Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to pred...Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters.This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events.Specifically,for the historical landslide cases,the landslide-induced seismic signal,geophysical surveys,and possible in-situ drone/phone videos(multi-source data collaboration)can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical(rheological)parameters.Subsequently,the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events.Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou,China gives reasonable results in comparison to the field observations.The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region(2019 Shuicheng landslide).The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide.展开更多
City style is the characteristics of the city formed under the influence of natural geography,social economy,human history and other factors in the development process of the city.In the information age,the operation ...City style is the characteristics of the city formed under the influence of natural geography,social economy,human history and other factors in the development process of the city.In the information age,the operation and development of cities are deeply affected.Technical platforms such as social networks,city data,and street view maps cover all levels of the city.The resulting multi-source data provided new ideas and methods for urban landscape research.The article pointed out through the study of urban landscape that the strong coupling between urban landscape and multi-source data was a very promising multi-field cross-over study.Finally,multi-source city data,using traditional data,urban POI data,urban street scene pictures,and Weibo sign-in data,were explored to conduct perceptual research on the overall urban style,urban spatial pattern,urban architectural style and urban humanistic emotions,and construct a framework for urban style perception driven by multi-source data.展开更多
Learning has come a long way from the conventional blackboard that marked the earlier decades to the new age Blackboard Collaborate which enables learners to work and learn in a collaborative online environment. Virtu...Learning has come a long way from the conventional blackboard that marked the earlier decades to the new age Blackboard Collaborate which enables learners to work and learn in a collaborative online environment. Virtual classrooms, especially with learners sharing in academic workload on portals such as Google Docs, have arrived as a natural development of the ICT (In Circuit Tester) wave. In addition to offering ample scope for peer interaction, Blackboard Collaborate gives learners the electronic environment they are most familiar with and keeps them updated with the latest educational tools. However, for it to succeed, the perception of the teachers is a factor that needs close scrutiny before this tool can be incorporated into the system. The aim of this paper is to investigate the perceptions of teachers at Qassim University, KSA (Kingdom of Saudi Arabia) towards the inclusion of Blackboard Collaborate into the teaching-learning environment, and its efficacy as a learning tool in the university's EFL (English as a Foreign Language) situation.展开更多
The era of the Internet of things(IoT)has marked a continued exploration of applications and services that can make people’s lives more convenient than ever before.However,the exploration of IoT services also means t...The era of the Internet of things(IoT)has marked a continued exploration of applications and services that can make people’s lives more convenient than ever before.However,the exploration of IoT services also means that people face unprecedented difficulties in spontaneously selecting the most appropriate services.Thus,there is a paramount need for a recommendation system that can help improve the experience of the users of IoT services to ensure the best quality of service.Most of the existing techniques—including collaborative filtering(CF),which is most widely adopted when building recommendation systems—suffer from rating sparsity and cold-start problems,preventing them from providing high quality recommendations.Inspired by the great success of deep learning in a wide range of fields,this work introduces a deep-learning-enabled autoencoder architecture to overcome the setbacks of CF recommendations.The proposed deep learning model is designed as a hybrid architecture with three key networks,namely autoencoder(AE),multilayered perceptron(MLP),and generalized matrix factorization(GMF).The model employs two AE networks to learn deep latent feature representations of users and items respectively and in parallel.Next,MLP and GMF networks are employed to model the linear and non-linear user-item interactions respectively with the extracted latent user and item features.Finally,the rating prediction is performed based on the idea of ensemble learning by fusing the output of the GMF and MLP networks.We conducted extensive experiments on two benchmark datasets,MoiveLens100K and MovieLens1M,using four standard evaluation metrics.Ablation experiments were conducted to confirm the validity of the proposed model and the contribution of each of its components in achieving better recommendation performance.Comparative analyses were also carried out to demonstrate the potential of the proposed model in gaining better accuracy than the existing CF methods with resistance to rating sparsity and cold-start problems.展开更多
Service recommendation provides an effective solution to extract valuable information from the huge and ever-increasing volume of big data generated by the large cardinality of user devices.However,the distributed and...Service recommendation provides an effective solution to extract valuable information from the huge and ever-increasing volume of big data generated by the large cardinality of user devices.However,the distributed and rich multi-source big data resources raise challenges to the centralized cloud-based data storage and value mining approaches in terms of economic cost and effective service recommendation methods.In view of these challenges,we propose a deep neural collaborative filtering based service recommendation method with multi-source data(i.e.,NCF-MS)in this paper,which adopts the cloud-edge collaboration computing paradigm to build recommendation model.More specifically,the Stacked Denoising Auto Encoder(SDAE)module is adopted to extract user/service features from auxiliary user profiles and service attributes.The Multiple Layer Perceptron(MLP)module is adopted to integrate the auxiliary user/service features to train the recommendation model.Finally,we evaluate the effectiveness of the NCF-MS method on three public datasets.The experimental results show that our proposed method achieves better performance than existing methods.展开更多
基金supported by the National Natural Science Foundation of China(41977215)。
文摘Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters.This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events.Specifically,for the historical landslide cases,the landslide-induced seismic signal,geophysical surveys,and possible in-situ drone/phone videos(multi-source data collaboration)can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical(rheological)parameters.Subsequently,the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events.Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou,China gives reasonable results in comparison to the field observations.The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region(2019 Shuicheng landslide).The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide.
