It has been revealed that the different morphologies of anodized TiO_2 nanotubes, especially nanotube diameters, triggered different cell behaviors. However, the influence of TiO_2 nanotubes with coexisting multi-size...It has been revealed that the different morphologies of anodized TiO_2 nanotubes, especially nanotube diameters, triggered different cell behaviors. However, the influence of TiO_2 nanotubes with coexisting multi-size diameters on cell behaviors is seldom reported. In this work, coexisting four-diameter TiO_2 nanotube samples, namely,one single substrate with the integration of four different nanotube diameters(60, 150, 250, and 350 nm), were prepared by repeated anodization. The boundaries between two different diameter regions show well-organized structure without obvious difference in height. The adhesion behaviors of MC3T3-E1 cells on the coexisting fourdiameter TiO_2 nanotube arrays were investigated. The results exhibit a significant difference of cell density between smaller diameters(60 and 150 nm) and larger diameters(250 and 350 nm) within 24 h incubation with the coexistence of different diameters, which is totally different from that on the single-diameter TiO_2 nanotube arrays. The coexistence of four different diameters does not change greatly the cell morphologies compared with the singlediameter nanotubes. The findings in this work are expected to offer further understanding of the interaction between cells and materials.展开更多
Electromagnetic stirring is one of the widely applied techniques to modify the quality of casting billets.Different from conventional rotate stirring,the helical stirring is more professional in assisting multi-dimens...Electromagnetic stirring is one of the widely applied techniques to modify the quality of casting billets.Different from conventional rotate stirring,the helical stirring is more professional in assisting multi-dimensional flow of molten metal and eliminating solidification defects.In this study,the single-winding helical stirring(SWHS)was introduced,offering advantages such as smaller volume and lower electromagnetic shielding compared to traditional helical stirring methods.Following a comprehensive numerical simulation,the stirring parameters of SWHS were adjusted to yoke inclination angle of 43°and frequency of 12 Hz.The higher electromagnetic force and flow velocity in drawing direction,as well as the lower temperature gradient induced by the SWHS,are positive factors for homogeneous solidification of billet.The experimental results on Al-8%Si alloy and 0.4%C-1.1%Mn steel demonstrate that compared to rotate stirring,the SWHS process can induce better billet quality and is more effective in accelerating the equiaxed expansion and reducing element segregation.The SWHS process can enhance the equiaxed ratio of the billet by 58.3%and reduce segregation degree of carbon element by 10.97%.Consequently,SWHS holds great promise as a potential approach for improving the quality of continuous casting billets.展开更多
New strain induced melt activation(new SIMA) method was employed to prepare high-quality semisolid billet of AZ61 magnesium alloy.Optical microscopy and tensile test were used to study the microstructure and mechani...New strain induced melt activation(new SIMA) method was employed to prepare high-quality semisolid billet of AZ61 magnesium alloy.Optical microscopy and tensile test were used to study the microstructure and mechanical properties of the thixo-extruded component.The results showed that the optimal process parameters for achieving the complete filling status involved the applied pressure of 784 MPa,the pressure holding time of 90 s and the die temperature of 450 ℃.Compared to semisolid isothermal treatment,high mechanical properties such as the tensile strength of 300.5 MPa and elongation of 22% and fine microstructure were obtained in the thixo-extruded parts.With increasing the isothermal temperature and holding time,the tensile strength and elongation were increased firstly and then decreased.When the press pass was increased from 1 to 4,the tensile strength and elongation of the thixo-extruded parts were greatly enhanced and microstructure was refined obviously.展开更多
AA4045/AA3003 cladding billet was prepared by direct chill semi-continuous casting process. The macrostructures, microstructures, temperature distribution, compositions distribution and the mechanical properties at th...AA4045/AA3003 cladding billet was prepared by direct chill semi-continuous casting process. The macrostructures, microstructures, temperature distribution, compositions distribution and the mechanical properties at the bonding interface were investigated in detail. The results show that the cladding billet with few defects could be obtained by semi-continuous casting process. At the interface, diffusion layer of about 10μm on average formed between the two alloys due to the diffusion of alloy elements in the temperature range from 596 to 632 °C. From the side of AA4045 to the side of AA3003, the Si content has a trend to decrease, while the Mn content has a trend to increase gradually. Tensile strength of the cladding billet reaches 103.7 MPa, the fractured position is located on the AA3003 side, and the shearing strength is 91.1 MPa, revealing that the two alloys were combined metallurgically by mutual diffusion of alloy elements.展开更多
To manufacture plate by the combination of equal channel angular processing (ECAP) and porthole die extrusion techniques, a novel technique, namely portholes-equal channel angular processing (P-ECAP), was studied....To manufacture plate by the combination of equal channel angular processing (ECAP) and porthole die extrusion techniques, a novel technique, namely portholes-equal channel angular processing (P-ECAP), was studied. Extrusion of AL6005A plate used for the bullet train plate was investigated by finite element method. The relevant porthole dies involving ECAP technique in channels were designed. Dimensional changes in the scrap part of the extrudate obtained after extrusion from the P-ECAP die, with different channel angles, were predicted. Effects of the channel angle and extrusion speed on the maximum temperature of the workpiece and other field variables were evaluated. At the channel angle of 160° of P-ECAP dies, the extrudate exhibited the optimal performance and the least amount of extrudate scrap was obtained. The optimal extrusion speed was 3-5 mm/s. Moreover, with the increase in ram speed from 1 to 9 mm/s, the peak extrusion load increased by about 49% and the maximum temperature was increased by about 70 ℃. The effective strain exhibited ascending trend in the comer of the ECAP deformation zone. In the solder seam and the side of die bearing of extrudate, the maximum principal stresses were tensile stress.展开更多
