Understanding the topographic patterns of the seafloor is a very important part of understanding our planet.Although the science involved in bathymetric surveying has advanced much over the decades,less than 20%of the...Understanding the topographic patterns of the seafloor is a very important part of understanding our planet.Although the science involved in bathymetric surveying has advanced much over the decades,less than 20%of the seafloor has been precisely modeled to date,and there is an urgent need to improve the accuracy and reduce the uncertainty of underwater survey data.In this study,we introduce a pretrained visual geometry group network(VGGNet)method based on deep learning.To apply this method,we input gravity anomaly data derived from ship measurements and satellite altimetry into the model and correct the latter,which has a larger spatial coverage,based on the former,which is considered the true value and is more accurate.After obtaining the corrected high-precision gravity model,it is inverted to the corresponding bathymetric model by applying the gravity-depth correlation.We choose four data pairs collected from different environments,i.e.,the Southern Ocean,Pacific Ocean,Atlantic Ocean and Caribbean Sea,to evaluate the topographic correction results of the model.The experiments show that the coefficient of determination(R~2)reaches 0.834 among the results of the four experimental groups,signifying a high correlation.The standard deviation and normalized root mean square error are also evaluated,and the accuracy of their performance improved by up to 24.2%compared with similar research done in recent years.The evaluation of the R^(2) values at different water depths shows that our model can achieve performance results above 0.90 at certain water depths and can also significantly improve results from mid-water depths when compared to previous research.Finally,the bathymetry corrected by our model is able to show an accuracy improvement level of more than 21%within 1%of the total water depths,which is sufficient to prove that the VGGNet-based method has the ability to perform a gravity-bathymetry correction and achieve outstanding results.展开更多
The Kyushu–Palau Ridge(KPR),an anti-S-shaped submarine highland at the center of the Philippine Sea Plate(PSP),is considered the residual arc of the Izu–Bonin–Mariana Island Arc,which retains key information about ...The Kyushu–Palau Ridge(KPR),an anti-S-shaped submarine highland at the center of the Philippine Sea Plate(PSP),is considered the residual arc of the Izu–Bonin–Mariana Island Arc,which retains key information about the cessation of the Western Philippine Basin(WPB)expansion and the Parece Vela Basin(PVB)breakup.Herein,using the new generation of satellite altimetry gravity data,high-precision seafloor topography data,and newly acquired ship-borne gravity data,the topographic and gravity characteristics of the KPR mid-southern section and adjacent region are depicted.The distribution characteristics of the faults were delineated using the normalized vertical derivative–total horizontal derivative method(NVDR-THDR)and the minimum curvature potential field separation method.The Moho depth and crustal thickness were inverted using the rapid inversion method for a double-interface model with depth constraints.Based on these results,the crust structure features in the KPR mid-southern section,and the“triangular”structure geological significance where the KPR and Central Basin Rift(CBR)of the WPB intersect are interpreted.The KPR crustal thickness is approximately 6–16 km,with a distinct discontinuity that is slightly thicker than the normal oceanic crust.The KPR mid-southern section crust structure was divided into four segments(S1–S4)from north to south,formed by the CBR eastward extension joint action and clockwise rotation of the PVB expansion axis and the Mindanao fault zone blocking effect.展开更多
A modified algorithm taking into account the first year(FY) and multiyear(MY) ice densities is used to derive a sea ice thickness from freeboard measurements acquired by satellite altimetry ICESat(2003–2008). E...A modified algorithm taking into account the first year(FY) and multiyear(MY) ice densities is used to derive a sea ice thickness from freeboard measurements acquired by satellite altimetry ICESat(2003–2008). Estimates agree with various independent in situ measurements within 0.21 m. Both the fall and winter campaigns see a dramatic extent retreat of thicker MY ice that survives at least one summer melting season. There were strong seasonal and interannual variabilities with regard to the mean thickness. Seasonal increases of 0.53 m for FY the ice and 0.29 m for the MY ice between the autumn and the winter ICESat campaigns, roughly 4–5 month separation, were found. Interannually, the significant MY ice thickness declines over the consecutive four ICESat winter campaigns(2005–2008) leads to a pronounced thickness drop of 0.8 m in MY sea ice zones. No clear trend was identified from the averaged thickness of thinner, FY ice that emerges in autumn and winter and melts in summer. Uncertainty estimates for our calculated thickness, caused by the standard deviations of multiple input parameters including freeboard, ice density, snow density, snow depth, show large errors more than 0.5 m in thicker MY ice zones and relatively small standard deviations under 0.5 m elsewhere. Moreover, a sensitivity analysis is implemented to determine the separate impact on the thickness estimate in the dependence of an individual input variable as mentioned above. The results show systematic bias of the estimated ice thickness appears to be mainly caused by the variations of freeboard as well as the ice density whereas the snow density and depth brings about relatively insignificant errors.展开更多
Patterns of the South China Sea (SCS) circulation variability are extracted from merged satellite altimetry data from October 1992 through August 2004 by using the self-organizing map (SOM). The annual cycle, seasonal...Patterns of the South China Sea (SCS) circulation variability are extracted from merged satellite altimetry data from October 1992 through August 2004 by using the self-organizing map (SOM). The annual cycle, seasonal and inter-annual variations of the SCS surface circulation are identified through the evolution of the characteristic circulation patterns.The annual cycle of the SCS general circulation patterns is described as a change between two opposite basin-scale SW-NE oriented gyres embedded with eddies: low sea surface height anomaly (SSHA) (cyclonic) in winter and high SSHA (anticyclonic) in summer half year. The transition starts from July—August (January—February) with a high (low) SSHA tongue east of Vietnam around 12°~14° N, which develops into a big anticyclonic (cyclonic) gyre while moving eastward to the deep basin. During the transitions, a dipole structure, cyclonic (anticyclonic) in the north and anticyclonic (cyclonic) in the south, may be formed southeast off Vietnam with a strong zonal jet around 10°~12° N. The seasonal variation is modulated by the interannual variations. Besides the strong 1997/1998 event in response to the peak Pacific El Nio in 1997, the overall SCS sea level is found to have a significant rise during 1999~2001, however, in summer 2004 the overall SCS sea level is lower and the basin-wide anticyclonic gyre becomes weaker than the other years.展开更多
