This study proposes and experimentally validates an optimal integrated system to control the automotive continuously variable transmission(CVT)by Model Predictive Control(MPC)to achieve its expected transmission effic...This study proposes and experimentally validates an optimal integrated system to control the automotive continuously variable transmission(CVT)by Model Predictive Control(MPC)to achieve its expected transmission efficiency range.The control system framework consists of top and bottom layers.In the top layer,a driving intention recognition system is designed on the basis of fuzzy control strategy to determine the relationship between the driver intention and CVT target ratio at the corresponding time.In the bottom layer,a new slip state dynamic equation is obtained considering slip characteristics and its related constraints,and a clamping force bench is established.Innovatively,a joint controller based on model predictive control(MPC)is designed taking internal combustion engine torque and slip between the metal belt and pulley as optimization dual targets.A cycle is attained by solving the optimization target to achieve optimum engine torque and the input slip in real-time.Moreover,the new controller provides good robustness.Finally,performance is tested by actual CVT vehicles.Results show that compared with traditional control,the proposed control improves vehicle transmission efficiency by approximately 9.12%-9.35%with high accuracy.展开更多
This paper presents a study on optimum determination of partial ratios of mechanical drive systems using a chain drive and two-step helical gearbox for getting minimum size of the system. The chosen objective function...This paper presents a study on optimum determination of partial ratios of mechanical drive systems using a chain drive and two-step helical gearbox for getting minimum size of the system. The chosen objective function was the cross section dimension of the system. In solving the optimization problem, the design equation for pitting resistance of a gear set was investigated and equations on moment equilibrium condition of a mechanic system including a chain drive and two helical gear units and their regular resistance condition were analyses. From the results of the study, effective formulas for determination of the partial ratios of the chain drive and two-step helical gearboxes were introduced. As the formulas are explicit, the partial ratios can be calculated accurately and simply.展开更多
This paper introduces a new study on the optimum calculation of partial transmission ratios of a mechanical drive system using a V-belt and a three-step helical gearbox in order to get the minimum size of the system. ...This paper introduces a new study on the optimum calculation of partial transmission ratios of a mechanical drive system using a V-belt and a three-step helical gearbox in order to get the minimum size of the system. The chosen objective function was the cross section dimension of the system. In solving the optimization problem, the design equation for pitting resistance of a gear set was investigated and equations on moment equilibrium condition of a mechanic system including a V-belt and three helical gear units and their regular resistance condition were analysed. From the results of the study, effective formulas for determination of the partial ratios of the V-belt and three-step helical gearboxes were introduced. As using explicit models, the partial ratios can be determined accurately and simply.展开更多
This paper presents a study on the optimum determination of partial transmission ratios of a mechanical drive system using a V-belt and a helical gearbox with second-step double gear-sets in order to get the minimum s...This paper presents a study on the optimum determination of partial transmission ratios of a mechanical drive system using a V-belt and a helical gearbox with second-step double gear-sets in order to get the minimum size of the system. The chosen objective function was the cross section dimension of the system. In the optimization problem, the design equation for pitting resistance of a gear set was investigated and equations on moment equilibrium condition of a mechanic system including a V-belt and a helical gearbox with second-step double gear-sets and their regular resistance condition were analysed. Based on the results of the study, effective formulas for calculation of the partial ratios of the V-belt and a helical gearbox with second-step double gear-sets were proposed. By using explicit models, the partial ratios can be determined accurately and simply.展开更多