A modified horizontal continuous casting process under the electromagnetic field was proposed for preparing AA3003/ AA4045 clad composite hollow billets. To investigate the effect of electromagnetic field on this proc...A modified horizontal continuous casting process under the electromagnetic field was proposed for preparing AA3003/ AA4045 clad composite hollow billets. To investigate the effect of electromagnetic field on this process, a comprehensive three-dimensional model was developed. Two cases with and without electromagnetic field were compared using the simulations. When rotating electromagnetic stirring is applied, the flow pattern of fluid melt is greatly modified; the mushy zone becomes much wider, the temperature profile becomes more uniform, and the solid fraction decreases for both the external and internal alloy melt layers. These modifications are beneficial for the formation of a bimetal interface and fine and uniform grain structure of the clad composite hollow billet. Experiments conducted using the same electrical and casting parameters as the simulations verify that under the electromagnetic field the microstructure of the clad composite hollow billet becomes fine and the diffusion of the elements at the interface is promoted.展开更多
An industrial plant trial for optimizing the process parameters in a round billet continuous casting mold with electromagnetic stirring (M-EMS) was performed, in which the influences of stirring parameters with M-EM...An industrial plant trial for optimizing the process parameters in a round billet continuous casting mold with electromagnetic stirring (M-EMS) was performed, in which the influences of stirring parameters with M-EMS on the solidification macrostructure of high carbon steel were investigated. The results show that the billet quality is not well controlled under the condition of working current and frequency with EMS, in which the subsurface crack of grade 1.0-2.0 ups to 38.09%, the central pipe of grade 1.0-1.5 reaches to 14.28%, and the central porosity of grade 1.5 is 14.29%. The parameters of current 260 A and frequency 8 Hz as the final optimum scheme has a remarkable effect for improving the macroscopic quality of billet, in which the subsurface crack, central pipe and skin blowhole are all disappeared, and the central porosity and carbon segregation are also well improved.展开更多
The low frequency electromagnetic field was applied during direct chill(DC) semi-continuous casting of the ZK60 magnesium alloy billets. Effects of low frequency electromagnetic field on surface quality, microstructur...The low frequency electromagnetic field was applied during direct chill(DC) semi-continuous casting of the ZK60 magnesium alloy billets. Effects of low frequency electromagnetic field on surface quality, microstructure and hot-tearing tendency of Φ500 mm ZK60 magnesium alloy billets were investigated. The results showed that with the application of the low frequency electromagnetic field, the surface quality of the ZK60 magnesium alloy billets is markedly improved and the depth of cold fold is decreased. The microstructure of the billets is also significantly refined. Besides, the distribution of the grain size is relatively uniform from the billet surface towards its center, where the average grain size is 42 μm at surface and 50 μm at center. It also shows that the hot-tearing tendency of DC semi-continuous casting ZK60 magnesium alloy billets is significantly reduced under low frequency electromagnetic field.展开更多
Forging spur gears are widely used in the driving system of mining machinery and equipment due to their higher strength and dimensional accuracy.For the purpose of precisely calculating the volume of cylindrical spur ...Forging spur gears are widely used in the driving system of mining machinery and equipment due to their higher strength and dimensional accuracy.For the purpose of precisely calculating the volume of cylindrical spur gear billet in cold precision forging,a new theoretical method named average circle method was put forward.With this method,a series of gear billet volumes were calculated.Comparing with the accurate three-dimensional modeling method,the accuracy of average circle method by theoretical calculation was estimated and the maximum relative error of average circle method was less than 1.5%,which was in good agreement with the experimental results.Relative errors of the calculated and the experimental for obtaining the gear billet volumes with reference circle method are larger than those of the average circle method.It shows that average circle method possesses a higher calculation accuracy than reference circle method(traditional method),which should be worth popularizing widely in calculation of spur gear billet volume.展开更多
Perfect combination of structural size parameters of the hydroforming billets is essential to obtain even wall thicknesses of the car beam. Finite element ( FE ) analysis on hydroforming car beam was carried out, a...Perfect combination of structural size parameters of the hydroforming billets is essential to obtain even wall thicknesses of the car beam. Finite element ( FE ) analysis on hydroforming car beam was carried out, and the results were optimized according to multiple quality objectives by the grey system theory. With bending angle, bending radius and hight difference along the axis direction as variables, orthogonal FE analyses were conducted and the minimum and maximum wall thicknes ses of the billets with different sizes were obtained. Taking the minimum and maximum wall thick nesses as two references, the correlation coefficient between the data for reference and those for comparison by the grey system theory reduced multi objectives to a single quality objective, and the average correlation level of every billet facilitated the optimization of size parameters for hydroform ing car beam. The trial production showed that the optimization approach satisfied the need of hy droforming car beams.展开更多