This paper focuses on estimating a new high-resolution Earth’s gravity field model named SGG-UGM-2 from satellite gravimetry,satellite altimetry,and Earth Gravitational Model 2008(EGM2008)-derived gravity data based ...This paper focuses on estimating a new high-resolution Earth’s gravity field model named SGG-UGM-2 from satellite gravimetry,satellite altimetry,and Earth Gravitational Model 2008(EGM2008)-derived gravity data based on the theory of the ellipsoidal harmonic analysis and coefficient transformation(EHA-CT).We first derive the related formulas of the EHA-CT method,which is used for computing the spherical harmonic coefficients from grid area-mean and point gravity anomalies on the ellipsoid.The derived formulas are successfully evaluated based on numerical experiments.Then,based on the derived least-squares formulas of the EHA-CT method,we develop the new model SGG-UGM-2 up to degree 2190 and order 2159 by combining the observations of the Gravity Field and Steady-State Ocean Circulation Explorer(GOCE),the normal equation of the Gravity Recovery and Climate Experiment(GRACE),marine gravity data derived from satellite altimetry data,and EGM2008-derived continental gravity data.The coefficients of degrees 251–2159 are estimated by solving the block-diagonal form normal equations of surface gravity anomalies(including the marine gravity data).The coefficients of degrees 2–250 are determined by combining the normal equations of satellite observations and surface gravity anomalies.The variance component estimation technique is used to estimate the relative weights of different observations.Finally,global positioning system(GPS)/leveling data in the mainland of China and the United States are used to validate SGG-UGM-2 together with other models,such as European improved gravity model of the earth by new techniques(EIGEN)-6C4,GECO,EGM2008,and SGG-UGM-1(the predecessor of SGG-UGM-2).Compared to other models,the model SGG-UGM-2 shows a promising performance in the GPS/leveling validation.All GOCE-related models have similar performances both in the mainland of China and the United States,and better performances than that of EGM2008 in the mainland of China.Due to the contribution of GRACE data and the new marine gravity anomalies,SGG-UGM-2 is slightly better than SGG-UGM-1 both in the mainland of China and the United States.展开更多
China has successfully launched four Haiyang-2(HY-2)series altimetry satellites.HY-2A has attracted significant attention in gravity field recovery,but the performance of other HY-2 series satellites,including HY-2B/C...China has successfully launched four Haiyang-2(HY-2)series altimetry satellites.HY-2A has attracted significant attention in gravity field recovery,but the performance of other HY-2 series satellites,including HY-2B/C/D,is seldom discussed.This study evaluated the performance of all the HY-2 series satellites in recovering marine gravity field.First,the crossover discrepancies in sea surface height of the four satellites,HY-2A,HY-2B,HY-2C,and HY-2D,were analyzed to assess their altimetry stability.It was found that HY-2B had the best altimetry quality,followed by HY-2D.Subsequently,different combina-tions of altimetry data were used to calculate vertical deflections and gravity anomalies in the South China Sea(112°E-119°E,12°N-20°N).The results showed that combining data from HY-2B,HY-2C,and HY-2D improved the inversion accuracy of gravity anomalies by 0.3 mGal compared to using HY-2A data alone.HY-2C and HY-2D contributed to enhancing the accuracy of the east component of vertical deflections.展开更多
The Gravity Recovery and Climate Experiment(GRACE) satellite mission provides a unique opportunity to quantitatively study terrestrial water storage(TWS) variations. In this paper,the terrestrial water storage var...The Gravity Recovery and Climate Experiment(GRACE) satellite mission provides a unique opportunity to quantitatively study terrestrial water storage(TWS) variations. In this paper,the terrestrial water storage variations in the Poyang Lake Basin are recovered from the GRACE gravity data from January 2003 to March 2014 and compared with the Global Land Data Assimilation System(GLDAS) hydrological models and satellite altimetry. Furthermore, the impact of soil moisture content from GLDAS and rainfall from the Tropical Rainfall Measuring Mission(TRMM) on TWS variations are investigated. Our results indicate that the TWS variations from GRACE, GLDAS and satellite altimetry have a general consistency. The TWS trends in the Poyang Lake Basin determined from GRACE, GLDAS and satellite altimetry are increasing at 0.0141 km^3/a, 0.0328 km^3/a and 0.0238 km^3/a,respectively during the investigated time period. The TWS is governed mainly by the soil moisture content and dominated primarily by the precipitation but also modulated by the flood season of the Yangtze River as well as the lake and river exchange water.展开更多
This study endeavors to deal with the least square spectral analysis on the time series, to find present significant frequencies, to analyze 40 tide components using harmonic methods and to show relationship between d...This study endeavors to deal with the least square spectral analysis on the time series, to find present significant frequencies, to analyze 40 tide components using harmonic methods and to show relationship between discovered frequencies and 40 components of tide. For the purpose of collecting data of altimetry satellites of Topex/Poseidon (T/P), Jason 1, Jason 2 and coastal tide gauges of Bandar Anzali, Noshahr, and Nekah were utilized. In this time series formed by cross over points of altimetry satellite and then using least square spectral analysis on time series derived from altimetry satellite and coastal tide gauges the significant components were found and annual, biannual, and monthly components were discovered. Then, analysis of 40 tide components was conducted using harmonic method to find the amplitude and phase. It represented that solar annual (Sa) plays the most significant role on Caspian Sea corresponded to the least square spectral analysis of the time series. The results shows that the annual (Sa) and semi-annual Solar (Ssa) constituents on all of the ports listed have the highest amplitude in comparison with the other constituents which are respectively 16 cm, 18 cm and 15 cm for annual constituent and 2.8 cm, 5.4 cm and 3.7 cm for semi-annual constituent.展开更多
The Kuroshio Extension (KE) plays an important role in climate and environmental change in the North Pacific. In this paper, more than 20 years of merged absolute dynamic topography and merged sea level anomaly prod...The Kuroshio Extension (KE) plays an important role in climate and environmental change in the North Pacific. In this paper, more than 20 years of merged absolute dynamic topography and merged sea level anomaly products from satellite altimetry are used to analyze the stability of the KE system. By analyzing the annually averaged sea surface topography, the variations of inter-annual path and annually averaged eddy kinetic energy at the KE region, the KE's two dynamic states are given as: the relatively stable state during 1993 1995, 2002-2005, and 2010-2012, and the unstable dynamic state among 1996-2001 and 2006-2009. During the stable state, the KE spindle had a shorter path length and smaller time-varying amplitude, as well as a trend to move northward. While during the unstable state, the KE spindle had a longer path length and an integral southward transport trend, and was observed to oscillate significantly over time. The analysis on the KE's upstream and downstream region gives the same variations, indi- cating that they are significantly affected by the El Nino events. The power spectrum of the mean latitudinal position variation of the KE's upstream and downstream shows significant quasi-decadal oscillation characteristics and strong annual signals. Furthermore, the correlation of the strength vari- ation between the southern RG and the KE's upstream is calculated to be 0.50 after low-pass filtering, and that of the mean latitudinal position variation between the southern RG and the KE's upstream/ downstream are 0.75/0.69 after low-pass filtering, respectively. The strong correlations demonstrated that the southern RG and the KE are closely linked.展开更多