The influence mechanism of transmission accuracy for harmonic drive mechanism considering multi-factor coupling was studied. According to analysis of influence factors of transmission accuracy for harmonic drive mecha...The influence mechanism of transmission accuracy for harmonic drive mechanism considering multi-factor coupling was studied. According to analysis of influence factors of transmission accuracy for harmonic drive mechanism, it was obtained that the transmission errors of harmonic drive mechanism include processing errors and installation errors. The transmission error is produced by eccentric vector, it directly affects the rotation angle of output shaft and it makes harmonic drive mechanism produce backlash. Then analyze the movement error caused by the rigid wheel machining error, the flexible wheel machining error, the assembly error of the rigid wheel and the flexible wheel, the wave generator component, and the comprehensive expression method of motion error generated by each error source was obtained. The performance test device of space drive mechanism was used to test, and the law of the transmission accuracy of harmonic drive mechanism with temperature, speed and assembly clearance was obtained. The test results show that the transmission accuracy of harmonic drive mechanism decreases with increasing temperature, and the speed has little effect on the transmission accuracy of harmonic drive mechanism;the assembly quality has a significant impact on harmonic drive accuracy.展开更多
To improve ground vehicle efficiency, shift schedule energy saving was proposed for the ground vehicle automatic transmission by studying the function of the torque converter and transmission in the vehicular drivetra...To improve ground vehicle efficiency, shift schedule energy saving was proposed for the ground vehicle automatic transmission by studying the function of the torque converter and transmission in the vehicular drivetrain. The shift schedule can keep the torque converter working in the high efficiency range under all the working conditions except in the low efficiency range on the left when the transmission worked at the lowest shift, and in the low efficiency range on the right when the transmission worked at the highest shift. The shift quality key factors were analysed. The automatic trans-mission's bench-test adopting this shift schedule was made on the automatic transmission's test-bed. The experimental results showed that the shift schedule was correct and that the shift quality was controllable.展开更多
In order to move vehicles with automated mechanical transmission (AMT) a little bit of distance, such as reversing into or moving in a garage, a control strategy for crawling vehicles was proposed. Based on the dyna...In order to move vehicles with automated mechanical transmission (AMT) a little bit of distance, such as reversing into or moving in a garage, a control strategy for crawling vehicles was proposed. Based on the dynamic analysis of vehicle starting process and requirements of crawl driv- ing for the vehicle, a control strategy of the clutch was designed. The strategy increased the.slipping friction torque first and then decreased it, in order to realize the crawl driving. The speed increased by the engagement of the clutch, and then the clutch turned to disengage to the half disengage point, when the speed met the requirements. Based on the control strategy, a control software was de- signed. In the end, the software was tested on a vehicle with AMT. The lowest steady vehicle speed was reduced to 40% of the original value, which was set in the control strategy.展开更多
In parallel hybrid electrical vehicle (PHEV) equipped with automatic mechanical transmission (AMT), the driving smoothness and the clutch abrasion are the primary considerations for powertrain control during gears...In parallel hybrid electrical vehicle (PHEV) equipped with automatic mechanical transmission (AMT), the driving smoothness and the clutch abrasion are the primary considerations for powertrain control during gearshift and clutch operation. To improve these performance indexes of PHEV, a coordinated control system is proposed through the analyzing of HEV powertrain dynamic characteristics. Using the method of minimum principle, the input torque of transmission is optimized to improve the driving smoothness of vehicle. Using the methods of fuzzy logic and fuzzy-PID, the engaging speed of clutch and the throttle opening of engine are manipulated to ensure the smoothness of clutch engagement and reduce the abrasion of clutch friction plates. The motor provides the difference between the required input torque of transmission and the torque transmitted through clutch plates. Results of simulation and experiments show that the proposed control strategy performs better than the contrastive control system, the smoothness of driving and the abrasion of clutch can be improved simultaneously.展开更多
In order to reduce the labor intensity,improve the production efficiency and enhance the equipment stability and the branding accuracy of the pattern,we have completed a double-row high-efficiency wooden ice cream sti...In order to reduce the labor intensity,improve the production efficiency and enhance the equipment stability and the branding accuracy of the pattern,we have completed a double-row high-efficiency wooden ice cream stick branding machine structural design.The rigid-flexible coupling dynamics model is established and the movement and stress of the first-stage chain drive are calculated and analyzed.The comparison of the theoretical calculation results shows that the dynamic modeling and the structural design of the equipment are reasonable and the result of dynamic calculation also provides the basis of load data for dynamic strength calculation of structural components.展开更多
