Memory deficit,which is often associated with aging and many psychiatric,neurological,and neurodegenerative diseases,has been a challenging issue for treatment.Up till now,all potential drug candidates have failed to ...Memory deficit,which is often associated with aging and many psychiatric,neurological,and neurodegenerative diseases,has been a challenging issue for treatment.Up till now,all potential drug candidates have failed to produce satisfa ctory effects.Therefore,in the search for a solution,we found that a treatment with the gene corresponding to the RGS14414protein in visual area V2,a brain area connected with brain circuits of the ventral stream and the medial temporal lobe,which is crucial for object recognition memory(ORM),can induce enhancement of ORM.In this study,we demonstrated that the same treatment with RGS14414in visual area V2,which is relatively unaffected in neurodegenerative diseases such as Alzheimer s disease,produced longlasting enhancement of ORM in young animals and prevent ORM deficits in rodent models of aging and Alzheimer’s disease.Furthermore,we found that the prevention of memory deficits was mediated through the upregulation of neuronal arbo rization and spine density,as well as an increase in brain-derived neurotrophic factor(BDNF).A knockdown of BDNF gene in RGS14414-treated aging rats and Alzheimer s disease model mice caused complete loss in the upregulation of neuronal structural plasticity and in the prevention of ORM deficits.These findings suggest that BDNF-mediated neuronal structural plasticity in area V2 is crucial in the prevention of memory deficits in RGS14414-treated rodent models of aging and Alzheimer’s disease.Therefore,our findings of RGS14414gene-mediated activation of neuronal circuits in visual area V2 have therapeutic relevance in the treatment of memory deficits.展开更多
For some important object recognition applications such as intelligent robots and unmanned driving, images are collected on a consecutive basis and associated among themselves, besides, the scenes have steady prior fe...For some important object recognition applications such as intelligent robots and unmanned driving, images are collected on a consecutive basis and associated among themselves, besides, the scenes have steady prior features. Yet existing technologies do not take full advantage of this information. In order to take object recognition further than existing algorithms in the above application, an object recognition method that fuses temporal sequence with scene priori information is proposed. This method first employs YOLOv3 as the basic algorithm to recognize objects in single-frame images, then the DeepSort algorithm to establish association among potential objects recognized in images of different moments, and finally the confidence fusion method and temporal boundary processing method designed herein to fuse, at the decision level, temporal sequence information with scene priori information. Experiments using public datasets and self-built industrial scene datasets show that due to the expansion of information sources, the quality of single-frame images has less impact on the recognition results, whereby the object recognition is greatly improved. It is presented herein as a widely applicable framework for the fusion of information under multiple classes. All the object recognition algorithms that output object class, location information and recognition confidence at the same time can be integrated into this information fusion framework to improve performance.展开更多
An object learning and recognition system is implemented for humanoid robots to discover and memorize objects only by simple interactions with non-expert users. When the object is presented, the system makes use of th...An object learning and recognition system is implemented for humanoid robots to discover and memorize objects only by simple interactions with non-expert users. When the object is presented, the system makes use of the motion information over consecutive frames to extract object features and implements machine learning based on the bag of visual words approach. Instead of using a local feature descriptor only, the proposed system uses the co-occurring local features in order to increase feature discriminative power for both object model learning and inference stages. For different objects with different textures, a hybrid sampling strategy is considered. This hybrid approach minimizes the consumption of computation resources and helps achieving good performances demonstrated on a set of a dozen different daily objects.展开更多
Humans can perceive our complex world through multi-sensory fusion.Under limited visual conditions,people can sense a variety of tactile signals to identify objects accurately and rapidly.However,replicating this uniq...Humans can perceive our complex world through multi-sensory fusion.Under limited visual conditions,people can sense a variety of tactile signals to identify objects accurately and rapidly.However,replicating this unique capability in robots remains a significant challenge.Here,we present a new form of ultralight multifunctional tactile nano-layered carbon aerogel sensor that provides pressure,temperature,material recognition and 3D location capabilities,which is combined with multimodal supervised learning algorithms for object recognition.The sensor exhibits human-like pressure(0.04–100 kPa)and temperature(21.5–66.2℃)detection,millisecond response times(11 ms),a pressure sensitivity of 92.22 kPa^(−1)and triboelectric durability of over 6000 cycles.The devised algorithm has universality and can accommodate a range of application scenarios.The tactile system can identify common foods in a kitchen scene with 94.63%accuracy and explore the topographic and geomorphic features of a Mars scene with 100%accuracy.This sensing approach empowers robots with versatile tactile perception to advance future society toward heightened sensing,recognition and intelligence.展开更多