基金Sponsored by 2020 Topics of Hebei Provincial Social Development Studies(20200302041)2020 Planning Program of Hebei Provincial Cultural and Art Science(HB20-YB099)。
文摘City style is the characteristics of the city formed under the influence of natural geography,social economy,human history and other factors in the development process of the city.In the information age,the operation and development of cities are deeply affected.Technical platforms such as social networks,city data,and street view maps cover all levels of the city.The resulting multi-source data provided new ideas and methods for urban landscape research.The article pointed out through the study of urban landscape that the strong coupling between urban landscape and multi-source data was a very promising multi-field cross-over study.Finally,multi-source city data,using traditional data,urban POI data,urban street scene pictures,and Weibo sign-in data,were explored to conduct perceptual research on the overall urban style,urban spatial pattern,urban architectural style and urban humanistic emotions,and construct a framework for urban style perception driven by multi-source data.
文摘Learning has come a long way from the conventional blackboard that marked the earlier decades to the new age Blackboard Collaborate which enables learners to work and learn in a collaborative online environment. Virtual classrooms, especially with learners sharing in academic workload on portals such as Google Docs, have arrived as a natural development of the ICT (In Circuit Tester) wave. In addition to offering ample scope for peer interaction, Blackboard Collaborate gives learners the electronic environment they are most familiar with and keeps them updated with the latest educational tools. However, for it to succeed, the perception of the teachers is a factor that needs close scrutiny before this tool can be incorporated into the system. The aim of this paper is to investigate the perceptions of teachers at Qassim University, KSA (Kingdom of Saudi Arabia) towards the inclusion of Blackboard Collaborate into the teaching-learning environment, and its efficacy as a learning tool in the university's EFL (English as a Foreign Language) situation.
基金supported by the deanship of Scientific Research at Prince Sattam Bin Abdulaziz University,Alkharj,Saudi Arabia through Research Proposal No.2020/01/17215。
文摘The era of the Internet of things(IoT)has marked a continued exploration of applications and services that can make people’s lives more convenient than ever before.However,the exploration of IoT services also means that people face unprecedented difficulties in spontaneously selecting the most appropriate services.Thus,there is a paramount need for a recommendation system that can help improve the experience of the users of IoT services to ensure the best quality of service.Most of the existing techniques—including collaborative filtering(CF),which is most widely adopted when building recommendation systems—suffer from rating sparsity and cold-start problems,preventing them from providing high quality recommendations.Inspired by the great success of deep learning in a wide range of fields,this work introduces a deep-learning-enabled autoencoder architecture to overcome the setbacks of CF recommendations.The proposed deep learning model is designed as a hybrid architecture with three key networks,namely autoencoder(AE),multilayered perceptron(MLP),and generalized matrix factorization(GMF).The model employs two AE networks to learn deep latent feature representations of users and items respectively and in parallel.Next,MLP and GMF networks are employed to model the linear and non-linear user-item interactions respectively with the extracted latent user and item features.Finally,the rating prediction is performed based on the idea of ensemble learning by fusing the output of the GMF and MLP networks.We conducted extensive experiments on two benchmark datasets,MoiveLens100K and MovieLens1M,using four standard evaluation metrics.Ablation experiments were conducted to confirm the validity of the proposed model and the contribution of each of its components in achieving better recommendation performance.Comparative analyses were also carried out to demonstrate the potential of the proposed model in gaining better accuracy than the existing CF methods with resistance to rating sparsity and cold-start problems.
基金supported by the Natural Science Foundation of Zhejiang Province(Nos.LQ21F020021 and LZ21F020008)Zhejiang Provincial Natural Science Foundation of China(No.LZ22F020002)the Research Start-up Project funded by Hangzhou Normal University(No.2020QD2035).
文摘Service recommendation provides an effective solution to extract valuable information from the huge and ever-increasing volume of big data generated by the large cardinality of user devices.However,the distributed and rich multi-source big data resources raise challenges to the centralized cloud-based data storage and value mining approaches in terms of economic cost and effective service recommendation methods.In view of these challenges,we propose a deep neural collaborative filtering based service recommendation method with multi-source data(i.e.,NCF-MS)in this paper,which adopts the cloud-edge collaboration computing paradigm to build recommendation model.More specifically,the Stacked Denoising Auto Encoder(SDAE)module is adopted to extract user/service features from auxiliary user profiles and service attributes.The Multiple Layer Perceptron(MLP)module is adopted to integrate the auxiliary user/service features to train the recommendation model.Finally,we evaluate the effectiveness of the NCF-MS method on three public datasets.The experimental results show that our proposed method achieves better performance than existing methods.