The noncircular synchronous belt drive mechanism has demonstrated certain achievements and has been used in special fields.Research regarding noncircular synchronous belt drive mechanisms has focused on optimization d...The noncircular synchronous belt drive mechanism has demonstrated certain achievements and has been used in special fields.Research regarding noncircular synchronous belt drive mechanisms has focused on optimization design and kinematic analysis in China,whereas two pulley noncircular synchronous belt transmissions have been developed overseas.However,owing to the noncircular characteristics of the belt pulley,the real-time variation in the belt length slack during the transmission of the noncircular synchronous belt is significant,resulting in high probabilities of skipping and vibration.In this study,a noncircular tensioning pulley is added to create a stable three-pulley noncircular synchronous belt driving mechanism and a good synchronous belt tensioning,with no skipping;hence,the non-uniform output characteristic of the driven pulley is consistent with the theoretical value.In the circular noncircular noncircular three-pulley noncircular synchronous belt mechanism,the pitch curve of the driving synchronous belt pulley is circular,whereas those of the driven synchronous belt and tensioning pulleys are noncircular.To minimize the slack of the belt length of the synchronous belt and the constraint of the concavity and circumference of the tensioning pulley,an automatic optimization model of the tensioning pulley pitch curve is established.The motion simulation,analysis,and optimization code for a three-belt-pulley noncircular synchronous belt drive mechanism is written,and the variation in belt length slack under different speed ratios is analyzed based on several examples.The testbed for a circular-noncircular-noncircular three-pulley noncircular synchronous belt transmission mechanism is developed.The test shows that the three-pulley noncircular synchronous belt drives well.This study proposes an automatic optimization algorithm for the tensioning pulley pitch curve of a noncircular synchronous belt transmission mechanism;it yields a stable transmission of the noncircular synchronous belt transmission mechanism as well as non-uniform output characteristics.展开更多
In order to move tracked vehicles at an extremely slowspeed with automated mechanical transmission( AMT),slowdriving function was added in the original system. The principle and requirement of slowdriving function w...In order to move tracked vehicles at an extremely slowspeed with automated mechanical transmission( AMT),slowdriving function was added in the original system. The principle and requirement of slowdriving function were analyzed. Based on analysis of slow driving characteristic,identification of slowdriving condition and fuzzy control algorithm,a control strategy of the clutch was designed. In order to realize slowdriving,the clutch was controlled in a slipping mode as manual driving. The vehicle speed was increased to a required speed and kept in a small range by engaging or disengaging the clutch to the approximate half engagement point. Based on the control strategy,a control software was designed and tested on a tracked vehicle with AMT. The test results showthat the control of the clutch with the slowdriving function was smoother than that with original systemand the vehicle speed was slower and steadier.展开更多
A gear position decision method used in automated mechanical transmission is introduced. The algorithm of the mechod is composed of a driving environment and driver's intention estimator, the shift schedules suit ...A gear position decision method used in automated mechanical transmission is introduced. The algorithm of the mechod is composed of a driving environment and driver's intention estimator, the shift schedules suit for each typical driving environment and driver's intention situation, and an inference ligic to determine the most proper gear position for the present situation. The estimator identifies the driving environment and driver's intention features which are divided into some typical models. Based on the identified results, the algorithm works out the best gear position. It just simulates the course of driver's making gear position decision when driving a automobile with manual transmission. The test results show that the automated mechanical transmission with the method gives less unnecessary shifting and more proper gear position than common shift schedules.展开更多
基于模块化多电平换流器MMC(modular multilevel converter)的高压直流输电HVDC(high voltage direct current transmission)因具有无源网络支撑等优势而被广泛应用于大容量新能源外送消纳。受电力电子设备交互作用等因素影响,送端系统...基于模块化多电平换流器MMC(modular multilevel converter)的高压直流输电HVDC(high voltage direct current transmission)因具有无源网络支撑等优势而被广泛应用于大容量新能源外送消纳。受电力电子设备交互作用等因素影响,送端系统易发生振荡失稳现象。首先,建立了直驱风电场经MMC-HVDC并网送端系统的小扰动线性化模型,分析了风场有功输出对系统稳定性的影响。然后,建立了MMC及风机并网变流器交流侧dq阻抗模型,从阻抗角度揭示了送端系统振荡失稳机理。进一步,提出了基于MMC交流电压控制外环q轴附加阻尼的振荡抑制策略,可满足系统满功率范围内的运行稳定性要求。最后,基于全比例模型的仿真结果验证了所提振荡抑制策略的有效性。展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51905044)Postdoctoral Science Foundation of China(Grant No.2017M611316).