Ocean underwater exploration is a part of oceanography that investigates the physical and biological conditions for scientific and commercial purposes. And video technology plays an important role and is extensively a...Ocean underwater exploration is a part of oceanography that investigates the physical and biological conditions for scientific and commercial purposes. And video technology plays an important role and is extensively applied for underwater environment observation. Different from the conventional methods, video technology explores the underwater ecosystem continuously and non-invasively. However, due to the scattering and attenuation of light transport in the water, complex noise distribution and lowlight condition cause challenges for underwater video applications including object detection and recognition. In this paper, we propose a new deep encoding-decoding convolutional architecture for underwater object recognition. It uses the deep encoding-decoding network for extracting the discriminative features from the noisy low-light underwater images. To create the deconvolutional layers for classification, we apply the deconvolution kernel with a matched feature map, instead of full connection, to solve the problem of dimension disaster and low accuracy. Moreover, we introduce data augmentation and transfer learning technologies to solve the problem of data starvation. For experiments, we investigated the public datasets with our proposed method and the state-of-the-art methods. The results show that our work achieves significant accuracy. This work provides new underwater technologies applied for ocean exploration.展开更多
A method for moving object recognition and tracking in the intelligent traffic monitoring system is presented. For the shortcomings and deficiencies of the frame-subtraction method, a redundant discrete wavelet transf...A method for moving object recognition and tracking in the intelligent traffic monitoring system is presented. For the shortcomings and deficiencies of the frame-subtraction method, a redundant discrete wavelet transform (RDWT) based moving object recognition algorithm is put forward, which directly detects moving objects in the redundant discrete wavelet transform domain. An improved adaptive mean-shift algorithm is used to track the moving object in the follow up frames. Experimental results show that the algorithm can effectively extract the moving object, even though the object is similar to the background, and the results are better than the traditional frame-subtraction method. The object tracking is accurate without the impact of changes in the size of the object. Therefore the algorithm has a certain practical value and prospect.展开更多
The coal-rock interface recognition method based on multi-sensor data fusiontechnique is put forward because of the localization of single type sensor recognition method. Themeasuring theory based on multi-sensor data...The coal-rock interface recognition method based on multi-sensor data fusiontechnique is put forward because of the localization of single type sensor recognition method. Themeasuring theory based on multi-sensor data fusion technique is analyzed, and hereby the testplatform of recognition system is manufactured. The advantage of data fusion with the fuzzy neuralnetwork (FNN) technique has been probed. The two-level FNN is constructed and data fusion is carriedout. The experiments show that in various conditions the method can always acquire a much higherrecognition rate than normal ones.展开更多
The digital twin is the concept of transcending reality,which is the reverse feedback from the real physical space to the virtual digital space.People hold great prospects for this emerging technology.In order to real...The digital twin is the concept of transcending reality,which is the reverse feedback from the real physical space to the virtual digital space.People hold great prospects for this emerging technology.In order to realize the upgrading of the digital twin industrial chain,it is urgent to introduce more modalities,such as vision,haptics,hearing and smell,into the virtual digital space,which assists physical entities and virtual objects in creating a closer connection.Therefore,perceptual understanding and object recognition have become an urgent hot topic in the digital twin.Existing surface material classification schemes often achieve recognition through machine learning or deep learning in a single modality,ignoring the complementarity between multiple modalities.In order to overcome this dilemma,we propose a multimodal fusion network in our article that combines two modalities,visual and haptic,for surface material recognition.On the one hand,the network makes full use of the potential correlations between multiple modalities to deeply mine the modal semantics and complete the data mapping.On the other hand,the network is extensible and can be used as a universal architecture to include more modalities.Experiments show that the constructed multimodal fusion network can achieve 99.42%classification accuracy while reducing complexity.展开更多