Numerical simulation and experiments were introduced to develop AA4045/AA3003 cladding billets with different clad-ratios. The temperature fields, microstructures and mechanical properties near interface were investig...Numerical simulation and experiments were introduced to develop AA4045/AA3003 cladding billets with different clad-ratios. The temperature fields, microstructures and mechanical properties near interface were investigated in detail. The results show that cladding billets with different clad-ratios were fabricated successfully. Si and Mn elements diffused across the bonding interface and formed diffusion layer. With the increase of clad-layer thickness, the interfacial region transforms from semisolid-solid state to liquid-solid state and the diffusion layer increased from 10 to 25 μm. The hardness at interface is higher than that of AA3003 side but lower than that of the other side. The bonding strength increased with the clad-layer thickness, attributing to solution strengthening due to elements diffusion. The cladding billets were extruded into clad pipe by indirect extrusion process after homogenization. The clad pipe remained the interfacial characteristics of as-cast cladding billet and the heredity of clad-ratio during deformation was testified.展开更多
Semisolid billet of AZ80 magnesium alloy was prepared by new strain induced melt activated (new SIMA) process and thixoforging experiment was performed.The results show that after as-cast AZ80 magnesium alloy is proce...Semisolid billet of AZ80 magnesium alloy was prepared by new strain induced melt activated (new SIMA) process and thixoforging experiment was performed.The results show that after as-cast AZ80 magnesium alloy is processed by equal channel angular extrusion, microstructure is refined well due to heavy dynamic recrystallization occurring in severe plastic deformation.Compared with semisolid isothermal treatment and conventional SIMA, semisolid billet with fine and spheroidal grains are achieved in new SIMA.Thixoforging process of semisolid billet prepared by new SIMA has many advantages such as good surface quality of final component, high ability to fill cavity and net-shape.The fine and spheroidal grains and high mechanical properties such as tensile strength of 298 MPa and elongation of 28% can be developed in final part thixoforged.展开更多
A coupled mathematical model was established to simulate the whole solidification process of round billet continuous casting for wheel steel using piecewise linear functions of heat flux density in the mold, the secon...A coupled mathematical model was established to simulate the whole solidification process of round billet continuous casting for wheel steel using piecewise linear functions of heat flux density in the mold, the secondary cooling zone and the with- drawing-straightening zone. The calculated results were consistent with the measured data showing that the model accords with the practice. The surface temperature and the solidified shell thickness of round billets are more strongly influenced by casting speed than by casting temperature. The holding zones have effect on surface temperature, which is more obvious for the 450 mm round billet. The relation between casting temperature/speed and solidification end is expressed as a linear function. The solidification end is located after straightening machine.展开更多
The physical model of a ten-strand billet caster tundish was established to study the effects of various flow control devices on the melt flow. Before and after the optimization of the melt flow, the inclusion removal...The physical model of a ten-strand billet caster tundish was established to study the effects of various flow control devices on the melt flow. Before and after the optimization of the melt flow, the inclusion removal in the tundish was evaluated by plant trials. The physical modeling results show that when combined with a baffle, the turbulence inhibitor, instead of the impact pad, can significantly improve the melt flow. A turbulence inhibitor with a longer length of inner cavity and without an extending lip at the top of the sidewall seems to be efficient in the improvement of the melt flow. Various types and designs of baffles all influence the flow characteristics significantly. The "V" type baffles are better than the straight baffles for flow control. The "V" type baffle with four inclined holes at the sidewall away from the stopper rods is better in melt flow control than the one with one inclined hole at each sidewall. The combination of a well-designed turbulence inhibitor and an appropriate baffle shows high efficiency on improving the melt flow and an optimal proposal was presented. Plant trials indicate that, compared with the original tundish configuration in prototype, the inclusions reduce by 42% and the inclusion distribution of individual strands is more similar with the optimal one. The optimal tundish configuration effectively improves the melt flow in the ten-strand billet caster tundish.展开更多
Continuous casting of steel involving different grades in the same casting sequence remains a challenge to billet caster operators. The intermixed composition obtained during the grade change does not meet the specifi...Continuous casting of steel involving different grades in the same casting sequence remains a challenge to billet caster operators. The intermixed composition obtained during the grade change does not meet the specification of either grade and must be downgraded. Incorrect identification of this intermixed region may result in non-conforming products reaching the customer. In this study, a numerical model based on CFD (computational fluid dynamics approach) has been developed which predicts the start and end of the intermixed composition and the tonnage to be downgraded under different casting conditions. This model was validated and the results were in good agreement with the actual plant data for a 6-strand billet caster at LD-1 of TATA Steel, India. This model is used to calculate transition tonnage for different scenarios, e.g. when one of the outermost strands is not functional or some combinations are not functional and varying casting speed during operation. Furthermore, impact of different design of baffles on performance of Tundish has been evaluated to find a way to reduce transition or intermixed composition.展开更多