The impact of climate change on sea level has received a great deal of attention by scientists worldwide. In this context, the problem of sea levels on global and regional scales have been analyzed in a number of stud...The impact of climate change on sea level has received a great deal of attention by scientists worldwide. In this context, the problem of sea levels on global and regional scales have been analyzed in a number of studies based on tide gauges observations and satellite altimetry measurements. This study focuses on trend estimates from 18 high-quality tide gauge stations along the Mediterranean Sea coast. The seasonal Mann-Kendall test was run at a 5% significance level for each of the 18 stations for the period of 1993-2015 (satellite altimetry era). The results of this test indicate that the trends for 17 stations were statistically significant and showed an increase (no significant trend was observed only at one station). The rates of sea level change for the 17 stations that exhibit significant trends, estimated using seasonal Sen's approach, range after correction for Vertical Land Motion (VLM) from 1.48 to 8.72 mm/a for the period 1993-2015. Furthermore, the magnitude of change at the location of each tide gauge station was estimated using the satellite altimetry measurements. Thus, the results obtained agree with those from the tide-gauge data analysis.展开更多
The laser altimeter loaded on the GaoFen-7(GF-7)satellite is designed to record the full waveform data and footprint image,which can obtain high-precision elevation control points for stereo image.The footprint camera...The laser altimeter loaded on the GaoFen-7(GF-7)satellite is designed to record the full waveform data and footprint image,which can obtain high-precision elevation control points for stereo image.The footprint camera equipped on the GF-7 laser altimetry system can capture the energy distribution at the time of laser emission and the image of the ground object where the laser falls,which can be used to judge whether the laser is affected by the cloud.At the same time,the centroid of laser spot on the footprint image can be extracted to monitor the change of laser pointing stability.In this manuscript,a data quality analysis scheme of laser altimetry based on footprint image is presented.Firstly,the cloud detection of footprint image is realized based on deep learning.The fusion result of the model is about 5%better than that of the traditional cloud detection algorithm,which can quickly and accurately determine whether the laser spot is affected by cloud.Secondly,according to the characteristics of footprint image,a threshold constrained ellipse fitting method for extracting the centroid of laser spot is proposed to monitor the pointing stability of long-period lasers.Based on the above method,the change of laser spot centroid since GF-7 satellite was put into operation is analyzed,and the conclusions obtained have certain reference significance for the quality control of satellite laser altimetry data and the analysis of pointing angle stability.展开更多
Satellite altimetry can provide the geoid in ocean areas with a level of precision of about 10 cm. Such a precise geoid offers a good opportunity for studying the marine gravity field. The basic mathematical model and...Satellite altimetry can provide the geoid in ocean areas with a level of precision of about 10 cm. Such a precise geoid offers a good opportunity for studying the marine gravity field. The basic mathematical model and theory of the satellite altimetry were introduced briefly and firstly. Then the inverse Hotine method to derive gravity disturbances from satellite altimetry was presented. Meanwhile the inversion of marine gravity in Chinese coastal waters from Topex/Poseidon satellite altimetry data was tested, and the RMS between the gravity disturbance from the OSU91A model and satellite altimetry data inversing is about 12.76 mGal. Finally, some problems which are in inversing procedure were discussed, i e, integration singularity, edge effect etc. And it is conluded that the accuracy of the inversing gravity method can reach only a few mGal if proper treatment of Fast Fourier Transform (FFT) edge effect is employed.展开更多
High resoultion Eulerian mean velocity field has been derived by combining the satellite tracked surface drifter data with satellite altimetry and ocean surface winds. The drifter data used in this study includes Argo...High resoultion Eulerian mean velocity field has been derived by combining the satellite tracked surface drifter data with satellite altimetry and ocean surface winds. The drifter data used in this study includes Argos and surface drifter data from Global Drifter Program. Maps of Sea Level Anomaly (MSLA) weekly files with a resolution of (1/3)° in both Latitude and Longitude for the period 1993-2012 have been used. The Ekman current is computed using ocean surface mean wind fields from scatterometers onboard ERS 1/2, Quikscat and ASCAT. The derived mean velocity field exhibits the broad flow of Antarctic Circumpolar Current with speeds up to 0.6 m/s. Anomalous field is quite significant in the western part between 20~ and 40~E and in the eastern part between 80~E and 100~E with velocity anomaly up to 0.3 m/s. The estimated mean flow pattern well agrees with the dynamic topography derived from in-situ observations. Also, the derived velocity field is consistent with the in-situ ADCP current measurements. Eddy kinetic energy illustrates an increasing trend during 1993-2008 and is in phase coherence with the Southern Annular Mode by three month lag. Periodic modulations are found in the eddy kinetic energy due the low frequency Antarctic Circumpolar Wave propagation.展开更多
The calibration of the sea surface height(SSH)measured by satellite altimeters is essential to understand altimeter biases.Many factors affects the construction and maintenance of a permanent calibration site.In order...The calibration of the sea surface height(SSH)measured by satellite altimeters is essential to understand altimeter biases.Many factors affects the construction and maintenance of a permanent calibration site.In order to calibrate Chinese satellite altimetry missions,the feasibility of maintaining a calibration site based on the Qianliyan islet in Yellow Sea of China is taken into account.The related calibration facilities,such as the permanent tide gauge,GNSS reference station and meteorological station,were already operated by the Ministry of Natural Resources of China.The data could be fully used for satellite altimeter calibration with small fiscal expenditure.In addition,the location and marine environments of Qianliyan were discussed.Finally,we used the Jason-3 mission to check the possibility of calibration works.The result indicates that the brightness temperatures of three channels measured by microwave radiometer(MWR)and the derived wet tropospheric correction varies smoothly,which means the land contamination to MWR could be ignored.The high frequency waveforms at the Qianliyan site present no obvious difference from the normal waveforms received by satellite radar altimeter over the open ocean.In conclusion,the Qianliyan islet will not influence satellite altimetry observation.Following these analyses,a possible layout and mechanism of the Qianliyan calibration site are proposed.展开更多
This paper focuses on the study of ocean bathymetric inversion from satellite altimeter data by using FFT technique.In this study,the freeair gravity anomalies over the South China Sea are determined by the satellite ...This paper focuses on the study of ocean bathymetric inversion from satellite altimeter data by using FFT technique.In this study,the freeair gravity anomalies over the South China Sea are determined by the satellite altimeter data of GEOSAT,ERS1,ERS2 and T/P.And the 2.5′×2.5′ bathymetry model in South China Sea is calculated from the gravity anomalies with the inversion model given.After the analysis of the inversion and the comparison between the results,some conclusions can be drawn.展开更多