The performance of deep learning(DL)networks has been increased by elaborating the network structures. However, the DL netowrks have many parameters, which have a lot of influence on the performance of the network. We...The performance of deep learning(DL)networks has been increased by elaborating the network structures. However, the DL netowrks have many parameters, which have a lot of influence on the performance of the network. We propose a genetic algorithm(GA) based deep belief neural network(DBNN) method for robot object recognition and grasping purpose. This method optimizes the parameters of the DBNN method, such as the number of hidden units, the number of epochs, and the learning rates, which would reduce the error rate and the network training time of object recognition. After recognizing objects, the robot performs the pick-andplace operations. We build a database of six objects for experimental purpose. Experimental results demonstrate that our method outperforms on the optimized robot object recognition and grasping tasks.展开更多
This paper proposes a method to recognize human-object interactions by modeling context between human actions and interacted objects.Human-object interaction recognition is a challenging task due to severe occlusion b...This paper proposes a method to recognize human-object interactions by modeling context between human actions and interacted objects.Human-object interaction recognition is a challenging task due to severe occlusion between human and objects during the interacting process.Since that human actions and interacted objects provide strong context information,i.e.some actions are usually related to some specific objects,the accuracy of recognition is significantly improved for both of them.Through the proposed method,both global and local temporal features from skeleton sequences are extracted to model human actions.In the meantime,kernel features are utilized to describe interacted objects.Finally,all possible solutions from actions and objects are optimized by modeling the context between them.The results of experiments demonstrate the effectiveness of our method.展开更多
To recognize circular objects rapidly in satellite remote sensing imagery, an approach using their geometry properties is presented. The original image is segmented to be a binary one by one dimension maximum entropy ...To recognize circular objects rapidly in satellite remote sensing imagery, an approach using their geometry properties is presented. The original image is segmented to be a binary one by one dimension maximum entropy threshold algorithm and the binary image is labeled with an algorithm based on recursion technique. Then, shape parameters of all labeled regions are calculated and those regions with shape parameters satisfying certain conditions are recognized as circular objects. The algorithm is described in detail, and comparison experiments with the randomized Hough transformation (RHT) are also provided. The experimental results on synthetic images and real images show that the proposed method has the merits of fast recognition rate, high recognition efficiency and the ability of anti-noise and anti-jamming. In addition, the method performs well when some circular objects are little deformed and partly misshapen.展开更多
Object recognition and tracking are two of the most dynamic research sub-areas that belong to the field of Computer Vision.Computer vision is one of the most active research fields that lies at the intersection of dee...Object recognition and tracking are two of the most dynamic research sub-areas that belong to the field of Computer Vision.Computer vision is one of the most active research fields that lies at the intersection of deep learning and machine vision.This paper presents an efficient ensemble algorithm for the recognition and tracking of fixed shapemoving objects while accommodating the shift and scale invariances that the object may encounter.The first part uses the Maximum Average Correlation Height(MACH)filter for object recognition and determines the bounding box coordinates.In case the correlation based MACH filter fails,the algorithms switches to a much reliable but computationally complex feature based object recognition technique i.e.,affine scale invariant feature transform(ASIFT).ASIFT is used to accommodate object shift and scale object variations.ASIFT extracts certain features from the object of interest,providing invariance in up to six affine parameters,namely translation(two parameters),zoom,rotation and two camera axis orientations.However,in this paper,only the shift and scale invariances are used.The second part of the algorithm demonstrates the use of particle filters based Approximate Proximal Gradient(APG)technique to periodically update the coordinates of the object encapsulated in the bounding box.At the end,a comparison of the proposed algorithm with other stateof-the-art tracking algorithms has been presented,which demonstrates the effectiveness of the proposed algorithm with respect to the minimization of tracking errors.展开更多
A new method based on adaptive Hessian matrix threshold of finding key SRUF ( speeded up robust features) features is proposed and is applied to an unmanned vehicle for its dynamic object recognition and guided navi...A new method based on adaptive Hessian matrix threshold of finding key SRUF ( speeded up robust features) features is proposed and is applied to an unmanned vehicle for its dynamic object recognition and guided navigation. First, the object recognition algorithm based on SURF feature matching for unmanned vehicle guided navigation is introduced. Then, the standard local invariant feature extraction algorithm SRUF is analyzed, the Hessian Metrix is especially discussed, and a method of adaptive Hessian threshold is proposed which is based on correct matching point pairs threshold feedback under a close loop frame. At last, different dynamic object recognition experi- ments under different weather light conditions are discussed. The experimental result shows that the key SURF feature abstract algorithm and the dynamic object recognition method can be used for un- manned vehicle systems.展开更多
