Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to pred...Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters.This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events.Specifically,for the historical landslide cases,the landslide-induced seismic signal,geophysical surveys,and possible in-situ drone/phone videos(multi-source data collaboration)can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical(rheological)parameters.Subsequently,the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events.Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou,China gives reasonable results in comparison to the field observations.The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region(2019 Shuicheng landslide).The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide.展开更多
Real-time health data monitoring is pivotal for bolstering road services’safety,intelligence,and efficiency within the Internet of Health Things(IoHT)framework.Yet,delays in data retrieval can markedly hinder the eff...Real-time health data monitoring is pivotal for bolstering road services’safety,intelligence,and efficiency within the Internet of Health Things(IoHT)framework.Yet,delays in data retrieval can markedly hinder the efficacy of big data awareness detection systems.We advocate for a collaborative caching approach involving edge devices and cloud networks to combat this.This strategy is devised to streamline the data retrieval path,subsequently diminishing network strain.Crafting an adept cache processing scheme poses its own set of challenges,especially given the transient nature of monitoring data and the imperative for swift data transmission,intertwined with resource allocation tactics.This paper unveils a novel mobile healthcare solution that harnesses the power of our collaborative caching approach,facilitating nuanced health monitoring via edge devices.The system capitalizes on cloud computing for intricate health data analytics,especially in pinpointing health anomalies.Given the dynamic locational shifts and possible connection disruptions,we have architected a hierarchical detection system,particularly during crises.This system caches data efficiently and incorporates a detection utility to assess data freshness and potential lag in response times.Furthermore,we introduce the Cache-Assisted Real-Time Detection(CARD)model,crafted to optimize utility.Addressing the inherent complexity of the NP-hard CARD model,we have championed a greedy algorithm as a solution.Simulations reveal that our collaborative caching technique markedly elevates the Cache Hit Ratio(CHR)and data freshness,outshining its contemporaneous benchmark algorithms.The empirical results underscore the strength and efficiency of our innovative IoHT-based health monitoring solution.To encapsulate,this paper tackles the nuances of real-time health data monitoring in the IoHT landscape,presenting a joint edge-cloud caching strategy paired with a hierarchical detection system.Our methodology yields enhanced cache efficiency and data freshness.The corroborative numerical data accentuates the feasibility and relevance of our model,casting a beacon for the future trajectory of real-time health data monitoring systems.展开更多
Spectrum sensing is one of the most important steps in cognitive radio. In this paper, a new fully-distributed collaborative energy detection algorithm based on diffusion cooperation scheme and consensus filtering the...Spectrum sensing is one of the most important steps in cognitive radio. In this paper, a new fully-distributed collaborative energy detection algorithm based on diffusion cooperation scheme and consensus filtering theory is proposed, which doesn’t need the center node to fuse the detection results of all users. The secondary users only exchange information with their neighbors to obtain the detection data, and then make the corresponding decisions independently according to the pre-defined threshold. Simulations show that the proposed algorithm is more superior to the existing centralized collaborative energy detection algorithm in terms of the detecting performance and robustness in the insecurity situation.展开更多
Service recommendation provides an effective solution to extract valuable information from the huge and ever-increasing volume of big data generated by the large cardinality of user devices.However,the distributed and...Service recommendation provides an effective solution to extract valuable information from the huge and ever-increasing volume of big data generated by the large cardinality of user devices.However,the distributed and rich multi-source big data resources raise challenges to the centralized cloud-based data storage and value mining approaches in terms of economic cost and effective service recommendation methods.In view of these challenges,we propose a deep neural collaborative filtering based service recommendation method with multi-source data(i.e.,NCF-MS)in this paper,which adopts the cloud-edge collaboration computing paradigm to build recommendation model.More specifically,the Stacked Denoising Auto Encoder(SDAE)module is adopted to extract user/service features from auxiliary user profiles and service attributes.The Multiple Layer Perceptron(MLP)module is adopted to integrate the auxiliary user/service features to train the recommendation model.Finally,we evaluate the effectiveness of the NCF-MS method on three public datasets.The experimental results show that our proposed method achieves better performance than existing methods.展开更多