Based on the concept of Global Position System(GPS)/leveling,the satellite altimetry leveling(SAL) is first proposed to evaluate the marine geoid.SAL is derived by the difference among the mean sea surface(MSS),mean d...Based on the concept of Global Position System(GPS)/leveling,the satellite altimetry leveling(SAL) is first proposed to evaluate the marine geoid.SAL is derived by the difference among the mean sea surface(MSS),mean dynamic ocean topography(MDT),and leveling origin.In this study,(1) the original satellite altimetry data are processed to infer the vertical deflection and gravity anomaly,(2) the Chinese coastal marine geoids(CMG) are determined by using the differe nt methods(including Molodensky,least square collocation,Stokes formula,and two-dimensional fast Fourier transformation(FFT) with the vertical deflection and gravity anomaly data),(3) CMG are evaluated by using the results from above different methods,the Gravity field and steady-state Ocean Circulation Explorer(GOCE) gravity potential model(GGPM),and SAL.The results show that(1) CMG from the Molodensky method has the highest precision by using vertical de flection data,(2) the accuracy of CMG indicate good consistency between the SAL and GGPM,(3) SAL can be used as a new method for assessing marine geoid.展开更多
The northern Egyptian continental margin is characterized by interesting tectonic settings as well as trade and industry district in Egypt. In the current study, the contribution role of satellite altimetry gravity da...The northern Egyptian continental margin is characterized by interesting tectonic settings as well as trade and industry district in Egypt. In the current study, the contribution role of satellite altimetry gravity data in the Environmental geophysical investigation is presented to give a complete view of the marine gravity field of the study area. The satellite data showed only minor deviations in some partial regions of the area investigated such as Nile Deep Sea Fan, Levant Basin, Eratosthenes Seamount and Herodotus basin. The interpretations of the entire data illustrated that the differences between the satellite and the shipboard data were small in some regions particularly near to land. Furthermore, a number of strong deviations in some regions were spatially correlated with bathymetric depth together with the appearance of geological structures.展开更多
Sinking of the Nile Delta region of Egypt is one of urgent issues to be investigated due to its vital importance to numerous perspectives such as economic, environmental and social impact on the whole Egyptian territo...Sinking of the Nile Delta region of Egypt is one of urgent issues to be investigated due to its vital importance to numerous perspectives such as economic, environmental and social impact on the whole Egyptian territory. This contribution represents one of the project outcomes entitled “Evaluation of Nile Delta Sinking Hypothesis Using the Global Positioning System (GPS), Tide Gauge and Satellite Altimetry and Gravity Techniques” that has been funded by the Science & Technology Development FUND (STDF), Egypt in the period from 2013 till 2017. To detect the rates of the horizontal and vertical movements, three main geodetic techniques;Global Positioning System (GPS) measurements of Delta region, time-varying gravity models of the Gravity Recovery and Climate Experiment (GRACE) mission to monitor the temporal changes over the delta regions and satellite altimetry time series have been used. Our findings regarding the GPS technique show that the northern part of the Nile Delta region suffers from clear subsidence especially at the eastern and western side as represented by Port Said, Mansoura, Gamalyia, Alexandria and Edfena stations. The central part as well as the surrounding areas of Nile Delta suffers from clear uplift as represented by Tanta, Damnhour and Hamoul stations. Satellite gravity results show erosion rates of the conjunction part of Nile Delta and Mediterranean contact, especially at its eastern (Port Said surrounding areas) and western (Alexandria surrounding areas) parts. As we go inland to the southern part of the Nile Delta, the temporal gravity variations pattern decreases showing that the Delta subsidence follows the regular subsidence pattern, except that for the northern contact part of the Delta to the Mediterranean Sea. This is also supported by satellite altimetry missions which shows a continuously rising rate of the Mediterranean Sea level as detected from the Saral/AltiKa mission.展开更多
A new computational procedure for derivation of marine geoid on a 2.5′×2.5′grid in a non-tidal system over the South China Sea and the Philippine Sea from multi-satellite altimeter sea surface heights is discus...A new computational procedure for derivation of marine geoid on a 2.5′×2.5′grid in a non-tidal system over the South China Sea and the Philippine Sea from multi-satellite altimeter sea surface heights is discussed. Single-and dual-satellite crossovers were performed, and components of deflections of the vertical were determined at the crossover positions using Sand-well's computational theory, and gridded onto a 2.5′×2.5′resolution grid by employing the Shepard's interpolation procedure. 2.5′×2.5′grid of EGM96-derived components of deflections of the vertical and geoid heights were then used as reference global geopotential model quantities in a remove-restore procedure to implement the Molodensky-like formula via 1D-FFT technique to predict the geoid heights over the South China Sea and the Philippine Sea from the gridded altimeter-derived components of deflec-tions of the vertical. Statistical comparisons between the altimeter-and the EGM96- derived geoid heights showed that there was a root-mean-square agreement of ±0.35 m between them in a region of less tectonically active geological structures. However, over areas of tectonically active structures such as the Philippine trench, differences of about -19.9 m were obtained.展开更多
Arctic absolute sea level variations were analyzed based on multi-mission satellite altimetry data and tide gauge observations for the period of 1993–2018.The range of linear absolute sea level trends were found-2.00...Arctic absolute sea level variations were analyzed based on multi-mission satellite altimetry data and tide gauge observations for the period of 1993–2018.The range of linear absolute sea level trends were found-2.00 mm/a to 6.88 mm/a excluding the central Arctic,positive trend rates were predominantly located in shallow water and coastal areas,and negative rates were located in high-latitude areas and Baffin Bay.Satellite-derived results show that the average secular absolute sea level trend was(2.53±0.42)mm/a in the Arctic region.Large differences were presented between satellite-derived and tide gauge results,which are mainly due to low satellite data coverage,uncertainties in tidal height processing and vertical land movement(VLM).The VLM rates at 11 global navigation satellite system stations around the Arctic Ocean were analyzed,among which 6 stations were tide gauge colocated,the results indicate that the absolute sea level trends after VLM corrected were of the same magnitude as satellite altimetry results.Accurately calculating VLM is the primary uncertainty in interpreting tide gauge measurements such that differences between tide gauge and satellite altimetry data are attributable generally to VLM.展开更多
基金The National Key R&D Program of China under contract Nos 2022YFC3003800,2020YFC1521700 and 2020YFC1521705the National Natural Science Foundation of China under contract No.41830540+3 种基金the Open Fund of the East China Coastal Field Scientific Observation and Research Station of the Ministry of Natural Resources under contract No.OR-SECCZ2022104the Deep Blue Project of Shanghai Jiao Tong University under contract No.SL2020ZD204the Special Funding Project for the Basic Scientific Research Operation Expenses of the Central Government-Level Research Institutes of Public Interest of China under contract No.SZ2102the Zhejiang Provincial Project under contract No.330000210130313013006。