The complexity of fire and smoke in terms of shape, texture, and color presents significant challenges for accurate fire and smoke detection. To address this, a YOLOv8-based detection algorithm integrated with the Con...The complexity of fire and smoke in terms of shape, texture, and color presents significant challenges for accurate fire and smoke detection. To address this, a YOLOv8-based detection algorithm integrated with the Convolutional Block Attention Module (CBAM) has been developed. This algorithm initially employs the latest YOLOv8 for object recognition. Subsequently, the integration of CBAM enhances its feature extraction capabilities. Finally, the WIoU function is used to optimize the network’s bounding box loss, facilitating rapid convergence. Experimental validation using a smoke and fire dataset demonstrated that the proposed algorithm achieved a 2.3% increase in smoke and fire detection accuracy, surpassing other state-of-the-art methods.展开更多
A complete 2-D object recognition algorithm applicable for both standalone and partial occluded object is presented. The main contributions in our work are: we developed a scale and partial occlusion invariant boundar...A complete 2-D object recognition algorithm applicable for both standalone and partial occluded object is presented. The main contributions in our work are: we developed a scale and partial occlusion invariant boundary partition algorithm and a multiresolution feature extraction algorithm using wavelet. We also implemented a hierarchical matching strategy for feature matching to reduce computational load,but increase matching accuracy. Experiment result shows proposed recognition algorithm is robust to similarity transform and partial occlusion.展开更多
In order to find better simplicity measurements for 3D object recognition, a new set of local regularities is developed and tested in a stepwise 3D reconstruction method, including localized minimizing standard deviat...In order to find better simplicity measurements for 3D object recognition, a new set of local regularities is developed and tested in a stepwise 3D reconstruction method, including localized minimizing standard deviation of angles(L-MSDA), localized minimizing standard deviation of segment magnitudes(L-MSDSM), localized minimum standard deviation of areas of child faces (L-MSDAF), localized minimum sum of segment magnitudes of common edges (L-MSSM), and localized minimum sum of areas of child face (L-MSAF). Based on their effectiveness measurements in terms of form and size distortions, it is found that when two local regularities: L-MSDA and L-MSDSM are combined together, they can produce better performance. In addition, the best weightings for them to work together are identified as 10% for L-MSDSM and 90% for L-MSDA. The test results show that the combined usage of L-MSDA and L-MSDSM with identified weightings has a potential to be applied in other optimization based 3D recognition methods to improve their efficacy and robustness.展开更多
This paper discusses recognition of three dimensional (3D) moving object from multiple views, which is based on 2D processed frames of a video sequence, view categories (feature aspects) of object, and their transiti...This paper discusses recognition of three dimensional (3D) moving object from multiple views, which is based on 2D processed frames of a video sequence, view categories (feature aspects) of object, and their transitions. Log polar mapping (LPM) and discrete Fourier transformation (DFM) are used to obtain position, scale and rotation invariant feature vectors of 2D characteristic views. ART 2 model is used as memory and classifier of the feature information of the object. ART 2 neural network is improved in experiment with satisfactory results.展开更多
Object recognition and location has always been one of the research hotspots in machine vision.It is of great value and significance to the development and application of current service robots,industrial automation,u...Object recognition and location has always been one of the research hotspots in machine vision.It is of great value and significance to the development and application of current service robots,industrial automation,unmanned driving and other fields.In order to realize the real-time recognition and location of indoor scene objects,this article proposes an improved YOLOv3 neural network model,which combines densely connected networks and residual networks to construct a new YOLOv3 backbone network,which is applied to the detection and recognition of objects in indoor scenes.In this article,RealSense D415 RGB-D camera is used to obtain the RGB map and depth map,the actual distance value is calculated after each pixel in the scene image is mapped to the real scene.Experiment results proved that the detection and recognition accuracy and real-time performance by the new network are obviously improved compared with the previous YOLOV3 neural network model in the same scene.More objects can be detected after the improvement of network which cannot be detected with the YOLOv3 network before the improvement.The running time of objects detection and recognition is reduced to less than half of the original.This improved network has a certain reference value for practical engineering application.展开更多