The formation mechanism of 'white band' and central carbon segregation of high-carbon Cr bearing steel concasting billets are discussed in this paper. The maximum oxygen content in the steel produced by concas...The formation mechanism of 'white band' and central carbon segregation of high-carbon Cr bearing steel concasting billets are discussed in this paper. The maximum oxygen content in the steel produced by concasting process was 13xl0^-6 with an average oxygen content of 9.3xl0^-6. Comparison of metallurgical quality and fatigue property between the concasting steel (CC) and ingot casting steel (IC) showed that the carbon segregation (C/C0) in former steel was 0.92~1.10 and its fatigue life was equal to that of the latter steel.展开更多
The experiments for rheologic behaviors of semisolid continuous casting billets of A356 alloy in semisolid state had been carried out with a multifunctional rheometer. The results show that the deformation rate increa...The experiments for rheologic behaviors of semisolid continuous casting billets of A356 alloy in semisolid state had been carried out with a multifunctional rheometer. The results show that the deformation rate increases with loading time, the maximum strain reaches to 120% (which is one time larger than that of traditional mold casting billet) and the strain can be rapidly eliminated to 10% after unloading. Moreover, there is a critic stress for billet deformation even in semisolid state, which is named as critic shear stress. This stress increases with the decreasing of heating time. The theologic behaviors can be expressed by five elements mechanical model (H_2- [N_1|H_2]-[N_2|S]) and can be modified with the increasing of heating time.展开更多
The carbon segregation that occurs in a round billet leads to instability in the anti-sulfur steel pipe.The maximum difference in the C content of these billets can reach 0.08%,and the equiaxed grain ratio is about 37...The carbon segregation that occurs in a round billet leads to instability in the anti-sulfur steel pipe.The maximum difference in the C content of these billets can reach 0.08%,and the equiaxed grain ratio is about 37.0%.In this paper,reasonable casting and mixing parameters were obtained by a study of the casting process,mold electromagnetic stirring,and the final electromagnetic stirring process.First,a mathematical model was established for the solidification and heat transfer of round-billet continuous casting using the characteristics of the continuous-casting process for sulfur-resistant steel pipes.The relationship between the casting speed,cooling-water ratio,and thickness of the shell at the final stirring position was analyzed.Then,the electromagnetic force and the liquid steel flow velocity were simulated and used to obtain reasonable parameters for the mold and final electromagnetic stirring.Through optimization of the casting and electromagnetic stirring technologies,the equiaxed grain ratio of the continuous-casting round billet increased to 53.4%and the maximum difference in the C content of the billet reduced to 0.031%.展开更多
A recently developed backward extrusion method entitled “modified backward extrusion” was presented using an upper bound analysis. For this purpose deformation area was divided into four distinct zones and a kinemat...A recently developed backward extrusion method entitled “modified backward extrusion” was presented using an upper bound analysis. For this purpose deformation area was divided into four distinct zones and a kinematically admissible velocity field for each of them was suggested. Total dissipated power was calculated for the deformation zones and the extrusion power wascomputed. The correlations of important geometrical parameters with extrusion force and dissipated powers were shown. Finding the initial billet size, a challenging area in the modified backward extrusion method, was discussed and the optimum billet radius was obtained, considering the minimum relative extrusion pressure. Finite element analyses were conducted and the results werecompared with the upper bound analysis. Finally, experiments were executed on commercially pure aluminium and a good agreement between upper bound and finite element analyses with experimental values was observed.展开更多
Preparation of semi-solid billet of magnesium alloy and thixoforming was investigated by applying equal channel angularextrusion to magnesium alloy.The results show that mechanical properties of AZ91D alloy at room te...Preparation of semi-solid billet of magnesium alloy and thixoforming was investigated by applying equal channel angularextrusion to magnesium alloy.The results show that mechanical properties of AZ91D alloy at room temperature,such as yieldstrength(YS),ultimate tensile strength(UTS)and elongation,are enhanced greatly by four-pass equal channel angularextrusion(ECAE)at 573 K and microstructure of AZ91D alloy is refined to the average grain size of 20μm.Through using ECAE asstrain induced step in SIMA and completing melt activated step by semi-solid isothermal treatment,semi-solid billet with finespheroidal grains of 25μm can be prepared successfully.Compared with common SIMA,thixoformed satellite angle framecomponents using semi-solid billet prepared by new SIMA have higher mechanical properties at room temperature and hightemperature of 373 K.展开更多
基金supported by the National Natural Science Foundation of China(No.51401126,No.51271117)Shanghai Committee of Science and Technology,China(No.14441901800)
文摘It has been revealed that the different morphologies of anodized TiO_2 nanotubes, especially nanotube diameters, triggered different cell behaviors. However, the influence of TiO_2 nanotubes with coexisting multi-size diameters on cell behaviors is seldom reported. In this work, coexisting four-diameter TiO_2 nanotube samples, namely,one single substrate with the integration of four different nanotube diameters(60, 150, 250, and 350 nm), were prepared by repeated anodization. The boundaries between two different diameter regions show well-organized structure without obvious difference in height. The adhesion behaviors of MC3T3-E1 cells on the coexisting fourdiameter TiO_2 nanotube arrays were investigated. The results exhibit a significant difference of cell density between smaller diameters(60 and 150 nm) and larger diameters(250 and 350 nm) within 24 h incubation with the coexistence of different diameters, which is totally different from that on the single-diameter TiO_2 nanotube arrays. The coexistence of four different diameters does not change greatly the cell morphologies compared with the singlediameter nanotubes. The findings in this work are expected to offer further understanding of the interaction between cells and materials.
