BACKGROUND Intracranial atherosclerosis,a leading cause of stroke,involves arterial plaque formation.This study explores the link between plaque remodelling patterns and diabetes using high-resolution vessel wall imag...BACKGROUND Intracranial atherosclerosis,a leading cause of stroke,involves arterial plaque formation.This study explores the link between plaque remodelling patterns and diabetes using high-resolution vessel wall imaging(HR-VWI).AIM To investigate the factors of intracranial atherosclerotic remodelling patterns and the relationship between intracranial atherosclerotic remodelling and diabetes mellitus using HR-VWI.METHODS Ninety-four patients diagnosed with middle cerebral artery or basilar artery INTRODUCTION Intracranial atherosclerotic disease is one of the main causes of ischaemic stroke in the world,accounting for approx-imately 10%of transient ischaemic attacks and 30%-50%of ischaemic strokes[1].It is the most common factor among Asian people[2].The adaptive changes in the structure and function of blood vessels that can adapt to changes in the internal and external environment are called vascular remodelling,which is a common and important pathological mechanism in atherosclerotic diseases,and the remodelling mode of atherosclerotic plaques is closely related to the occurrence of stroke.Positive remodelling(PR)is an outwards compensatory remodelling where the arterial wall grows outwards in an attempt to maintain a constant lumen diameter.For a long time,it was believed that the degree of stenosis can accurately reflect the risk of ischaemic stroke[3-5].Previous studies have revealed that lesions without significant luminal stenosis can also lead to acute events[6,7],as summarized in a recent meta-analysis study in which approximately 50%of acute/subacute ischaemic events were due to this type of lesion[6].Research[8,9]has pointed out that the PR of plaques is more dangerous and more likely to cause acute ischaemic stroke.Previous studies[10-13]have found that there are specific vascular remodelling phenomena in the coronary and carotid arteries of diabetic patients.However,due to the deep location and small lumen of intracranial arteries and limitations of imaging techniques,the relationship between intracranial arterial remodelling and diabetes is still unclear.In recent years,with the development of magnetic resonance technology and the emergence of high-resolution(HR)vascular wall imaging,a clear and multidimensional display of the intracranial vascular wall has been achieved.Therefore,in this study,HR wall imaging(HR-VWI)was used to display the remodelling characteristics of bilateral middle cerebral arteries and basilar arteries and to explore the factors of intracranial vascular remodelling and its relationship with diabetes.展开更多
BACKGROUND No studies have yet been conducted on changes in microcirculatory hemody-namics of colorectal adenomas in vivo under endoscopy.The microcirculation of the colorectal adenoma could be observed in vivo by a n...BACKGROUND No studies have yet been conducted on changes in microcirculatory hemody-namics of colorectal adenomas in vivo under endoscopy.The microcirculation of the colorectal adenoma could be observed in vivo by a novel high-resolution magnification endoscopy with blue laser imaging(BLI),thus providing a new insight into the microcirculation of early colon tumors.AIM To observe the superficial microcirculation of colorectal adenomas using the novel magnifying colonoscope with BLI and quantitatively analyzed the changes in hemodynamic parameters.METHODS From October 2019 to January 2020,11 patients were screened for colon adenomas with the novel high-resolution magnification endoscope with BLI.Video images were recorded and processed with Adobe Premiere,Adobe Photoshop and Image-pro Plus software.Four microcirculation parameters:Microcirculation vessel density(MVD),mean vessel width(MVW)with width standard deviation(WSD),and blood flow velocity(BFV),were calculated for adenomas and the surrounding normal mucosa.RESULTS A total of 16 adenomas were identified.Compared with the normal surrounding mucosa,the superficial vessel density in the adenomas was decreased(MVD:0.95±0.18 vs 1.17±0.28μm/μm2,P<0.05).MVW(5.11±1.19 vs 4.16±0.76μm,P<0.05)and WSD(11.94±3.44 vs 9.04±3.74,P<0.05)were both increased.BFV slowed in the adenomas(709.74±213.28 vs 1256.51±383.31μm/s,P<0.05).CONCLUSION The novel high-resolution magnification endoscope with BLI can be used for in vivo study of adenoma superficial microcirculation.Superficial vessel density was decreased,more irregular,with slower blood flow.展开更多