Age-related memory impairments show a progressive decline across lifespan. Studies have demonstrated equivocal results in biological and behavioral outcomes of aging. Thus, in the present study we examined the novel o...Age-related memory impairments show a progressive decline across lifespan. Studies have demonstrated equivocal results in biological and behavioral outcomes of aging. Thus, in the present study we examined the novel object recognition task at a delay period that has been shown to be impaired in aged rats of two different strains. Moreover, we used a strain of rats, Fisher 344XBrown Norway, which have published age-related biological changes in the brain. Young (10 month old) and aged (28 month old) rats were tested on a standard novel object recognition task with a 50-minute delay period. The data showed that young and aged rats in the strain we used performed equally well on the novel object recognition task and that both young and old rats demonstrated a righthanded side preference for the novel object. Our data suggested that novel object recognition is not impaired in aged rats although both young and old rats have a demonstrated side preference. Thus, it may be that genetic differences across strains contribute to the equivocal results in behavior, and genetic variance likely influences the course of cognitive aging.展开更多
基金supported by grants from the Ministerio de Economia y Competitividad(BFU2013-43458-R)Junta de Andalucia(P12-CTS-1694 and Proyexcel-00422)to ZUK。
文摘Memory deficit,which is often associated with aging and many psychiatric,neurological,and neurodegenerative diseases,has been a challenging issue for treatment.Up till now,all potential drug candidates have failed to produce satisfa ctory effects.Therefore,in the search for a solution,we found that a treatment with the gene corresponding to the RGS14414protein in visual area V2,a brain area connected with brain circuits of the ventral stream and the medial temporal lobe,which is crucial for object recognition memory(ORM),can induce enhancement of ORM.In this study,we demonstrated that the same treatment with RGS14414in visual area V2,which is relatively unaffected in neurodegenerative diseases such as Alzheimer s disease,produced longlasting enhancement of ORM in young animals and prevent ORM deficits in rodent models of aging and Alzheimer’s disease.Furthermore,we found that the prevention of memory deficits was mediated through the upregulation of neuronal arbo rization and spine density,as well as an increase in brain-derived neurotrophic factor(BDNF).A knockdown of BDNF gene in RGS14414-treated aging rats and Alzheimer s disease model mice caused complete loss in the upregulation of neuronal structural plasticity and in the prevention of ORM deficits.These findings suggest that BDNF-mediated neuronal structural plasticity in area V2 is crucial in the prevention of memory deficits in RGS14414-treated rodent models of aging and Alzheimer’s disease.Therefore,our findings of RGS14414gene-mediated activation of neuronal circuits in visual area V2 have therapeutic relevance in the treatment of memory deficits.
文摘For some important object recognition applications such as intelligent robots and unmanned driving, images are collected on a consecutive basis and associated among themselves, besides, the scenes have steady prior features. Yet existing technologies do not take full advantage of this information. In order to take object recognition further than existing algorithms in the above application, an object recognition method that fuses temporal sequence with scene priori information is proposed. This method first employs YOLOv3 as the basic algorithm to recognize objects in single-frame images, then the DeepSort algorithm to establish association among potential objects recognized in images of different moments, and finally the confidence fusion method and temporal boundary processing method designed herein to fuse, at the decision level, temporal sequence information with scene priori information. Experiments using public datasets and self-built industrial scene datasets show that due to the expansion of information sources, the quality of single-frame images has less impact on the recognition results, whereby the object recognition is greatly improved. It is presented herein as a widely applicable framework for the fusion of information under multiple classes. All the object recognition algorithms that output object class, location information and recognition confidence at the same time can be integrated into this information fusion framework to improve performance.
基金The National Natural Science Foundation of China(No.60672094,60971098)
文摘An object learning and recognition system is implemented for humanoid robots to discover and memorize objects only by simple interactions with non-expert users. When the object is presented, the system makes use of the motion information over consecutive frames to extract object features and implements machine learning based on the bag of visual words approach. Instead of using a local feature descriptor only, the proposed system uses the co-occurring local features in order to increase feature discriminative power for both object model learning and inference stages. For different objects with different textures, a hybrid sampling strategy is considered. This hybrid approach minimizes the consumption of computation resources and helps achieving good performances demonstrated on a set of a dozen different daily objects.
基金the National Natural Science Foundation of China(Grant No.52072041)the Beijing Natural Science Foundation(Grant No.JQ21007)+2 种基金the University of Chinese Academy of Sciences(Grant No.Y8540XX2D2)the Robotics Rhino-Bird Focused Research Project(No.2020-01-002)the Tencent Robotics X Laboratory.
