The development of 3D geological models involves the integration of large amounts of geological data,as well as additional accessible proprietary lithological, structural,geochemical,geophysical,and borehole data.Luan...The development of 3D geological models involves the integration of large amounts of geological data,as well as additional accessible proprietary lithological, structural,geochemical,geophysical,and borehole data.Luanchuan,the case study area,southwestern Henan Province,is an important molybdenum-tungsten -lead-zinc polymetallic belt in China.展开更多
Due to the complex nature of multi-source geological data, it is difficult to rebuild every geological structure through a single 3D modeling method. The multi-source data interpretation method put forward in this ana...Due to the complex nature of multi-source geological data, it is difficult to rebuild every geological structure through a single 3D modeling method. The multi-source data interpretation method put forward in this analysis is based on a database-driven pattern and focuses on the discrete and irregular features of geological data. The geological data from a variety of sources covering a range of accuracy, resolution, quantity and quality are classified and integrated according to their reliability and consistency for 3D modeling. The new interpolation-approximation fitting construction algorithm of geological surfaces with the non-uniform rational B-spline(NURBS) technique is then presented. The NURBS technique can retain the balance among the requirements for accuracy, surface continuity and data storage of geological structures. Finally, four alternative 3D modeling approaches are demonstrated with reference to some examples, which are selected according to the data quantity and accuracy specification. The proposed approaches offer flexible modeling patterns for different practical engineering demands.展开更多
Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to pred...Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters.This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events.Specifically,for the historical landslide cases,the landslide-induced seismic signal,geophysical surveys,and possible in-situ drone/phone videos(multi-source data collaboration)can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical(rheological)parameters.Subsequently,the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events.Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou,China gives reasonable results in comparison to the field observations.The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region(2019 Shuicheng landslide).The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide.展开更多
A reliable geological model plays a fundamental role in the efficiency and safety of mountain tunnel construction.However,regional models based on limited survey data represent macroscopic geological environments but ...A reliable geological model plays a fundamental role in the efficiency and safety of mountain tunnel construction.However,regional models based on limited survey data represent macroscopic geological environments but not detailed internal geological characteristics,especially at tunnel portals with complex geological conditions.This paper presents a comprehensive methodological framework for refined modeling of the tunnel surrounding rock and subsequent mechanics analysis,with a particular focus on natural space distortion of hard-soft rock interfaces at tunnel portals.The progressive prediction of geological structures is developed considering multi-source data derived from the tunnel survey and excavation stages.To improve the accuracy of the models,a novel modeling method is proposed to integrate multi-source and multi-scale data based on data extraction and potential field interpolation.Finally,a regional-scale model and an engineering-scale model are built,providing a clear insight into geological phenomena and supporting numerical calculation.In addition,the proposed framework is applied to a case study,the Long-tou mountain tunnel project in Guangzhou,China,where the dominant rock type is granite.The results show that the data integration and modeling methods effectively improve model structure refinement.The improved model’s calculation deviation is reduced by about 10%to 20%in the mechanical analysis.This study contributes to revealing the complex geological environment with singular interfaces and promoting the safety and performance of mountain tunneling.展开更多
With the continuous development of the oblique photography technique, it has been used more and more widely in the field of geological disasters. It can quickly obtain the three-dimensional(3D) real scene model of dan...With the continuous development of the oblique photography technique, it has been used more and more widely in the field of geological disasters. It can quickly obtain the three-dimensional(3D) real scene model of dangerous mountainous areas under the premise of ensuring the safety of personnel while restoring the real geographic information as much as possible. However, geological disaster areas are often accompanied by many adverse factors such as cliffs and dense vegetation. Based on this, the paper introduced the flight line design of oblique photogrammetry, analyzed the multi-platform data fusion processing, studied the multi-period data dynamic evaluation technology and proposed the application methods of data acquisition, early warning, disaster assessment and decision management suitable for geological disaster identification through the analysis of actual cases, which will help geologists to plan and control geological work more scientifically and rationally, improve work efficiency and reduce the potential personnel safety hazards in the process of geological survey, to offer technical support to the application of oblique photogrammetry in geological disaster identification and decision making and provide the scientific basis for personal and property safety protection and later-stage geological disaster management in disaster areas.展开更多
为解决桩基工程BIM(Building Information Modeling)技术应用常见的桩基建模、地质建模、模型整合方法问题,提出了一种通过BIM软件与可视化编程软件Dynamo相结合的桩基工程BIM技术应用方法。详细论述了此方法如何应用于桩基建模、地质...为解决桩基工程BIM(Building Information Modeling)技术应用常见的桩基建模、地质建模、模型整合方法问题,提出了一种通过BIM软件与可视化编程软件Dynamo相结合的桩基工程BIM技术应用方法。详细论述了此方法如何应用于桩基建模、地质建模、模型整合及数据提取,并将该方法的应用效果与其他方法进行了对比。分析结果表明,该方法可提升桩基工程模型搭建精度及效率,辅助确定桩长,能推动BIM技术在桩基工程中的应用。展开更多
文摘The development of 3D geological models involves the integration of large amounts of geological data,as well as additional accessible proprietary lithological, structural,geochemical,geophysical,and borehole data.Luanchuan,the case study area,southwestern Henan Province,is an important molybdenum-tungsten -lead-zinc polymetallic belt in China.
