,MSU has an average improvement of more than 45%in various indicators such as root mean square error(RMSE).Through comprehensive and authoritative physical verification,we estab-lished that MSU’s prediction results closely align with pressure field data obtained in real turbulence fields.This confirmation underscores the considerable potential of MSU for practical applications in real engineering scenarios.The code is available at https://github.com/zhangzm0128/MSU. 展开更多
关键词 Convolutional neural network deep learning recurrent neural network turbulence prediction wind load predic-tion.
下载PDF
Performance Evaluation of Topologies for Multi-Domain Software-Defined Networking
17
作者 Jiangyuan Yao Weiping Yang +5 位作者 Shuhua Weng Minrui Wang Zheng Jiang Deshun Li Yahui Li Xingcan Cao 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期741-755,共15页
Software-defined networking(SDN)is widely used in multiple types of data center networks,and these distributed data center networks can be integrated into a multi-domain SDN by utilizing multiple controllers.However,t... Software-defined networking(SDN)is widely used in multiple types of data center networks,and these distributed data center networks can be integrated into a multi-domain SDN by utilizing multiple controllers.However,the network topology of each control domain of SDN will affect the performance of the multidomain network,so performance evaluation is required before the deployment of the multi-domain SDN.Besides,there is a high cost to build real multi-domain SDN networks with different topologies,so it is necessary to use simulation testing methods to evaluate the topological performance of the multi-domain SDN network.As there is a lack of existing methods to construct a multi-domain SDN simulation network for the tool to evaluate the topological performance automatically,this paper proposes an automated multi-domain SDN topology performance evaluation framework,which supports multiple types of SDN network topologies in cooperating to construct a multi-domain SDN network.The framework integrates existing single-domain SDN simulation tools with network performance testing tools to realize automated performance evaluation of multidomain SDN network topologies.We designed and implemented a Mininet-based simulation tool that can connect multiple controllers and run user-specified topologies in multiple SDN control domains to build and test multi-domain SDN networks faster.Then,we used the tool to perform performance tests on various data center network topologies in single-domain and multi-domain SDN simulation environments.Test results show that Space Shuffle has the most stable performance in a single-domain environment,and Fat-tree has the best performance in a multi-domain environment.Also,this tool has the characteristics of simplicity and stability,which can meet the needs of multi-domain SDN topology performance evaluation. 展开更多
关键词 Software-defined networking emulation network multi-domain SDN data center network topology
下载PDF
Push-Based Content Dissemination and Machine Learning-Oriented Illusion Attack Detection in Vehicular Named Data Networking
18
作者 Arif Hussain Magsi Ghulam Muhammad +2 位作者 Sajida Karim Saifullah Memon Zulfiqar Ali 《Computers, Materials & Continua》 SCIE EI 2023年第9期3131-3150,共20页
Recent advancements in the Vehicular Ad-hoc Network(VANET)have tremendously addressed road-related challenges.Specifically,Named Data Networking(NDN)in VANET has emerged as a vital technology due to its outstanding fe... Recent advancements in the Vehicular Ad-hoc Network(VANET)have tremendously addressed road-related challenges.Specifically,Named Data Networking(NDN)in VANET has emerged as a vital technology due to its outstanding features.However,the NDN communication framework fails to address two important issues.The current NDN employs a pull-based content retrieval network,which is inefficient in disseminating crucial content in Vehicular Named Data Networking(VNDN).Additionally,VNDN is vulnerable to illusion attackers due to the administrative-less network of autonomous vehicles.Although various solutions have been proposed for detecting vehicles’behavior,they inadequately addressed the challenges specific to VNDN.To deal with these two issues,we propose a novel push-based crucial content dissemination scheme that extends the scope of VNDN from pullbased content retrieval to a push-based content forwarding mechanism.In addition,we exploitMachine Learning(ML)techniques within VNDN to detect the behavior of vehicles and classify them as attackers or legitimate.We trained and tested our system on the publicly accessible dataset Vehicular Reference Misbehavior(VeReMi).We employed fiveML classification algorithms and constructed the bestmodel for illusion attack detection.Our results indicate that RandomForest(RF)achieved excellent accuracy in detecting all illusion attack types in VeReMi,with an accuracy rate of 100%for type 1 and type 2,96%for type 4 and type 16,and 95%for type 8.Thus,RF can effectively evaluate the behavior of vehicles and identify attacker vehicles with high accuracy.The ultimate goal of our research is to improve content exchange and secureVNDNfromattackers.Thus,ourML-based attack detection and preventionmechanismensures trustworthy content dissemination and prevents attacker vehicles from sharing misleading information in VNDN. 展开更多
关键词 Named data networking vehicular networks pull-push illusion attack machine learning
下载PDF
Activation Redistribution Based Hybrid Asymmetric Quantization Method of Neural Networks 被引量:1
19
作者 Lu Wei Zhong Ma Chaojie Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期981-1000,共20页
The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedd... The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedded devices.In order to reduce the complexity and overhead of deploying neural networks on Integeronly hardware,most current quantization methods use a symmetric quantization mapping strategy to quantize a floating-point neural network into an integer network.However,although symmetric quantization has the advantage of easier implementation,it is sub-optimal for cases where the range could be skewed and not symmetric.This often comes at the cost of lower accuracy.This paper proposed an activation redistribution-based hybrid asymmetric quantizationmethod for neural networks.The proposedmethod takes data distribution into consideration and can resolve the contradiction between the quantization accuracy and the ease of implementation,balance the trade-off between clipping range and quantization resolution,and thus improve the accuracy of the quantized neural network.The experimental results indicate that the accuracy of the proposed method is 2.02%and 5.52%higher than the traditional symmetric quantization method for classification and detection tasks,respectively.The proposed method paves the way for computationally intensive neural network models to be deployed on devices with limited computing resources.Codes will be available on https://github.com/ycjcy/Hybrid-Asymmetric-Quantization. 展开更多
关键词 QUANTIZATION neural network hybrid asymmetric ACCURACY
下载PDF
Recent Trends of In-Vehicle Time Sensitive Networking Technologies, Applications and Challenges
20
作者 Yanli Xu Jian Shang Hao Tang 《China Communications》 SCIE CSCD 2023年第11期30-55,共26页
With the vigorous development of automobile industry,in-vehicle network is also constantly upgraded to meet data transmission requirements of emerging applications.The main transmission requirements are low latency an... With the vigorous development of automobile industry,in-vehicle network is also constantly upgraded to meet data transmission requirements of emerging applications.The main transmission requirements are low latency and certainty especially for autonomous driving.Time sensitive networking(TSN)based on Ethernet gives a possible solution to these requirements.Previous surveys usually investigated TSN from a general perspective,which referred to TSN of various application fields.In this paper,we focus on the application of TSN to the in-vehicle networks.For in-vehicle networks,we discuss all related TSN standards specified by IEEE 802.1 work group up to now.We further overview and analyze recent literature on various aspects of TSN for automotive applications,including synchronization,resource reservation,scheduling,certainty,software and hardware.Application scenarios of TSN for in-vehicle networks are analyzed one by one.Since TSN of in-vehicle network is still at a very initial stage,this paper also gives insights on open issues,future research directions and possible solutions. 展开更多
关键词 automobile industry deterministic transmission in-vehicle network low latency time sensitive networking(TSN)
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部