文摘Humans can perceive our complex world through multi-sensory fusion.Under limited visual conditions,people can sense a variety of tactile signals to identify objects accurately and rapidly.However,replicating this unique capability in robots remains a significant challenge.Here,we present a new form of ultralight multifunctional tactile nano-layered carbon aerogel sensor that provides pressure,temperature,material recognition and 3D location capabilities,which is combined with multimodal supervised learning algorithms for object recognition.The sensor exhibits human-like pressure(0.04–100 kPa)and temperature(21.5–66.2℃)detection,millisecond response times(11 ms),a pressure sensitivity of 92.22 kPa^(−1)and triboelectric durability of over 6000 cycles.The devised algorithm has universality and can accommodate a range of application scenarios.The tactile system can identify common foods in a kitchen scene with 94.63%accuracy and explore the topographic and geomorphic features of a Mars scene with 100%accuracy.This sensing approach empowers robots with versatile tactile perception to advance future society toward heightened sensing,recognition and intelligence.
基金supported by the Jilin Science and Technology Development Plan Project (Nos. 20160209006GX, 20170309001GX and 20180201043GX)
文摘Ocean underwater exploration is a part of oceanography that investigates the physical and biological conditions for scientific and commercial purposes. And video technology plays an important role and is extensively applied for underwater environment observation. Different from the conventional methods, video technology explores the underwater ecosystem continuously and non-invasively. However, due to the scattering and attenuation of light transport in the water, complex noise distribution and lowlight condition cause challenges for underwater video applications including object detection and recognition. In this paper, we propose a new deep encoding-decoding convolutional architecture for underwater object recognition. It uses the deep encoding-decoding network for extracting the discriminative features from the noisy low-light underwater images. To create the deconvolutional layers for classification, we apply the deconvolution kernel with a matched feature map, instead of full connection, to solve the problem of dimension disaster and low accuracy. Moreover, we introduce data augmentation and transfer learning technologies to solve the problem of data starvation. For experiments, we investigated the public datasets with our proposed method and the state-of-the-art methods. The results show that our work achieves significant accuracy. This work provides new underwater technologies applied for ocean exploration.
文摘A method for moving object recognition and tracking in the intelligent traffic monitoring system is presented. For the shortcomings and deficiencies of the frame-subtraction method, a redundant discrete wavelet transform (RDWT) based moving object recognition algorithm is put forward, which directly detects moving objects in the redundant discrete wavelet transform domain. An improved adaptive mean-shift algorithm is used to track the moving object in the follow up frames. Experimental results show that the algorithm can effectively extract the moving object, even though the object is similar to the background, and the results are better than the traditional frame-subtraction method. The object tracking is accurate without the impact of changes in the size of the object. Therefore the algorithm has a certain practical value and prospect.
基金This project is supported by Provincial Youth Science Foundation of Shanxi China (No.20011020)National Natural Science Foundation of China (No.59975064).
文摘The coal-rock interface recognition method based on multi-sensor data fusiontechnique is put forward because of the localization of single type sensor recognition method. Themeasuring theory based on multi-sensor data fusion technique is analyzed, and hereby the testplatform of recognition system is manufactured. The advantage of data fusion with the fuzzy neuralnetwork (FNN) technique has been probed. The two-level FNN is constructed and data fusion is carriedout. The experiments show that in various conditions the method can always acquire a much higherrecognition rate than normal ones.
基金the National Natural Science Foundation of China(62001246,62001248,62171232)Key R&D Program of Jiangsu Province Key project and topics under Grant BE2021095+3 种基金the Natural Science Foundation of Jiangsu Province Higher Education Institutions(20KJB510020)the Future Network Scientific Research Fund Project(FNSRFP-2021-YB-16)the open research fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology(JZNY202110)the NUPTSF under Grant(NY220070).
文摘The digital twin is the concept of transcending reality,which is the reverse feedback from the real physical space to the virtual digital space.People hold great prospects for this emerging technology.In order to realize the upgrading of the digital twin industrial chain,it is urgent to introduce more modalities,such as vision,haptics,hearing and smell,into the virtual digital space,which assists physical entities and virtual objects in creating a closer connection.Therefore,perceptual understanding and object recognition have become an urgent hot topic in the digital twin.Existing surface material classification schemes often achieve recognition through machine learning or deep learning in a single modality,ignoring the complementarity between multiple modalities.In order to overcome this dilemma,we propose a multimodal fusion network in our article that combines two modalities,visual and haptic,for surface material recognition.On the one hand,the network makes full use of the potential correlations between multiple modalities to deeply mine the modal semantics and complete the data mapping.On the other hand,the network is extensible and can be used as a universal architecture to include more modalities.Experiments show that the constructed multimodal fusion network can achieve 99.42%classification accuracy while reducing complexity.