高时空分辨率自动气象站降水观测作为重要数据来源,已被广泛应用于强对流天气监测、模式评估、预报复盘等研究工作。仪器故障、特殊天气条件下观测设备的局限性等因素是自动气象站降水数据不确定性的主要来源,这些问题在无人值守气象站...高时空分辨率自动气象站降水观测作为重要数据来源,已被广泛应用于强对流天气监测、模式评估、预报复盘等研究工作。仪器故障、特殊天气条件下观测设备的局限性等因素是自动气象站降水数据不确定性的主要来源,这些问题在无人值守气象站尤为突出。该研究基于2021—2023年中国自动气象站实时观测降水量数据、高时空分辨率雷达数据和高灵敏性降水类天气现象数据,发展适应于中国自动气象站小时降水数据的多源数据协同质量控制方法(multi-source data collaborative quality control,MDC)。通过综合定量指标与典型个例分析,对MDC的应用效果进行全面评估。结果显示:MDC判识正确率为99.92%,错误数据命中率较现行业务提升39.3%。基于多源降水观测数据时空一致性,MDC显著提升了晴空降水、融雪性降水和虚假零值降水等异常数据的甄别能力,有效弥补了传统方法的不足。展开更多
For many cancers a primary cause of poor survival is that they are detected at a late stage when therapies are less effective.Although screening methods exist to detect some types of cancer at an early stage,there are...For many cancers a primary cause of poor survival is that they are detected at a late stage when therapies are less effective.Although screening methods exist to detect some types of cancer at an early stage,there are currently no effective methods to screen for most types of cancer.Biomarkers have the potential to improve detection of early-stage cancers,risk stratification,and prediction of which pre-cancerous lesions are likely to progress and to make screening tests less invasive.Although thousands of research articles on biomarkers for early detection are published every year,few of these biomarkers have been validated and shown to be clinically useful.This reflects both the inherent difficulty in detecting early-stage cancers and a disconnect between the process of discovering biomarkers and their use in the clinic.To overcome this limitation the US National Cancer Institute created the Early Detection Research Network.It is a highly collaborative program that brings together biomarker discoverers,assay developers,and clinicians.It provides an infrastructure that is essential for developing and validating biomarkers and imaging methods for early cancer detection and has successfully completed several multicenter validation studies.展开更多
基金supported by the National Natural Science Foundation of China(41977215)。
文摘Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters.This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events.Specifically,for the historical landslide cases,the landslide-induced seismic signal,geophysical surveys,and possible in-situ drone/phone videos(multi-source data collaboration)can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical(rheological)parameters.Subsequently,the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events.Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou,China gives reasonable results in comparison to the field observations.The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region(2019 Shuicheng landslide).The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide.
基金supported by National Natural Science Foundation of China(NSFC)under Grant Number T2350710232.
文摘Real-time health data monitoring is pivotal for bolstering road services’safety,intelligence,and efficiency within the Internet of Health Things(IoHT)framework.Yet,delays in data retrieval can markedly hinder the efficacy of big data awareness detection systems.We advocate for a collaborative caching approach involving edge devices and cloud networks to combat this.This strategy is devised to streamline the data retrieval path,subsequently diminishing network strain.Crafting an adept cache processing scheme poses its own set of challenges,especially given the transient nature of monitoring data and the imperative for swift data transmission,intertwined with resource allocation tactics.This paper unveils a novel mobile healthcare solution that harnesses the power of our collaborative caching approach,facilitating nuanced health monitoring via edge devices.The system capitalizes on cloud computing for intricate health data analytics,especially in pinpointing health anomalies.Given the dynamic locational shifts and possible connection disruptions,we have architected a hierarchical detection system,particularly during crises.This system caches data efficiently and incorporates a detection utility to assess data freshness and potential lag in response times.Furthermore,we introduce the Cache-Assisted Real-Time Detection(CARD)model,crafted to optimize utility.Addressing the inherent complexity of the NP-hard CARD model,we have championed a greedy algorithm as a solution.Simulations reveal that our collaborative caching technique markedly elevates the Cache Hit Ratio(CHR)and data freshness,outshining its contemporaneous benchmark algorithms.The empirical results underscore the strength and efficiency of our innovative IoHT-based health monitoring solution.To encapsulate,this paper tackles the nuances of real-time health data monitoring in the IoHT landscape,presenting a joint edge-cloud caching strategy paired with a hierarchical detection system.Our methodology yields enhanced cache efficiency and data freshness.The corroborative numerical data accentuates the feasibility and relevance of our model,casting a beacon for the future trajectory of real-time health data monitoring systems.