基金financially supported by the National Key R&D Projects(No.2021YFB3702000)the Regional Company Projects in Ansteel Beijing Research Institute(No.2022BJB07GF&No.2022BJB-13GF)。
文摘Electromagnetic stirring is one of the widely applied techniques to modify the quality of casting billets.Different from conventional rotate stirring,the helical stirring is more professional in assisting multi-dimensional flow of molten metal and eliminating solidification defects.In this study,the single-winding helical stirring(SWHS)was introduced,offering advantages such as smaller volume and lower electromagnetic shielding compared to traditional helical stirring methods.Following a comprehensive numerical simulation,the stirring parameters of SWHS were adjusted to yoke inclination angle of 43°and frequency of 12 Hz.The higher electromagnetic force and flow velocity in drawing direction,as well as the lower temperature gradient induced by the SWHS,are positive factors for homogeneous solidification of billet.The experimental results on Al-8%Si alloy and 0.4%C-1.1%Mn steel demonstrate that compared to rotate stirring,the SWHS process can induce better billet quality and is more effective in accelerating the equiaxed expansion and reducing element segregation.The SWHS process can enhance the equiaxed ratio of the billet by 58.3%and reduce segregation degree of carbon element by 10.97%.Consequently,SWHS holds great promise as a potential approach for improving the quality of continuous casting billets.
基金Project(51075099) supported by the National Natural Science Foundation of ChinaProject(E201038) supported by the Natural Science Foundation of Heilongjiang Province,China+3 种基金Project(20090460884) supported by the China Postdoctoral Science FoundationProjects (HIT.NSRIF.2013007 and 2012038) supported by the Fundamental Research Funds for the Central Universities,ChinaProject (2011RFQXG010) supported by the Harbin City Young Scientists Foundation under the GrantProject(LBH-T1102) supported by the Specially Postdoctoral Science Foundation of Heilongjiang Province,China
文摘New strain induced melt activation(new SIMA) method was employed to prepare high-quality semisolid billet of AZ61 magnesium alloy.Optical microscopy and tensile test were used to study the microstructure and mechanical properties of the thixo-extruded component.The results showed that the optimal process parameters for achieving the complete filling status involved the applied pressure of 784 MPa,the pressure holding time of 90 s and the die temperature of 450 ℃.Compared to semisolid isothermal treatment,high mechanical properties such as the tensile strength of 300.5 MPa and elongation of 22% and fine microstructure were obtained in the thixo-extruded parts.With increasing the isothermal temperature and holding time,the tensile strength and elongation were increased firstly and then decreased.When the press pass was increased from 1 to 4,the tensile strength and elongation of the thixo-extruded parts were greatly enhanced and microstructure was refined obviously.
基金Project(2012CB723307)supported by the National Basic Research Program of ChinaProject(51204046)supported by the National Natural Science Foundation of ChinaProject(20130042130001)supported by the Doctoral Fund of Ministry of Education of China
文摘AA4045/AA3003 cladding billet was prepared by direct chill semi-continuous casting process. The macrostructures, microstructures, temperature distribution, compositions distribution and the mechanical properties at the bonding interface were investigated in detail. The results show that the cladding billet with few defects could be obtained by semi-continuous casting process. At the interface, diffusion layer of about 10μm on average formed between the two alloys due to the diffusion of alloy elements in the temperature range from 596 to 632 °C. From the side of AA4045 to the side of AA3003, the Si content has a trend to decrease, while the Mn content has a trend to increase gradually. Tensile strength of the cladding billet reaches 103.7 MPa, the fractured position is located on the AA3003 side, and the shearing strength is 91.1 MPa, revealing that the two alloys were combined metallurgically by mutual diffusion of alloy elements.