文摘This study proposes and experimentally validates an optimal integrated system to control the automotive continuously variable transmission(CVT)by Model Predictive Control(MPC)to achieve its expected transmission efficiency range.The control system framework consists of top and bottom layers.In the top layer,a driving intention recognition system is designed on the basis of fuzzy control strategy to determine the relationship between the driver intention and CVT target ratio at the corresponding time.In the bottom layer,a new slip state dynamic equation is obtained considering slip characteristics and its related constraints,and a clamping force bench is established.Innovatively,a joint controller based on model predictive control(MPC)is designed taking internal combustion engine torque and slip between the metal belt and pulley as optimization dual targets.A cycle is attained by solving the optimization target to achieve optimum engine torque and the input slip in real-time.Moreover,the new controller provides good robustness.Finally,performance is tested by actual CVT vehicles.Results show that compared with traditional control,the proposed control improves vehicle transmission efficiency by approximately 9.12%-9.35%with high accuracy.
文摘This paper presents a study on optimum determination of partial ratios of mechanical drive systems using a chain drive and two-step helical gearbox for getting minimum size of the system. The chosen objective function was the cross section dimension of the system. In solving the optimization problem, the design equation for pitting resistance of a gear set was investigated and equations on moment equilibrium condition of a mechanic system including a chain drive and two helical gear units and their regular resistance condition were analyses. From the results of the study, effective formulas for determination of the partial ratios of the chain drive and two-step helical gearboxes were introduced. As the formulas are explicit, the partial ratios can be calculated accurately and simply.
文摘This paper introduces a new study on the optimum calculation of partial transmission ratios of a mechanical drive system using a V-belt and a three-step helical gearbox in order to get the minimum size of the system. The chosen objective function was the cross section dimension of the system. In solving the optimization problem, the design equation for pitting resistance of a gear set was investigated and equations on moment equilibrium condition of a mechanic system including a V-belt and three helical gear units and their regular resistance condition were analysed. From the results of the study, effective formulas for determination of the partial ratios of the V-belt and three-step helical gearboxes were introduced. As using explicit models, the partial ratios can be determined accurately and simply.
文摘This paper presents a study on the optimum determination of partial transmission ratios of a mechanical drive system using a V-belt and a helical gearbox with second-step double gear-sets in order to get the minimum size of the system. The chosen objective function was the cross section dimension of the system. In the optimization problem, the design equation for pitting resistance of a gear set was investigated and equations on moment equilibrium condition of a mechanic system including a V-belt and a helical gearbox with second-step double gear-sets and their regular resistance condition were analysed. Based on the results of the study, effective formulas for calculation of the partial ratios of the V-belt and a helical gearbox with second-step double gear-sets were proposed. By using explicit models, the partial ratios can be determined accurately and simply.