文摘The performance of deep learning(DL)networks has been increased by elaborating the network structures. However, the DL netowrks have many parameters, which have a lot of influence on the performance of the network. We propose a genetic algorithm(GA) based deep belief neural network(DBNN) method for robot object recognition and grasping purpose. This method optimizes the parameters of the DBNN method, such as the number of hidden units, the number of epochs, and the learning rates, which would reduce the error rate and the network training time of object recognition. After recognizing objects, the robot performs the pick-andplace operations. We build a database of six objects for experimental purpose. Experimental results demonstrate that our method outperforms on the optimized robot object recognition and grasping tasks.
文摘This paper proposes a method to recognize human-object interactions by modeling context between human actions and interacted objects.Human-object interaction recognition is a challenging task due to severe occlusion between human and objects during the interacting process.Since that human actions and interacted objects provide strong context information,i.e.some actions are usually related to some specific objects,the accuracy of recognition is significantly improved for both of them.Through the proposed method,both global and local temporal features from skeleton sequences are extracted to model human actions.In the meantime,kernel features are utilized to describe interacted objects.Finally,all possible solutions from actions and objects are optimized by modeling the context between them.The results of experiments demonstrate the effectiveness of our method.
文摘To recognize circular objects rapidly in satellite remote sensing imagery, an approach using their geometry properties is presented. The original image is segmented to be a binary one by one dimension maximum entropy threshold algorithm and the binary image is labeled with an algorithm based on recursion technique. Then, shape parameters of all labeled regions are calculated and those regions with shape parameters satisfying certain conditions are recognized as circular objects. The algorithm is described in detail, and comparison experiments with the randomized Hough transformation (RHT) are also provided. The experimental results on synthetic images and real images show that the proposed method has the merits of fast recognition rate, high recognition efficiency and the ability of anti-noise and anti-jamming. In addition, the method performs well when some circular objects are little deformed and partly misshapen.
基金This research was supported by X-mind Corps program of National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT(No.2019H1D8A1105622)and the Soonchunhyang University Research Fund.
文摘Object recognition and tracking are two of the most dynamic research sub-areas that belong to the field of Computer Vision.Computer vision is one of the most active research fields that lies at the intersection of deep learning and machine vision.This paper presents an efficient ensemble algorithm for the recognition and tracking of fixed shapemoving objects while accommodating the shift and scale invariances that the object may encounter.The first part uses the Maximum Average Correlation Height(MACH)filter for object recognition and determines the bounding box coordinates.In case the correlation based MACH filter fails,the algorithms switches to a much reliable but computationally complex feature based object recognition technique i.e.,affine scale invariant feature transform(ASIFT).ASIFT is used to accommodate object shift and scale object variations.ASIFT extracts certain features from the object of interest,providing invariance in up to six affine parameters,namely translation(two parameters),zoom,rotation and two camera axis orientations.However,in this paper,only the shift and scale invariances are used.The second part of the algorithm demonstrates the use of particle filters based Approximate Proximal Gradient(APG)technique to periodically update the coordinates of the object encapsulated in the bounding box.At the end,a comparison of the proposed algorithm with other stateof-the-art tracking algorithms has been presented,which demonstrates the effectiveness of the proposed algorithm with respect to the minimization of tracking errors.
基金Supported by the National Natural Science Foundation of China(61103157)Beijing Municipal Education Commission Project(SQKM201311417010)
文摘A new method based on adaptive Hessian matrix threshold of finding key SRUF ( speeded up robust features) features is proposed and is applied to an unmanned vehicle for its dynamic object recognition and guided navigation. First, the object recognition algorithm based on SURF feature matching for unmanned vehicle guided navigation is introduced. Then, the standard local invariant feature extraction algorithm SRUF is analyzed, the Hessian Metrix is especially discussed, and a method of adaptive Hessian threshold is proposed which is based on correct matching point pairs threshold feedback under a close loop frame. At last, different dynamic object recognition experi- ments under different weather light conditions are discussed. The experimental result shows that the key SURF feature abstract algorithm and the dynamic object recognition method can be used for un- manned vehicle systems.