BACKGROUND Vertebral artery dissection(VAD)is a rare but life-threatening condition characterized by tearing of the intimal layer of the vertebral artery,leading to stenosis,occlusion or rupture.The clinical presentat...BACKGROUND Vertebral artery dissection(VAD)is a rare but life-threatening condition characterized by tearing of the intimal layer of the vertebral artery,leading to stenosis,occlusion or rupture.The clinical presentation of VAD can be heterogeneous,with common symptoms including headache,dizziness and balance problems.Timely diagnosis and treatment are crucial for favorable outcomes;however,VAD is often missed due to its variable clinical presentation and lack of robust diagnostic guidelines.High-resolution magnetic resonance imaging(HRMRI)has emerged as a reliable diagnostic tool for VAD,providing detailed visualization of vessel wall abnormalities.CASE SUMMARY A young male patient presented with an acute onset of severe headache,vomiting,and seizures,followed by altered consciousness.Imaging studies revealed bilateral VAD,basilar artery thrombosis,multiple brainstem and cerebellar infarcts,and subarachnoid hemorrhage.Digital subtraction angiography(DSA)revealed vertebral artery stenosis but failed to detect the dissection,potentially because intramural thrombosis obscured the VAD.In contrast,HRMRI confirmed the diagnosis by revealing specific signs of dissection.The patient was managed conservatively with antiplatelet therapy and other supportive measures,such as blood pressure control and pain management.After 5 mo of rehabilitation,the patient showed significant improvement in swallowing and limb strength.CONCLUSION HR-MRI can provide precise evidence for the identification of VAD.展开更多
Mineral dissemination and pore space distribution in ore particles are important features that influence heap leaching performance. To quantify the mineral dissemination and pore space distribution of an ore particle,...Mineral dissemination and pore space distribution in ore particles are important features that influence heap leaching performance. To quantify the mineral dissemination and pore space distribution of an ore particle, a cylindrical copper oxide ore sample (I center dot 4.6 mm x 5.6 mm) was scanned using high-resolution X-ray computed tomography (HRXCT), a nondestructive imaging technology, at a spatial resolution of 4.85 mu m. Combined with three-dimensional (3D) image analysis techniques, the main mineral phases and pore space were segmented and the volume fraction of each phase was calculated. In addition, the mass fraction of each mineral phase was estimated and the result was validated with that obtained using traditional techniques. Furthermore, the pore phase features, including the pore size distribution, pore surface area, pore fractal dimension, pore centerline, and the pore connectivity, were investigated quantitatively. The pore space analysis results indicate that the pore size distribution closely fits a log-normal distribution and that the pore space morphology is complicated, with a large surface area and low connectivity. This study demonstrates that the combination of HRXCT and 3D image analysis is an effective tool for acquiring 3D mineralogical and pore structural data.展开更多
Measurement of vegetation coverage on a small scale is the foundation for the monitoring of changes in vegetation coverage and of the inversion model of monitoring vegetation coverage on a large scale by remote sensin...Measurement of vegetation coverage on a small scale is the foundation for the monitoring of changes in vegetation coverage and of the inversion model of monitoring vegetation coverage on a large scale by remote sensing. Using the object-oriented analytical software, Definiens Professional 5, a new method for calculating vegetation coverage based on high-resolution images (aerial photographs or near-surface photography) is proposed. Our research supplies references to remote sensing measurements of vegetation coverage on a small scale and accurate fundamental data for the inversion model of vegetation coverage on a large and intermediate scale to improve the accuracy of remote sensing monitoring of changes in vegetation coverage.展开更多
We present a novel sea-ice classification framework based on locality preserving fusion of multi-source images information.The locality preserving fusion arises from two-fold,i.e.,the local characterization in both sp...We present a novel sea-ice classification framework based on locality preserving fusion of multi-source images information.The locality preserving fusion arises from two-fold,i.e.,the local characterization in both spatial and feature domains.We commence by simultaneously learning a projection matrix,which preserves spatial localities,and a similarity matrix,which encodes feature similarities.We map the pixels of multi-source images by the projection matrix to a set fusion vectors that preserve spatial localities of the image.On the other hand,by applying the Laplacian eigen-decomposition to the similarity matrix,we obtain another set of fusion vectors that preserve the feature local similarities.We concatenate the fusion vectors for both spatial and feature locality preservation and obtain the fusion image.Finally,we classify the fusion image pixels by a novel sliding ensemble strategy,which enhances the locality preservation in classification.Our locality preserving fusion framework is effective in classifying multi-source sea-ice images(e.g.,multi-spectral and synthetic aperture radar(SAR)images)because it not only comprehensively captures the spatial neighboring relationships but also intrinsically characterizes the feature associations between different types of sea-ices.Experimental evaluations validate the effectiveness of our framework.展开更多