基金Project(B08040)supported by the Program of Introducing Talents of Discipline to Universities(111 Project),ChinaProject(2009ZX04005-031-11)supported by the National Science and Technology Special Program,China
文摘To manufacture plate by the combination of equal channel angular processing (ECAP) and porthole die extrusion techniques, a novel technique, namely portholes-equal channel angular processing (P-ECAP), was studied. Extrusion of AL6005A plate used for the bullet train plate was investigated by finite element method. The relevant porthole dies involving ECAP technique in channels were designed. Dimensional changes in the scrap part of the extrudate obtained after extrusion from the P-ECAP die, with different channel angles, were predicted. Effects of the channel angle and extrusion speed on the maximum temperature of the workpiece and other field variables were evaluated. At the channel angle of 160° of P-ECAP dies, the extrudate exhibited the optimal performance and the least amount of extrudate scrap was obtained. The optimal extrusion speed was 3-5 mm/s. Moreover, with the increase in ram speed from 1 to 9 mm/s, the peak extrusion load increased by about 49% and the maximum temperature was increased by about 70 ℃. The effective strain exhibited ascending trend in the comer of the ECAP deformation zone. In the solder seam and the side of die bearing of extrudate, the maximum principal stresses were tensile stress.
基金Projects(51274054,U1332115,51271042,51375070,51401044)supported by the National Natural Science Foundation of ChinaProject(313011)supported by the Key Grant Project of Ministry of Education of China+4 种基金Project(2013A16GX110)supported by the Science and Technology Planning Project of Dalian,ChinaProject(2014M551075)supported by the China Postdoctoral Science FoundationProject supported by the Fundamental Research Funds for the Central Universities,China
文摘A modified horizontal continuous casting process under the electromagnetic field was proposed for preparing AA3003/ AA4045 clad composite hollow billets. To investigate the effect of electromagnetic field on this process, a comprehensive three-dimensional model was developed. Two cases with and without electromagnetic field were compared using the simulations. When rotating electromagnetic stirring is applied, the flow pattern of fluid melt is greatly modified; the mushy zone becomes much wider, the temperature profile becomes more uniform, and the solid fraction decreases for both the external and internal alloy melt layers. These modifications are beneficial for the formation of a bimetal interface and fine and uniform grain structure of the clad composite hollow billet. Experiments conducted using the same electrical and casting parameters as the simulations verify that under the electromagnetic field the microstructure of the clad composite hollow billet becomes fine and the diffusion of the elements at the interface is promoted.
基金supported by the Program for New Century Excellent Talents in University from the Ministry of Education of China (No.NCET-04-0285)
文摘An industrial plant trial for optimizing the process parameters in a round billet continuous casting mold with electromagnetic stirring (M-EMS) was performed, in which the influences of stirring parameters with M-EMS on the solidification macrostructure of high carbon steel were investigated. The results show that the billet quality is not well controlled under the condition of working current and frequency with EMS, in which the subsurface crack of grade 1.0-2.0 ups to 38.09%, the central pipe of grade 1.0-1.5 reaches to 14.28%, and the central porosity of grade 1.5 is 14.29%. The parameters of current 260 A and frequency 8 Hz as the final optimum scheme has a remarkable effect for improving the macroscopic quality of billet, in which the subsurface crack, central pipe and skin blowhole are all disappeared, and the central porosity and carbon segregation are also well improved.
基金financially supported by the Major State Basic Research Development Program of China(Grant No.2013CB632203)the Liaoning Provincial Natural Science Foundation of China(Grant No.201202072)+1 种基金the Program for Liaoning Excellent Talents in University(Grant No.LJQ2012023)the Fundamental Research Foundation of Central Universities(Grant Nos.N120509002 and N120309003)
文摘The low frequency electromagnetic field was applied during direct chill(DC) semi-continuous casting of the ZK60 magnesium alloy billets. Effects of low frequency electromagnetic field on surface quality, microstructure and hot-tearing tendency of Φ500 mm ZK60 magnesium alloy billets were investigated. The results showed that with the application of the low frequency electromagnetic field, the surface quality of the ZK60 magnesium alloy billets is markedly improved and the depth of cold fold is decreased. The microstructure of the billets is also significantly refined. Besides, the distribution of the grain size is relatively uniform from the billet surface towards its center, where the average grain size is 42 μm at surface and 50 μm at center. It also shows that the hot-tearing tendency of DC semi-continuous casting ZK60 magnesium alloy billets is significantly reduced under low frequency electromagnetic field.