文摘Understanding the topographic patterns of the seafloor is a very important part of understanding our planet.Although the science involved in bathymetric surveying has advanced much over the decades,less than 20%of the seafloor has been precisely modeled to date,and there is an urgent need to improve the accuracy and reduce the uncertainty of underwater survey data.In this study,we introduce a pretrained visual geometry group network(VGGNet)method based on deep learning.To apply this method,we input gravity anomaly data derived from ship measurements and satellite altimetry into the model and correct the latter,which has a larger spatial coverage,based on the former,which is considered the true value and is more accurate.After obtaining the corrected high-precision gravity model,it is inverted to the corresponding bathymetric model by applying the gravity-depth correlation.We choose four data pairs collected from different environments,i.e.,the Southern Ocean,Pacific Ocean,Atlantic Ocean and Caribbean Sea,to evaluate the topographic correction results of the model.The experiments show that the coefficient of determination(R~2)reaches 0.834 among the results of the four experimental groups,signifying a high correlation.The standard deviation and normalized root mean square error are also evaluated,and the accuracy of their performance improved by up to 24.2%compared with similar research done in recent years.The evaluation of the R^(2) values at different water depths shows that our model can achieve performance results above 0.90 at certain water depths and can also significantly improve results from mid-water depths when compared to previous research.Finally,the bathymetry corrected by our model is able to show an accuracy improvement level of more than 21%within 1%of the total water depths,which is sufficient to prove that the VGGNet-based method has the ability to perform a gravity-bathymetry correction and achieve outstanding results.
基金‘Research on Deep Structural Differences between Potential Oil-rich Depressions in Offshore basins of China Sea’from the scientific and technological project of CNOOC Research Institute Co.,Ltd.,under contract No.CCL2021RCPS0167KQN‘Resource Potential,Accumulation Mechanism and Breakthrough Direction of Potential Oil-rich Depressions in Offshore China Sea’,under contract No.220226220101+1 种基金the Project of China Geological Survey under contract No.DD20191003the National Natural Science Foundation of Shandong Province of China under contract No.ZR2022MD047。
文摘The Kyushu–Palau Ridge(KPR),an anti-S-shaped submarine highland at the center of the Philippine Sea Plate(PSP),is considered the residual arc of the Izu–Bonin–Mariana Island Arc,which retains key information about the cessation of the Western Philippine Basin(WPB)expansion and the Parece Vela Basin(PVB)breakup.Herein,using the new generation of satellite altimetry gravity data,high-precision seafloor topography data,and newly acquired ship-borne gravity data,the topographic and gravity characteristics of the KPR mid-southern section and adjacent region are depicted.The distribution characteristics of the faults were delineated using the normalized vertical derivative–total horizontal derivative method(NVDR-THDR)and the minimum curvature potential field separation method.The Moho depth and crustal thickness were inverted using the rapid inversion method for a double-interface model with depth constraints.Based on these results,the crust structure features in the KPR mid-southern section,and the“triangular”structure geological significance where the KPR and Central Basin Rift(CBR)of the WPB intersect are interpreted.The KPR crustal thickness is approximately 6–16 km,with a distinct discontinuity that is slightly thicker than the normal oceanic crust.The KPR mid-southern section crust structure was divided into four segments(S1–S4)from north to south,formed by the CBR eastward extension joint action and clockwise rotation of the PVB expansion axis and the Mindanao fault zone blocking effect.
基金The National Natural Science Foundation of China under contract Nos 41276082 and 41076031the Nonprofit Research Project for the State Oceanic Administration of China under contract No.201005010-2
文摘A modified algorithm taking into account the first year(FY) and multiyear(MY) ice densities is used to derive a sea ice thickness from freeboard measurements acquired by satellite altimetry ICESat(2003–2008). Estimates agree with various independent in situ measurements within 0.21 m. Both the fall and winter campaigns see a dramatic extent retreat of thicker MY ice that survives at least one summer melting season. There were strong seasonal and interannual variabilities with regard to the mean thickness. Seasonal increases of 0.53 m for FY the ice and 0.29 m for the MY ice between the autumn and the winter ICESat campaigns, roughly 4–5 month separation, were found. Interannually, the significant MY ice thickness declines over the consecutive four ICESat winter campaigns(2005–2008) leads to a pronounced thickness drop of 0.8 m in MY sea ice zones. No clear trend was identified from the averaged thickness of thinner, FY ice that emerges in autumn and winter and melts in summer. Uncertainty estimates for our calculated thickness, caused by the standard deviations of multiple input parameters including freeboard, ice density, snow density, snow depth, show large errors more than 0.5 m in thicker MY ice zones and relatively small standard deviations under 0.5 m elsewhere. Moreover, a sensitivity analysis is implemented to determine the separate impact on the thickness estimate in the dependence of an individual input variable as mentioned above. The results show systematic bias of the estimated ice thickness appears to be mainly caused by the variations of freeboard as well as the ice density whereas the snow density and depth brings about relatively insignificant errors.
基金National Basic Research Program of China under contract No. 2007 CB816003the Key International Co-operative Proiect of the National Natural Science Foundation of China under contract No.40510073the International Cooperative Proiect of the Mini-stry of Science and Technology of China under contract No.2006DFB21630.
文摘Patterns of the South China Sea (SCS) circulation variability are extracted from merged satellite altimetry data from October 1992 through August 2004 by using the self-organizing map (SOM). The annual cycle, seasonal and inter-annual variations of the SCS surface circulation are identified through the evolution of the characteristic circulation patterns.The annual cycle of the SCS general circulation patterns is described as a change between two opposite basin-scale SW-NE oriented gyres embedded with eddies: low sea surface height anomaly (SSHA) (cyclonic) in winter and high SSHA (anticyclonic) in summer half year. The transition starts from July—August (January—February) with a high (low) SSHA tongue east of Vietnam around 12°~14° N, which develops into a big anticyclonic (cyclonic) gyre while moving eastward to the deep basin. During the transitions, a dipole structure, cyclonic (anticyclonic) in the north and anticyclonic (cyclonic) in the south, may be formed southeast off Vietnam with a strong zonal jet around 10°~12° N. The seasonal variation is modulated by the interannual variations. Besides the strong 1997/1998 event in response to the peak Pacific El Nio in 1997, the overall SCS sea level is found to have a significant rise during 1999~2001, however, in summer 2004 the overall SCS sea level is lower and the basin-wide anticyclonic gyre becomes weaker than the other years.