基金Supported by National Natural Science Foundation ot China(60572100, 60673122), Royal Society (U.K.) International Joint Projects 2006/R3-Cost Share with NSFC (60711130233), Science Foundation of Shenzhen City (CXQ2008019, 200706), and Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (2008[890]).
文摘The complexity of fire and smoke in terms of shape, texture, and color presents significant challenges for accurate fire and smoke detection. To address this, a YOLOv8-based detection algorithm integrated with the Convolutional Block Attention Module (CBAM) has been developed. This algorithm initially employs the latest YOLOv8 for object recognition. Subsequently, the integration of CBAM enhances its feature extraction capabilities. Finally, the WIoU function is used to optimize the network’s bounding box loss, facilitating rapid convergence. Experimental validation using a smoke and fire dataset demonstrated that the proposed algorithm achieved a 2.3% increase in smoke and fire detection accuracy, surpassing other state-of-the-art methods.
文摘A complete 2-D object recognition algorithm applicable for both standalone and partial occluded object is presented. The main contributions in our work are: we developed a scale and partial occlusion invariant boundary partition algorithm and a multiresolution feature extraction algorithm using wavelet. We also implemented a hierarchical matching strategy for feature matching to reduce computational load,but increase matching accuracy. Experiment result shows proposed recognition algorithm is robust to similarity transform and partial occlusion.
文摘In order to find better simplicity measurements for 3D object recognition, a new set of local regularities is developed and tested in a stepwise 3D reconstruction method, including localized minimizing standard deviation of angles(L-MSDA), localized minimizing standard deviation of segment magnitudes(L-MSDSM), localized minimum standard deviation of areas of child faces (L-MSDAF), localized minimum sum of segment magnitudes of common edges (L-MSSM), and localized minimum sum of areas of child face (L-MSAF). Based on their effectiveness measurements in terms of form and size distortions, it is found that when two local regularities: L-MSDA and L-MSDSM are combined together, they can produce better performance. In addition, the best weightings for them to work together are identified as 10% for L-MSDSM and 90% for L-MSDA. The test results show that the combined usage of L-MSDA and L-MSDSM with identified weightings has a potential to be applied in other optimization based 3D recognition methods to improve their efficacy and robustness.
文摘This paper discusses recognition of three dimensional (3D) moving object from multiple views, which is based on 2D processed frames of a video sequence, view categories (feature aspects) of object, and their transitions. Log polar mapping (LPM) and discrete Fourier transformation (DFM) are used to obtain position, scale and rotation invariant feature vectors of 2D characteristic views. ART 2 model is used as memory and classifier of the feature information of the object. ART 2 neural network is improved in experiment with satisfactory results.
基金supported by Henan Province Science and Technology Project under Grant No.182102210065.
文摘Object recognition and location has always been one of the research hotspots in machine vision.It is of great value and significance to the development and application of current service robots,industrial automation,unmanned driving and other fields.In order to realize the real-time recognition and location of indoor scene objects,this article proposes an improved YOLOv3 neural network model,which combines densely connected networks and residual networks to construct a new YOLOv3 backbone network,which is applied to the detection and recognition of objects in indoor scenes.In this article,RealSense D415 RGB-D camera is used to obtain the RGB map and depth map,the actual distance value is calculated after each pixel in the scene image is mapped to the real scene.Experiment results proved that the detection and recognition accuracy and real-time performance by the new network are obviously improved compared with the previous YOLOV3 neural network model in the same scene.More objects can be detected after the improvement of network which cannot be detected with the YOLOv3 network before the improvement.The running time of objects detection and recognition is reduced to less than half of the original.This improved network has a certain reference value for practical engineering application.
文摘Age-related memory impairments show a progressive decline across lifespan. Studies have demonstrated equivocal results in biological and behavioral outcomes of aging. Thus, in the present study we examined the novel object recognition task at a delay period that has been shown to be impaired in aged rats of two different strains. Moreover, we used a strain of rats, Fisher 344XBrown Norway, which have published age-related biological changes in the brain. Young (10 month old) and aged (28 month old) rats were tested on a standard novel object recognition task with a 50-minute delay period. The data showed that young and aged rats in the strain we used performed equally well on the novel object recognition task and that both young and old rats demonstrated a righthanded side preference for the novel object. Our data suggested that novel object recognition is not impaired in aged rats although both young and old rats have a demonstrated side preference. Thus, it may be that genetic differences across strains contribute to the equivocal results in behavior, and genetic variance likely influences the course of cognitive aging.