文摘Spectrum sensing is one of the most important steps in cognitive radio. In this paper, a new fully-distributed collaborative energy detection algorithm based on diffusion cooperation scheme and consensus filtering theory is proposed, which doesn’t need the center node to fuse the detection results of all users. The secondary users only exchange information with their neighbors to obtain the detection data, and then make the corresponding decisions independently according to the pre-defined threshold. Simulations show that the proposed algorithm is more superior to the existing centralized collaborative energy detection algorithm in terms of the detecting performance and robustness in the insecurity situation.
基金supported by the Natural Science Foundation of Zhejiang Province(Nos.LQ21F020021 and LZ21F020008)Zhejiang Provincial Natural Science Foundation of China(No.LZ22F020002)the Research Start-up Project funded by Hangzhou Normal University(No.2020QD2035).
文摘Service recommendation provides an effective solution to extract valuable information from the huge and ever-increasing volume of big data generated by the large cardinality of user devices.However,the distributed and rich multi-source big data resources raise challenges to the centralized cloud-based data storage and value mining approaches in terms of economic cost and effective service recommendation methods.In view of these challenges,we propose a deep neural collaborative filtering based service recommendation method with multi-source data(i.e.,NCF-MS)in this paper,which adopts the cloud-edge collaboration computing paradigm to build recommendation model.More specifically,the Stacked Denoising Auto Encoder(SDAE)module is adopted to extract user/service features from auxiliary user profiles and service attributes.The Multiple Layer Perceptron(MLP)module is adopted to integrate the auxiliary user/service features to train the recommendation model.Finally,we evaluate the effectiveness of the NCF-MS method on three public datasets.The experimental results show that our proposed method achieves better performance than existing methods.
文摘高时空分辨率自动气象站降水观测作为重要数据来源,已被广泛应用于强对流天气监测、模式评估、预报复盘等研究工作。仪器故障、特殊天气条件下观测设备的局限性等因素是自动气象站降水数据不确定性的主要来源,这些问题在无人值守气象站尤为突出。该研究基于2021—2023年中国自动气象站实时观测降水量数据、高时空分辨率雷达数据和高灵敏性降水类天气现象数据,发展适应于中国自动气象站小时降水数据的多源数据协同质量控制方法(multi-source data collaborative quality control,MDC)。通过综合定量指标与典型个例分析,对MDC的应用效果进行全面评估。结果显示:MDC判识正确率为99.92%,错误数据命中率较现行业务提升39.3%。基于多源降水观测数据时空一致性,MDC显著提升了晴空降水、融雪性降水和虚假零值降水等异常数据的甄别能力,有效弥补了传统方法的不足。
文摘For many cancers a primary cause of poor survival is that they are detected at a late stage when therapies are less effective.Although screening methods exist to detect some types of cancer at an early stage,there are currently no effective methods to screen for most types of cancer.Biomarkers have the potential to improve detection of early-stage cancers,risk stratification,and prediction of which pre-cancerous lesions are likely to progress and to make screening tests less invasive.Although thousands of research articles on biomarkers for early detection are published every year,few of these biomarkers have been validated and shown to be clinically useful.This reflects both the inherent difficulty in detecting early-stage cancers and a disconnect between the process of discovering biomarkers and their use in the clinic.To overcome this limitation the US National Cancer Institute created the Early Detection Research Network.It is a highly collaborative program that brings together biomarker discoverers,assay developers,and clinicians.It provides an infrastructure that is essential for developing and validating biomarkers and imaging methods for early cancer detection and has successfully completed several multicenter validation studies.