基金We appreciate the help from Torsten Mayer-Gürr and Andreas Kvas for providing us the NEQ system of the ITSG-Grace2018 model.This research was financially supported by the National Natural Science Foundation of China(41574019 and 41774020)the German Academic Exchange Service(DAAD)Thematic Network Project(57421148)+2 种基金the Major Project of High-Resolution Earth Observation System,and Science Fund for Creative Research Groups of the National Natural Science Foundation of China(41721003)the Fundamental Research Funds for the Central Universities(N170103009)We also thank the editor and the anonymous reviewers for their constructive remarks that helped us to improve the quality of the manuscript.
文摘This paper focuses on estimating a new high-resolution Earth’s gravity field model named SGG-UGM-2 from satellite gravimetry,satellite altimetry,and Earth Gravitational Model 2008(EGM2008)-derived gravity data based on the theory of the ellipsoidal harmonic analysis and coefficient transformation(EHA-CT).We first derive the related formulas of the EHA-CT method,which is used for computing the spherical harmonic coefficients from grid area-mean and point gravity anomalies on the ellipsoid.The derived formulas are successfully evaluated based on numerical experiments.Then,based on the derived least-squares formulas of the EHA-CT method,we develop the new model SGG-UGM-2 up to degree 2190 and order 2159 by combining the observations of the Gravity Field and Steady-State Ocean Circulation Explorer(GOCE),the normal equation of the Gravity Recovery and Climate Experiment(GRACE),marine gravity data derived from satellite altimetry data,and EGM2008-derived continental gravity data.The coefficients of degrees 251–2159 are estimated by solving the block-diagonal form normal equations of surface gravity anomalies(including the marine gravity data).The coefficients of degrees 2–250 are determined by combining the normal equations of satellite observations and surface gravity anomalies.The variance component estimation technique is used to estimate the relative weights of different observations.Finally,global positioning system(GPS)/leveling data in the mainland of China and the United States are used to validate SGG-UGM-2 together with other models,such as European improved gravity model of the earth by new techniques(EIGEN)-6C4,GECO,EGM2008,and SGG-UGM-1(the predecessor of SGG-UGM-2).Compared to other models,the model SGG-UGM-2 shows a promising performance in the GPS/leveling validation.All GOCE-related models have similar performances both in the mainland of China and the United States,and better performances than that of EGM2008 in the mainland of China.Due to the contribution of GRACE data and the new marine gravity anomalies,SGG-UGM-2 is slightly better than SGG-UGM-1 both in the mainland of China and the United States.
基金funded by the National Natural Science Foundation of China(No.42074017).
文摘China has successfully launched four Haiyang-2(HY-2)series altimetry satellites.HY-2A has attracted significant attention in gravity field recovery,but the performance of other HY-2 series satellites,including HY-2B/C/D,is seldom discussed.This study evaluated the performance of all the HY-2 series satellites in recovering marine gravity field.First,the crossover discrepancies in sea surface height of the four satellites,HY-2A,HY-2B,HY-2C,and HY-2D,were analyzed to assess their altimetry stability.It was found that HY-2B had the best altimetry quality,followed by HY-2D.Subsequently,different combina-tions of altimetry data were used to calculate vertical deflections and gravity anomalies in the South China Sea(112°E-119°E,12°N-20°N).The results showed that combining data from HY-2B,HY-2C,and HY-2D improved the inversion accuracy of gravity anomalies by 0.3 mGal compared to using HY-2A data alone.HY-2C and HY-2D contributed to enhancing the accuracy of the east component of vertical deflections.
基金supported by the National Natural Science Foundation of China(NSFC)Projects(11173050 and 11373059)
文摘The Gravity Recovery and Climate Experiment(GRACE) satellite mission provides a unique opportunity to quantitatively study terrestrial water storage(TWS) variations. In this paper,the terrestrial water storage variations in the Poyang Lake Basin are recovered from the GRACE gravity data from January 2003 to March 2014 and compared with the Global Land Data Assimilation System(GLDAS) hydrological models and satellite altimetry. Furthermore, the impact of soil moisture content from GLDAS and rainfall from the Tropical Rainfall Measuring Mission(TRMM) on TWS variations are investigated. Our results indicate that the TWS variations from GRACE, GLDAS and satellite altimetry have a general consistency. The TWS trends in the Poyang Lake Basin determined from GRACE, GLDAS and satellite altimetry are increasing at 0.0141 km^3/a, 0.0328 km^3/a and 0.0238 km^3/a,respectively during the investigated time period. The TWS is governed mainly by the soil moisture content and dominated primarily by the precipitation but also modulated by the flood season of the Yangtze River as well as the lake and river exchange water.
文摘This study endeavors to deal with the least square spectral analysis on the time series, to find present significant frequencies, to analyze 40 tide components using harmonic methods and to show relationship between discovered frequencies and 40 components of tide. For the purpose of collecting data of altimetry satellites of Topex/Poseidon (T/P), Jason 1, Jason 2 and coastal tide gauges of Bandar Anzali, Noshahr, and Nekah were utilized. In this time series formed by cross over points of altimetry satellite and then using least square spectral analysis on time series derived from altimetry satellite and coastal tide gauges the significant components were found and annual, biannual, and monthly components were discovered. Then, analysis of 40 tide components was conducted using harmonic method to find the amplitude and phase. It represented that solar annual (Sa) plays the most significant role on Caspian Sea corresponded to the least square spectral analysis of the time series. The results shows that the annual (Sa) and semi-annual Solar (Ssa) constituents on all of the ports listed have the highest amplitude in comparison with the other constituents which are respectively 16 cm, 18 cm and 15 cm for annual constituent and 2.8 cm, 5.4 cm and 3.7 cm for semi-annual constituent.