The fractal characteristics of tidal creeks in the Gaizhou Beach are analyzed based on high-resolution images fusionof Landsat TM and ERS2, and then the graphic models and characteristics of converse information tree ...The fractal characteristics of tidal creeks in the Gaizhou Beach are analyzed based on high-resolution images fusionof Landsat TM and ERS2, and then the graphic models and characteristics of converse information tree of tidalcreeks in the Gaizhou Beach are established. A calculation model is established based on the above results, and at thesame time, quantitative calculation of the evolution characteristics and the diversity between the northern and thesouthern parts of the Gaizhou Beach is carried out. By the supervised classification of these images, distribution andareas of high tidal flats, middle tidal flats and low tidal flats in the Gaizhou Beach are studied quantitatively, and imagecharactistics of seashell habitats in the Gaizhou Beach and the correlation between mudflat distribution and seashellhabitats are studied. At last, the engineering problems in the Gaizhou Beach are discussed.展开更多
Building segmentation from high-resolution synthetic aperture radar (SAR) images has always been one of the important research issues. Due to the existence of speckle noise and multipath effect, the pixel values chang...Building segmentation from high-resolution synthetic aperture radar (SAR) images has always been one of the important research issues. Due to the existence of speckle noise and multipath effect, the pixel values change drastically, causing the large intensity differences in pixels of building areas. Moreover, the geometric structure of buildings can cause strong scattering spots, which brings difficulties to the segmentation and extraction of buildings. To solve of these problems, this paper presents a coherence-coefficient-based Markov random field (CCMRF) approach for building segmentation from high-resolution SAR images. The method introduces the coherence coefficient of interferometric synthetic aperture radar (InSAR) into the neighborhood energy based on traditional Markov random field (MRF), which makes interferometric and spatial contextual information more fully used in SAR image segmentation. According to the Hammersley-Clifford theorem, the problem of maximum a posteriori (MAP) for image segmentation is transformed into the solution of minimizing the sum of likelihood energy and neighborhood energy. Finally, the iterative condition model (ICM) is used to find the optimal solution. The experimental results demonstrate that the proposed method can segment SAR building effectively and obtain more accurate results than the traditional MRF method and K-means clustering.展开更多
Nowadays, remote sensing imagery, especially with its high spatialresolution, has become an indispensable tool to provide timely up-gradation of urban land use andland cover information, which is a prerequisite for pr...Nowadays, remote sensing imagery, especially with its high spatialresolution, has become an indispensable tool to provide timely up-gradation of urban land use andland cover information, which is a prerequisite for proper urban planning and management. Thepossible method described in the present paper to obtain urban land use types is based on theprinciple that land use can be derived from the land cover existing in a neighborhood. Here, movingwindow is used to represent the spatial pattern of land cover within a neighborhood and seven windowsizes (61mx61m, 68mx68m, 75mx75m, 87mx87m, 99mx99m, 110mx110m and 121mxl21m) are applied todetermining the most proper window size. Then, the unsupervised method of ISODATA is employed toclassify the layered land cover density maps obtained by the moving window. The results of accuracyevaluation show that the window size of 99mx99m is proper to infer urban land use categories and theproposed method has produced a land use map with a total accuracy of 85%.展开更多
This paper aims at providing multi-source remote sensing images registered in geometric space for image fusion.Focusing on the characteristics and differences of multi-source remote sensing images,a feature-based regi...This paper aims at providing multi-source remote sensing images registered in geometric space for image fusion.Focusing on the characteristics and differences of multi-source remote sensing images,a feature-based registration algorithm is implemented.The key technologies include image scale-space for implementing multi-scale properties,Harris corner detection for keypoints extraction,and partial intensity invariant feature descriptor(PIIFD)for keypoints description.Eventually,a multi-scale Harris-PIIFD image registration algorithm framework is proposed.The experimental results of fifteen sets of representative real data show that the algorithm has excellent,stable performance in multi-source remote sensing image registration,and can achieve accurate spatial alignment,which has strong practical application value and certain generalization ability.展开更多