基金Supported by the National Natural Science Foundation of China(No.51379006 and No.51009106)the Program for New Century Excellent Talents in University of Ministry of Education of China(No.NCET-12-0404)the National Basic Research Program of China("973"Program,No.2013CB035903)
文摘Due to the complex nature of multi-source geological data, it is difficult to rebuild every geological structure through a single 3D modeling method. The multi-source data interpretation method put forward in this analysis is based on a database-driven pattern and focuses on the discrete and irregular features of geological data. The geological data from a variety of sources covering a range of accuracy, resolution, quantity and quality are classified and integrated according to their reliability and consistency for 3D modeling. The new interpolation-approximation fitting construction algorithm of geological surfaces with the non-uniform rational B-spline(NURBS) technique is then presented. The NURBS technique can retain the balance among the requirements for accuracy, surface continuity and data storage of geological structures. Finally, four alternative 3D modeling approaches are demonstrated with reference to some examples, which are selected according to the data quantity and accuracy specification. The proposed approaches offer flexible modeling patterns for different practical engineering demands.
基金supported by the National Natural Science Foundation of China(41977215)。
文摘Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters.This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events.Specifically,for the historical landslide cases,the landslide-induced seismic signal,geophysical surveys,and possible in-situ drone/phone videos(multi-source data collaboration)can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical(rheological)parameters.Subsequently,the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events.Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou,China gives reasonable results in comparison to the field observations.The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region(2019 Shuicheng landslide).The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide.
基金supported by the National Natural Science Foundation of China,China(Grant No.41827807)the“Social Development Project of Science and Technology Commission of Shanghai Municipality,China(Grant No.21DZ1201105)”+1 种基金“The Fundamental Research Funds for the Central Universities,China(Grant No.21D111320)”the“Systematic Project of Guangxi Key Laboratory of Disaster Prevention and Engineering Safety,China(Grant No.2022ZDK018)”.
文摘A reliable geological model plays a fundamental role in the efficiency and safety of mountain tunnel construction.However,regional models based on limited survey data represent macroscopic geological environments but not detailed internal geological characteristics,especially at tunnel portals with complex geological conditions.This paper presents a comprehensive methodological framework for refined modeling of the tunnel surrounding rock and subsequent mechanics analysis,with a particular focus on natural space distortion of hard-soft rock interfaces at tunnel portals.The progressive prediction of geological structures is developed considering multi-source data derived from the tunnel survey and excavation stages.To improve the accuracy of the models,a novel modeling method is proposed to integrate multi-source and multi-scale data based on data extraction and potential field interpolation.Finally,a regional-scale model and an engineering-scale model are built,providing a clear insight into geological phenomena and supporting numerical calculation.In addition,the proposed framework is applied to a case study,the Long-tou mountain tunnel project in Guangzhou,China,where the dominant rock type is granite.The results show that the data integration and modeling methods effectively improve model structure refinement.The improved model’s calculation deviation is reduced by about 10%to 20%in the mechanical analysis.This study contributes to revealing the complex geological environment with singular interfaces and promoting the safety and performance of mountain tunneling.
基金supported by the National Key R&D Program of China(2019YFC1510700)the Sichuan Science and Technology Program(2023YFS0380, 2023YFS0377, 2019YFG0460, 2022YFS0539)。
文摘With the continuous development of the oblique photography technique, it has been used more and more widely in the field of geological disasters. It can quickly obtain the three-dimensional(3D) real scene model of dangerous mountainous areas under the premise of ensuring the safety of personnel while restoring the real geographic information as much as possible. However, geological disaster areas are often accompanied by many adverse factors such as cliffs and dense vegetation. Based on this, the paper introduced the flight line design of oblique photogrammetry, analyzed the multi-platform data fusion processing, studied the multi-period data dynamic evaluation technology and proposed the application methods of data acquisition, early warning, disaster assessment and decision management suitable for geological disaster identification through the analysis of actual cases, which will help geologists to plan and control geological work more scientifically and rationally, improve work efficiency and reduce the potential personnel safety hazards in the process of geological survey, to offer technical support to the application of oblique photogrammetry in geological disaster identification and decision making and provide the scientific basis for personal and property safety protection and later-stage geological disaster management in disaster areas.
文摘为解决桩基工程BIM(Building Information Modeling)技术应用常见的桩基建模、地质建模、模型整合方法问题,提出了一种通过BIM软件与可视化编程软件Dynamo相结合的桩基工程BIM技术应用方法。详细论述了此方法如何应用于桩基建模、地质建模、模型整合及数据提取,并将该方法的应用效果与其他方法进行了对比。分析结果表明,该方法可提升桩基工程模型搭建精度及效率,辅助确定桩长,能推动BIM技术在桩基工程中的应用。