基金supported by the National Basic Research Program of China(2013CB733302,2012CB957703)the National Natural Science Foundation of China(41210006,41304003)
文摘The Kuroshio Extension (KE) plays an important role in climate and environmental change in the North Pacific. In this paper, more than 20 years of merged absolute dynamic topography and merged sea level anomaly products from satellite altimetry are used to analyze the stability of the KE system. By analyzing the annually averaged sea surface topography, the variations of inter-annual path and annually averaged eddy kinetic energy at the KE region, the KE's two dynamic states are given as: the relatively stable state during 1993 1995, 2002-2005, and 2010-2012, and the unstable dynamic state among 1996-2001 and 2006-2009. During the stable state, the KE spindle had a shorter path length and smaller time-varying amplitude, as well as a trend to move northward. While during the unstable state, the KE spindle had a longer path length and an integral southward transport trend, and was observed to oscillate significantly over time. The analysis on the KE's upstream and downstream region gives the same variations, indi- cating that they are significantly affected by the El Nino events. The power spectrum of the mean latitudinal position variation of the KE's upstream and downstream shows significant quasi-decadal oscillation characteristics and strong annual signals. Furthermore, the correlation of the strength vari- ation between the southern RG and the KE's upstream is calculated to be 0.50 after low-pass filtering, and that of the mean latitudinal position variation between the southern RG and the KE's upstream/ downstream are 0.75/0.69 after low-pass filtering, respectively. The strong correlations demonstrated that the southern RG and the KE are closely linked.
文摘The impact of climate change on sea level has received a great deal of attention by scientists worldwide. In this context, the problem of sea levels on global and regional scales have been analyzed in a number of studies based on tide gauges observations and satellite altimetry measurements. This study focuses on trend estimates from 18 high-quality tide gauge stations along the Mediterranean Sea coast. The seasonal Mann-Kendall test was run at a 5% significance level for each of the 18 stations for the period of 1993-2015 (satellite altimetry era). The results of this test indicate that the trends for 17 stations were statistically significant and showed an increase (no significant trend was observed only at one station). The rates of sea level change for the 17 stations that exhibit significant trends, estimated using seasonal Sen's approach, range after correction for Vertical Land Motion (VLM) from 1.48 to 8.72 mm/a for the period 1993-2015. Furthermore, the magnitude of change at the location of each tide gauge station was estimated using the satellite altimetry measurements. Thus, the results obtained agree with those from the tide-gauge data analysis.
基金National Nature Science Foundation(Nos.41971425,41601505)Special Fund for High Resolution Images Surveying and Mapping Application System(No.42-Y30B04-9001-19/21)。
文摘The laser altimeter loaded on the GaoFen-7(GF-7)satellite is designed to record the full waveform data and footprint image,which can obtain high-precision elevation control points for stereo image.The footprint camera equipped on the GF-7 laser altimetry system can capture the energy distribution at the time of laser emission and the image of the ground object where the laser falls,which can be used to judge whether the laser is affected by the cloud.At the same time,the centroid of laser spot on the footprint image can be extracted to monitor the change of laser pointing stability.In this manuscript,a data quality analysis scheme of laser altimetry based on footprint image is presented.Firstly,the cloud detection of footprint image is realized based on deep learning.The fusion result of the model is about 5%better than that of the traditional cloud detection algorithm,which can quickly and accurately determine whether the laser spot is affected by cloud.Secondly,according to the characteristics of footprint image,a threshold constrained ellipse fitting method for extracting the centroid of laser spot is proposed to monitor the pointing stability of long-period lasers.Based on the above method,the change of laser spot centroid since GF-7 satellite was put into operation is analyzed,and the conclusions obtained have certain reference significance for the quality control of satellite laser altimetry data and the analysis of pointing angle stability.
文摘Satellite altimetry can provide the geoid in ocean areas with a level of precision of about 10 cm. Such a precise geoid offers a good opportunity for studying the marine gravity field. The basic mathematical model and theory of the satellite altimetry were introduced briefly and firstly. Then the inverse Hotine method to derive gravity disturbances from satellite altimetry was presented. Meanwhile the inversion of marine gravity in Chinese coastal waters from Topex/Poseidon satellite altimetry data was tested, and the RMS between the gravity disturbance from the OSU91A model and satellite altimetry data inversing is about 12.76 mGal. Finally, some problems which are in inversing procedure were discussed, i e, integration singularity, edge effect etc. And it is conluded that the accuracy of the inversing gravity method can reach only a few mGal if proper treatment of Fast Fourier Transform (FFT) edge effect is employed.
基金support for the work from UTM GUP Antarctic research grant Vote No.Q.J130000.2409.01G27,MOHE
文摘High resoultion Eulerian mean velocity field has been derived by combining the satellite tracked surface drifter data with satellite altimetry and ocean surface winds. The drifter data used in this study includes Argos and surface drifter data from Global Drifter Program. Maps of Sea Level Anomaly (MSLA) weekly files with a resolution of (1/3)° in both Latitude and Longitude for the period 1993-2012 have been used. The Ekman current is computed using ocean surface mean wind fields from scatterometers onboard ERS 1/2, Quikscat and ASCAT. The derived mean velocity field exhibits the broad flow of Antarctic Circumpolar Current with speeds up to 0.6 m/s. Anomalous field is quite significant in the western part between 20~ and 40~E and in the eastern part between 80~E and 100~E with velocity anomaly up to 0.3 m/s. The estimated mean flow pattern well agrees with the dynamic topography derived from in-situ observations. Also, the derived velocity field is consistent with the in-situ ADCP current measurements. Eddy kinetic energy illustrates an increasing trend during 1993-2008 and is in phase coherence with the Southern Annular Mode by three month lag. Periodic modulations are found in the eddy kinetic energy due the low frequency Antarctic Circumpolar Wave propagation.
基金supported by the National Natural Science Foundation of China under Grants No. 42174001
文摘The calibration of the sea surface height(SSH)measured by satellite altimeters is essential to understand altimeter biases.Many factors affects the construction and maintenance of a permanent calibration site.In order to calibrate Chinese satellite altimetry missions,the feasibility of maintaining a calibration site based on the Qianliyan islet in Yellow Sea of China is taken into account.The related calibration facilities,such as the permanent tide gauge,GNSS reference station and meteorological station,were already operated by the Ministry of Natural Resources of China.The data could be fully used for satellite altimeter calibration with small fiscal expenditure.In addition,the location and marine environments of Qianliyan were discussed.Finally,we used the Jason-3 mission to check the possibility of calibration works.The result indicates that the brightness temperatures of three channels measured by microwave radiometer(MWR)and the derived wet tropospheric correction varies smoothly,which means the land contamination to MWR could be ignored.The high frequency waveforms at the Qianliyan site present no obvious difference from the normal waveforms received by satellite radar altimeter over the open ocean.In conclusion,the Qianliyan islet will not influence satellite altimetry observation.Following these analyses,a possible layout and mechanism of the Qianliyan calibration site are proposed.