文摘Forging spur gears are widely used in the driving system of mining machinery and equipment due to their higher strength and dimensional accuracy.For the purpose of precisely calculating the volume of cylindrical spur gear billet in cold precision forging,a new theoretical method named average circle method was put forward.With this method,a series of gear billet volumes were calculated.Comparing with the accurate three-dimensional modeling method,the accuracy of average circle method by theoretical calculation was estimated and the maximum relative error of average circle method was less than 1.5%,which was in good agreement with the experimental results.Relative errors of the calculated and the experimental for obtaining the gear billet volumes with reference circle method are larger than those of the average circle method.It shows that average circle method possesses a higher calculation accuracy than reference circle method(traditional method),which should be worth popularizing widely in calculation of spur gear billet volume.
基金Supported by the National Key Technology R&D Program of the 11th Five-Year Plan of China(2006BAF04B05)the Natural Science Foundation of Shanxi Province(2010021024-2)
文摘Perfect combination of structural size parameters of the hydroforming billets is essential to obtain even wall thicknesses of the car beam. Finite element ( FE ) analysis on hydroforming car beam was carried out, and the results were optimized according to multiple quality objectives by the grey system theory. With bending angle, bending radius and hight difference along the axis direction as variables, orthogonal FE analyses were conducted and the minimum and maximum wall thicknes ses of the billets with different sizes were obtained. Taking the minimum and maximum wall thick nesses as two references, the correlation coefficient between the data for reference and those for comparison by the grey system theory reduced multi objectives to a single quality objective, and the average correlation level of every billet facilitated the optimization of size parameters for hydroform ing car beam. The trial production showed that the optimization approach satisfied the need of hy droforming car beams.
基金Project(2015B090926013)supported by the Science and Technology Program of Guangdong Province,ChinaProject(20170540307)supported by the Natural Science Foundation of Liaoning Province,China
文摘Numerical simulation and experiments were introduced to develop AA4045/AA3003 cladding billets with different clad-ratios. The temperature fields, microstructures and mechanical properties near interface were investigated in detail. The results show that cladding billets with different clad-ratios were fabricated successfully. Si and Mn elements diffused across the bonding interface and formed diffusion layer. With the increase of clad-layer thickness, the interfacial region transforms from semisolid-solid state to liquid-solid state and the diffusion layer increased from 10 to 25 μm. The hardness at interface is higher than that of AA3003 side but lower than that of the other side. The bonding strength increased with the clad-layer thickness, attributing to solution strengthening due to elements diffusion. The cladding billets were extruded into clad pipe by indirect extrusion process after homogenization. The clad pipe remained the interfacial characteristics of as-cast cladding billet and the heredity of clad-ratio during deformation was testified.
基金Project(50605015) supported by the National Natural Science Foundation of ChinaProject(HITQNJS.2008.012) supported by Development Program for Outstanding Young Teachers in Harbin Institute of Technology,China+1 种基金Projects(20090460884,20080440849) supported by China Postdoctoral Science FoundationProject(LBH-Q08104) supported by the Postdoctoral Foundation of Heilongjiang Province,China
文摘Semisolid billet of AZ80 magnesium alloy was prepared by new strain induced melt activated (new SIMA) process and thixoforging experiment was performed.The results show that after as-cast AZ80 magnesium alloy is processed by equal channel angular extrusion, microstructure is refined well due to heavy dynamic recrystallization occurring in severe plastic deformation.Compared with semisolid isothermal treatment and conventional SIMA, semisolid billet with fine and spheroidal grains are achieved in new SIMA.Thixoforging process of semisolid billet prepared by new SIMA has many advantages such as good surface quality of final component, high ability to fill cavity and net-shape.The fine and spheroidal grains and high mechanical properties such as tensile strength of 298 MPa and elongation of 28% can be developed in final part thixoforged.
文摘A coupled mathematical model was established to simulate the whole solidification process of round billet continuous casting for wheel steel using piecewise linear functions of heat flux density in the mold, the secondary cooling zone and the with- drawing-straightening zone. The calculated results were consistent with the measured data showing that the model accords with the practice. The surface temperature and the solidified shell thickness of round billets are more strongly influenced by casting speed than by casting temperature. The holding zones have effect on surface temperature, which is more obvious for the 450 mm round billet. The relation between casting temperature/speed and solidification end is expressed as a linear function. The solidification end is located after straightening machine.
基金supported by the National Natural Science Foundation of China(No.51474059,No.51204042)the Program for Liaoning Excellent Talents in University(No.LJQ2014031)the Fundamental Research Funds for the Central Universities(No.N140205003)
文摘The physical model of a ten-strand billet caster tundish was established to study the effects of various flow control devices on the melt flow. Before and after the optimization of the melt flow, the inclusion removal in the tundish was evaluated by plant trials. The physical modeling results show that when combined with a baffle, the turbulence inhibitor, instead of the impact pad, can significantly improve the melt flow. A turbulence inhibitor with a longer length of inner cavity and without an extending lip at the top of the sidewall seems to be efficient in the improvement of the melt flow. Various types and designs of baffles all influence the flow characteristics significantly. The "V" type baffles are better than the straight baffles for flow control. The "V" type baffle with four inclined holes at the sidewall away from the stopper rods is better in melt flow control than the one with one inclined hole at each sidewall. The combination of a well-designed turbulence inhibitor and an appropriate baffle shows high efficiency on improving the melt flow and an optimal proposal was presented. Plant trials indicate that, compared with the original tundish configuration in prototype, the inclusions reduce by 42% and the inclusion distribution of individual strands is more similar with the optimal one. The optimal tundish configuration effectively improves the melt flow in the ten-strand billet caster tundish.