文摘The influence mechanism of transmission accuracy for harmonic drive mechanism considering multi-factor coupling was studied. According to analysis of influence factors of transmission accuracy for harmonic drive mechanism, it was obtained that the transmission errors of harmonic drive mechanism include processing errors and installation errors. The transmission error is produced by eccentric vector, it directly affects the rotation angle of output shaft and it makes harmonic drive mechanism produce backlash. Then analyze the movement error caused by the rigid wheel machining error, the flexible wheel machining error, the assembly error of the rigid wheel and the flexible wheel, the wave generator component, and the comprehensive expression method of motion error generated by each error source was obtained. The performance test device of space drive mechanism was used to test, and the law of the transmission accuracy of harmonic drive mechanism with temperature, speed and assembly clearance was obtained. The test results show that the transmission accuracy of harmonic drive mechanism decreases with increasing temperature, and the speed has little effect on the transmission accuracy of harmonic drive mechanism;the assembly quality has a significant impact on harmonic drive accuracy.
文摘To improve ground vehicle efficiency, shift schedule energy saving was proposed for the ground vehicle automatic transmission by studying the function of the torque converter and transmission in the vehicular drivetrain. The shift schedule can keep the torque converter working in the high efficiency range under all the working conditions except in the low efficiency range on the left when the transmission worked at the lowest shift, and in the low efficiency range on the right when the transmission worked at the highest shift. The shift quality key factors were analysed. The automatic trans-mission's bench-test adopting this shift schedule was made on the automatic transmission's test-bed. The experimental results showed that the shift schedule was correct and that the shift quality was controllable.
基金Supported by the National Natural Science Foundation of China ( 51205209)
文摘In order to move vehicles with automated mechanical transmission (AMT) a little bit of distance, such as reversing into or moving in a garage, a control strategy for crawling vehicles was proposed. Based on the dynamic analysis of vehicle starting process and requirements of crawl driv- ing for the vehicle, a control strategy of the clutch was designed. The strategy increased the.slipping friction torque first and then decreased it, in order to realize the crawl driving. The speed increased by the engagement of the clutch, and then the clutch turned to disengage to the half disengage point, when the speed met the requirements. Based on the control strategy, a control software was de- signed. In the end, the software was tested on a vehicle with AMT. The lowest steady vehicle speed was reduced to 40% of the original value, which was set in the control strategy.
基金This project is supported by National Hi-tech Research and Development Program of China (863 Program, No. 2001AA501200, 2003AA501200).
文摘In parallel hybrid electrical vehicle (PHEV) equipped with automatic mechanical transmission (AMT), the driving smoothness and the clutch abrasion are the primary considerations for powertrain control during gearshift and clutch operation. To improve these performance indexes of PHEV, a coordinated control system is proposed through the analyzing of HEV powertrain dynamic characteristics. Using the method of minimum principle, the input torque of transmission is optimized to improve the driving smoothness of vehicle. Using the methods of fuzzy logic and fuzzy-PID, the engaging speed of clutch and the throttle opening of engine are manipulated to ensure the smoothness of clutch engagement and reduce the abrasion of clutch friction plates. The motor provides the difference between the required input torque of transmission and the torque transmitted through clutch plates. Results of simulation and experiments show that the proposed control strategy performs better than the contrastive control system, the smoothness of driving and the abrasion of clutch can be improved simultaneously.
基金Key Scientific Research Project of the Inner Mongolia Autonomous Region University,China(No.NJZZ18075)Natural Science Fund of Inner Mongolia Autonomous Region,China(No.2018M S05060)Education Scientific Research 13th Five-Year Plan of Inner Mongolia Autonomous Region,China(No.NGJGH2018066)
文摘In order to reduce the labor intensity,improve the production efficiency and enhance the equipment stability and the branding accuracy of the pattern,we have completed a double-row high-efficiency wooden ice cream stick branding machine structural design.The rigid-flexible coupling dynamics model is established and the movement and stress of the first-stage chain drive are calculated and analyzed.The comparison of the theoretical calculation results shows that the dynamic modeling and the structural design of the equipment are reasonable and the result of dynamic calculation also provides the basis of load data for dynamic strength calculation of structural components.
