“双高”电力系统对实时仿真算法的计算效率提出了更高的要求,采用单一的仿真算法往往难以兼顾计算效率与仿真精度。为解决这一问题,提出了一种混合使用移频分析(shifted frequency analysis,SFA)与传统电磁暂态(electromagnetic transi...“双高”电力系统对实时仿真算法的计算效率提出了更高的要求,采用单一的仿真算法往往难以兼顾计算效率与仿真精度。为解决这一问题,提出了一种混合使用移频分析(shifted frequency analysis,SFA)与传统电磁暂态(electromagnetic transients program,EMTP)方法的多速率实时仿真方案,并对子系统的接口算法进行了改进。首先,充分发挥SFA方法的高效性优势,建立了在移频相量下联立子系统诺顿等效电路的SFA-EMTP混合仿真框架。随后,从减少计算量的角度出发,提出了一种滑窗离散傅里叶变换与三相坐标变换相结合的解析信号构造方法。进而,为兼顾计算的实时性与仿真精度,提出了一种开关状态更新时刻与仿真节点错位的多速率仿真计算时序。最后,对含分布式电源接入的配电网算例采用所提算法与其他多种算法进行仿真,并将仿真结果与PSCAD(Power Systems Computer Aided Design)的离线仿真结果进行对比,验证了所提算法的正确性和有效性。展开更多
室内定位有多种方案,如蓝牙到达角度(Angle of Arrival,AOA)、Wi-Fi、接收信号强度指示(Received Signal Strength Indication,RSSI)及超宽带(Ultra Wide Band,UWB)等。在多目标定位、低成本、低功耗场景下,超高频无源射频识别(Radio Fr...室内定位有多种方案,如蓝牙到达角度(Angle of Arrival,AOA)、Wi-Fi、接收信号强度指示(Received Signal Strength Indication,RSSI)及超宽带(Ultra Wide Band,UWB)等。在多目标定位、低成本、低功耗场景下,超高频无源射频识别(Radio Frequency Identification,RFID)具有显著优势。为实现室内多物品快速定位,将超高频无源RFID技术与相控阵技术相融合,建立一套室内定位系统。展开更多
文摘“双高”电力系统对实时仿真算法的计算效率提出了更高的要求,采用单一的仿真算法往往难以兼顾计算效率与仿真精度。为解决这一问题,提出了一种混合使用移频分析(shifted frequency analysis,SFA)与传统电磁暂态(electromagnetic transients program,EMTP)方法的多速率实时仿真方案,并对子系统的接口算法进行了改进。首先,充分发挥SFA方法的高效性优势,建立了在移频相量下联立子系统诺顿等效电路的SFA-EMTP混合仿真框架。随后,从减少计算量的角度出发,提出了一种滑窗离散傅里叶变换与三相坐标变换相结合的解析信号构造方法。进而,为兼顾计算的实时性与仿真精度,提出了一种开关状态更新时刻与仿真节点错位的多速率仿真计算时序。最后,对含分布式电源接入的配电网算例采用所提算法与其他多种算法进行仿真,并将仿真结果与PSCAD(Power Systems Computer Aided Design)的离线仿真结果进行对比,验证了所提算法的正确性和有效性。
文摘室内定位有多种方案,如蓝牙到达角度(Angle of Arrival,AOA)、Wi-Fi、接收信号强度指示(Received Signal Strength Indication,RSSI)及超宽带(Ultra Wide Band,UWB)等。在多目标定位、低成本、低功耗场景下,超高频无源射频识别(Radio Frequency Identification,RFID)具有显著优势。为实现室内多物品快速定位,将超高频无源RFID技术与相控阵技术相融合,建立一套室内定位系统。