文摘Continuous casting of steel involving different grades in the same casting sequence remains a challenge to billet caster operators. The intermixed composition obtained during the grade change does not meet the specification of either grade and must be downgraded. Incorrect identification of this intermixed region may result in non-conforming products reaching the customer. In this study, a numerical model based on CFD (computational fluid dynamics approach) has been developed which predicts the start and end of the intermixed composition and the tonnage to be downgraded under different casting conditions. This model was validated and the results were in good agreement with the actual plant data for a 6-strand billet caster at LD-1 of TATA Steel, India. This model is used to calculate transition tonnage for different scenarios, e.g. when one of the outermost strands is not functional or some combinations are not functional and varying casting speed during operation. Furthermore, impact of different design of baffles on performance of Tundish has been evaluated to find a way to reduce transition or intermixed composition.
文摘The formation mechanism of 'white band' and central carbon segregation of high-carbon Cr bearing steel concasting billets are discussed in this paper. The maximum oxygen content in the steel produced by concasting process was 13xl0^-6 with an average oxygen content of 9.3xl0^-6. Comparison of metallurgical quality and fatigue property between the concasting steel (CC) and ingot casting steel (IC) showed that the carbon segregation (C/C0) in former steel was 0.92~1.10 and its fatigue life was equal to that of the latter steel.
文摘The experiments for rheologic behaviors of semisolid continuous casting billets of A356 alloy in semisolid state had been carried out with a multifunctional rheometer. The results show that the deformation rate increases with loading time, the maximum strain reaches to 120% (which is one time larger than that of traditional mold casting billet) and the strain can be rapidly eliminated to 10% after unloading. Moreover, there is a critic stress for billet deformation even in semisolid state, which is named as critic shear stress. This stress increases with the decreasing of heating time. The theologic behaviors can be expressed by five elements mechanical model (H_2- [N_1|H_2]-[N_2|S]) and can be modified with the increasing of heating time.
文摘The carbon segregation that occurs in a round billet leads to instability in the anti-sulfur steel pipe.The maximum difference in the C content of these billets can reach 0.08%,and the equiaxed grain ratio is about 37.0%.In this paper,reasonable casting and mixing parameters were obtained by a study of the casting process,mold electromagnetic stirring,and the final electromagnetic stirring process.First,a mathematical model was established for the solidification and heat transfer of round-billet continuous casting using the characteristics of the continuous-casting process for sulfur-resistant steel pipes.The relationship between the casting speed,cooling-water ratio,and thickness of the shell at the final stirring position was analyzed.Then,the electromagnetic force and the liquid steel flow velocity were simulated and used to obtain reasonable parameters for the mold and final electromagnetic stirring.Through optimization of the casting and electromagnetic stirring technologies,the equiaxed grain ratio of the continuous-casting round billet increased to 53.4%and the maximum difference in the C content of the billet reduced to 0.031%.
文摘A recently developed backward extrusion method entitled “modified backward extrusion” was presented using an upper bound analysis. For this purpose deformation area was divided into four distinct zones and a kinematically admissible velocity field for each of them was suggested. Total dissipated power was calculated for the deformation zones and the extrusion power wascomputed. The correlations of important geometrical parameters with extrusion force and dissipated powers were shown. Finding the initial billet size, a challenging area in the modified backward extrusion method, was discussed and the optimum billet radius was obtained, considering the minimum relative extrusion pressure. Finite element analyses were conducted and the results werecompared with the upper bound analysis. Finally, experiments were executed on commercially pure aluminium and a good agreement between upper bound and finite element analyses with experimental values was observed.
基金Project(50605015)supported by the National Natural Science Foundation of China
文摘Preparation of semi-solid billet of magnesium alloy and thixoforming was investigated by applying equal channel angularextrusion to magnesium alloy.The results show that mechanical properties of AZ91D alloy at room temperature,such as yieldstrength(YS),ultimate tensile strength(UTS)and elongation,are enhanced greatly by four-pass equal channel angularextrusion(ECAE)at 573 K and microstructure of AZ91D alloy is refined to the average grain size of 20μm.Through using ECAE asstrain induced step in SIMA and completing melt activated step by semi-solid isothermal treatment,semi-solid billet with finespheroidal grains of 25μm can be prepared successfully.Compared with common SIMA,thixoformed satellite angle framecomponents using semi-solid billet prepared by new SIMA have higher mechanical properties at room temperature and hightemperature of 373 K.