基金Supported by National Natural Science Foundation of China(Grant Nos.51675486,51805487).
文摘The noncircular synchronous belt drive mechanism has demonstrated certain achievements and has been used in special fields.Research regarding noncircular synchronous belt drive mechanisms has focused on optimization design and kinematic analysis in China,whereas two pulley noncircular synchronous belt transmissions have been developed overseas.However,owing to the noncircular characteristics of the belt pulley,the real-time variation in the belt length slack during the transmission of the noncircular synchronous belt is significant,resulting in high probabilities of skipping and vibration.In this study,a noncircular tensioning pulley is added to create a stable three-pulley noncircular synchronous belt driving mechanism and a good synchronous belt tensioning,with no skipping;hence,the non-uniform output characteristic of the driven pulley is consistent with the theoretical value.In the circular noncircular noncircular three-pulley noncircular synchronous belt mechanism,the pitch curve of the driving synchronous belt pulley is circular,whereas those of the driven synchronous belt and tensioning pulleys are noncircular.To minimize the slack of the belt length of the synchronous belt and the constraint of the concavity and circumference of the tensioning pulley,an automatic optimization model of the tensioning pulley pitch curve is established.The motion simulation,analysis,and optimization code for a three-belt-pulley noncircular synchronous belt drive mechanism is written,and the variation in belt length slack under different speed ratios is analyzed based on several examples.The testbed for a circular-noncircular-noncircular three-pulley noncircular synchronous belt transmission mechanism is developed.The test shows that the three-pulley noncircular synchronous belt drives well.This study proposes an automatic optimization algorithm for the tensioning pulley pitch curve of a noncircular synchronous belt transmission mechanism;it yields a stable transmission of the noncircular synchronous belt transmission mechanism as well as non-uniform output characteristics.
基金Supported by the National Natural Science Foundation of China(51375053)
文摘In order to move tracked vehicles at an extremely slowspeed with automated mechanical transmission( AMT),slowdriving function was added in the original system. The principle and requirement of slowdriving function were analyzed. Based on analysis of slow driving characteristic,identification of slowdriving condition and fuzzy control algorithm,a control strategy of the clutch was designed. In order to realize slowdriving,the clutch was controlled in a slipping mode as manual driving. The vehicle speed was increased to a required speed and kept in a small range by engaging or disengaging the clutch to the approximate half engagement point. Based on the control strategy,a control software was designed and tested on a tracked vehicle with AMT. The test results showthat the control of the clutch with the slowdriving function was smoother than that with original systemand the vehicle speed was slower and steadier.
文摘A gear position decision method used in automated mechanical transmission is introduced. The algorithm of the mechod is composed of a driving environment and driver's intention estimator, the shift schedules suit for each typical driving environment and driver's intention situation, and an inference ligic to determine the most proper gear position for the present situation. The estimator identifies the driving environment and driver's intention features which are divided into some typical models. Based on the identified results, the algorithm works out the best gear position. It just simulates the course of driver's making gear position decision when driving a automobile with manual transmission. The test results show that the automated mechanical transmission with the method gives less unnecessary shifting and more proper gear position than common shift schedules.
文摘基于模块化多电平换流器MMC(modular multilevel converter)的高压直流输电HVDC(high voltage direct current transmission)因具有无源网络支撑等优势而被广泛应用于大容量新能源外送消纳。受电力电子设备交互作用等因素影响,送端系统易发生振荡失稳现象。首先,建立了直驱风电场经MMC-HVDC并网送端系统的小扰动线性化模型,分析了风场有功输出对系统稳定性的影响。然后,建立了MMC及风机并网变流器交流侧dq阻抗模型,从阻抗角度揭示了送端系统振荡失稳机理。进一步,提出了基于MMC交流电压控制外环q轴附加阻尼的振荡抑制策略,可满足系统满功率范围内的运行稳定性要求。最后,基于全比例模型的仿真结果验证了所提振荡抑制策略的有效性。