文摘This paper focuses on the study of ocean bathymetric inversion from satellite altimeter data by using FFT technique.In this study,the freeair gravity anomalies over the South China Sea are determined by the satellite altimeter data of GEOSAT,ERS1,ERS2 and T/P.And the 2.5′×2.5′ bathymetry model in South China Sea is calculated from the gravity anomalies with the inversion model given.After the analysis of the inversion and the comparison between the results,some conclusions can be drawn.
基金supported by the National Natural Science Foundation of China (Grant Nos.41704011,41274032,41474018, and 41429401)the National 973 Project of China (Grant Nos. 2013CB733301 and 2013CB733302).
文摘Based on the concept of Global Position System(GPS)/leveling,the satellite altimetry leveling(SAL) is first proposed to evaluate the marine geoid.SAL is derived by the difference among the mean sea surface(MSS),mean dynamic ocean topography(MDT),and leveling origin.In this study,(1) the original satellite altimetry data are processed to infer the vertical deflection and gravity anomaly,(2) the Chinese coastal marine geoids(CMG) are determined by using the differe nt methods(including Molodensky,least square collocation,Stokes formula,and two-dimensional fast Fourier transformation(FFT) with the vertical deflection and gravity anomaly data),(3) CMG are evaluated by using the results from above different methods,the Gravity field and steady-state Ocean Circulation Explorer(GOCE) gravity potential model(GGPM),and SAL.The results show that(1) CMG from the Molodensky method has the highest precision by using vertical de flection data,(2) the accuracy of CMG indicate good consistency between the SAL and GGPM,(3) SAL can be used as a new method for assessing marine geoid.
文摘The northern Egyptian continental margin is characterized by interesting tectonic settings as well as trade and industry district in Egypt. In the current study, the contribution role of satellite altimetry gravity data in the Environmental geophysical investigation is presented to give a complete view of the marine gravity field of the study area. The satellite data showed only minor deviations in some partial regions of the area investigated such as Nile Deep Sea Fan, Levant Basin, Eratosthenes Seamount and Herodotus basin. The interpretations of the entire data illustrated that the differences between the satellite and the shipboard data were small in some regions particularly near to land. Furthermore, a number of strong deviations in some regions were spatially correlated with bathymetric depth together with the appearance of geological structures.
文摘Sinking of the Nile Delta region of Egypt is one of urgent issues to be investigated due to its vital importance to numerous perspectives such as economic, environmental and social impact on the whole Egyptian territory. This contribution represents one of the project outcomes entitled “Evaluation of Nile Delta Sinking Hypothesis Using the Global Positioning System (GPS), Tide Gauge and Satellite Altimetry and Gravity Techniques” that has been funded by the Science & Technology Development FUND (STDF), Egypt in the period from 2013 till 2017. To detect the rates of the horizontal and vertical movements, three main geodetic techniques;Global Positioning System (GPS) measurements of Delta region, time-varying gravity models of the Gravity Recovery and Climate Experiment (GRACE) mission to monitor the temporal changes over the delta regions and satellite altimetry time series have been used. Our findings regarding the GPS technique show that the northern part of the Nile Delta region suffers from clear subsidence especially at the eastern and western side as represented by Port Said, Mansoura, Gamalyia, Alexandria and Edfena stations. The central part as well as the surrounding areas of Nile Delta suffers from clear uplift as represented by Tanta, Damnhour and Hamoul stations. Satellite gravity results show erosion rates of the conjunction part of Nile Delta and Mediterranean contact, especially at its eastern (Port Said surrounding areas) and western (Alexandria surrounding areas) parts. As we go inland to the southern part of the Nile Delta, the temporal gravity variations pattern decreases showing that the Delta subsidence follows the regular subsidence pattern, except that for the northern contact part of the Delta to the Mediterranean Sea. This is also supported by satellite altimetry missions which shows a continuously rising rate of the Mediterranean Sea level as detected from the Saral/AltiKa mission.
基金Funded by the National Natural Science Foundation of China (No.40474004).
文摘A new computational procedure for derivation of marine geoid on a 2.5′×2.5′grid in a non-tidal system over the South China Sea and the Philippine Sea from multi-satellite altimeter sea surface heights is discussed. Single-and dual-satellite crossovers were performed, and components of deflections of the vertical were determined at the crossover positions using Sand-well's computational theory, and gridded onto a 2.5′×2.5′resolution grid by employing the Shepard's interpolation procedure. 2.5′×2.5′grid of EGM96-derived components of deflections of the vertical and geoid heights were then used as reference global geopotential model quantities in a remove-restore procedure to implement the Molodensky-like formula via 1D-FFT technique to predict the geoid heights over the South China Sea and the Philippine Sea from the gridded altimeter-derived components of deflec-tions of the vertical. Statistical comparisons between the altimeter-and the EGM96- derived geoid heights showed that there was a root-mean-square agreement of ±0.35 m between them in a region of less tectonically active geological structures. However, over areas of tectonically active structures such as the Philippine trench, differences of about -19.9 m were obtained.
基金The Open Fund of Key Laboratory of Marine Environmental Survey Technology and Application,Ministry of Natural Resource under contract No.MESTA-2020-B005the Shandong Provincial Natural Science Foundation under contract No.ZR2020QD087+1 种基金the National Key R&D Program of China under contract Nos 2017YFC0306003 and 2016YFB0501703the National Natural Science Foundation of China under contract Nos 42104035 and 41706115。
文摘Arctic absolute sea level variations were analyzed based on multi-mission satellite altimetry data and tide gauge observations for the period of 1993–2018.The range of linear absolute sea level trends were found-2.00 mm/a to 6.88 mm/a excluding the central Arctic,positive trend rates were predominantly located in shallow water and coastal areas,and negative rates were located in high-latitude areas and Baffin Bay.Satellite-derived results show that the average secular absolute sea level trend was(2.53±0.42)mm/a in the Arctic region.Large differences were presented between satellite-derived and tide gauge results,which are mainly due to low satellite data coverage,uncertainties in tidal height processing and vertical land movement(VLM).The VLM rates at 11 global navigation satellite system stations around the Arctic Ocean were analyzed,among which 6 stations were tide gauge colocated,the results indicate that the absolute sea level trends after VLM corrected were of the same magnitude as satellite altimetry results.Accurately calculating VLM is the primary uncertainty in interpreting tide gauge measurements such that differences between tide gauge and satellite altimetry data are attributable generally to VLM.