The automatic registration of multi-source remote sensing images (RSI) is a research hotspot of remote sensing image preprocessing currently. A special automatic image registration module named the Image Autosync has ...The automatic registration of multi-source remote sensing images (RSI) is a research hotspot of remote sensing image preprocessing currently. A special automatic image registration module named the Image Autosync has been embedded into the ERDAS IMAGINE software of version 9.0 and above. The registration accuracies of the module verified for the remote sensing images obtained from different platforms or their different spatial resolution. Four tested registration experiments are discussed in this article to analyze the accuracy differences based on the remote sensing data which have different spatial resolution. The impact factors inducing the differences of registration accuracy are also analyzed.展开更多
It is proposed a high resolution remote sensing image segmentation method which combines static minimum spanning tree(MST)tessellation considering shape information and the RHMRF-FCM algorithm.It solves the problems i...It is proposed a high resolution remote sensing image segmentation method which combines static minimum spanning tree(MST)tessellation considering shape information and the RHMRF-FCM algorithm.It solves the problems in the traditional pixel-based HMRF-FCM algorithm in which poor noise resistance and low precision segmentation in a complex boundary exist.By using the MST model and shape information,the object boundary and geometrical noise can be expressed and reduced respectively.Firstly,the static MST tessellation is employed for dividing the image domain into some sub-regions corresponding to the components of homogeneous regions needed to be segmented.Secondly,based on the tessellation results,the RHMRF model is built,and regulation terms considering the KL information and the information entropy are introduced into the FCM objective function.Finally,the partial differential method and Lagrange function are employed to calculate the parameters of the fuzzy objective function for obtaining the global optimal segmentation results.To verify the robustness and effectiveness of the proposed algorithm,the experiments are carried out with WorldView-3(WV-3)high resolution image.The results from proposed method with different parameters and comparing methods(multi-resolution method and watershed segmentation method in eCognition software)are analyzed qualitatively and quantitatively.展开更多
The geological data are constructed in vector format in geographical information system (GIS) while other data such as remote sensing images, geographical data and geochemical data are saved in raster ones. This paper...The geological data are constructed in vector format in geographical information system (GIS) while other data such as remote sensing images, geographical data and geochemical data are saved in raster ones. This paper converts the vector data into 8 bit images according to their importance to mineralization each by programming. We can communicate the geological meaning with the raster images by this method. The paper also fuses geographical data and geochemical data with the programmed strata data. The result shows that image fusion can express different intensities effectively and visualize the structure characters in 2 dimensions. Furthermore, it also can produce optimized information from multi-source data and express them more directly.展开更多
A large number of debris flow disasters(called Seismic debris flows) would occur after an earthquake, which can cause a great amount of damage. UAV low-altitude remote sensing technology has become a means of quickly ...A large number of debris flow disasters(called Seismic debris flows) would occur after an earthquake, which can cause a great amount of damage. UAV low-altitude remote sensing technology has become a means of quickly obtaining disaster information as it has the advantage of convenience and timeliness, but the spectral information of the image is so scarce, making it difficult to accurately detect the information of earthquake debris flow disasters. Based on the above problems, a seismic debris flow detection method based on transfer learning(TL) mechanism is proposed. On the basis of the constructed seismic debris flow disaster database, the features acquired from the training of the convolutional neural network(CNN) are transferred to the disaster information detection of the seismic debris flow. The automatic detection of earthquake debris flow disaster information is then completed, and the results of object-oriented seismic debris flow disaster information detection are compared and analyzed with the detection results supported by transfer learning.展开更多
Automatic road detection, in dense urban areas, is a challenging application in the remote sensing community. This is mainly because of physical and geometrical variations of road pixels, their spectral similarity to ...Automatic road detection, in dense urban areas, is a challenging application in the remote sensing community. This is mainly because of physical and geometrical variations of road pixels, their spectral similarity to other features such as buildings, parking lots and sidewalks, and the obstruction by vehicles and trees. These problems are real obstacles in precise detection and identification of urban roads from high-resolution satellite imagery. One of the promising strategies to deal with this problem is using multi-sensors data to reduce the uncertainties of detection. In this paper, an integrated object-based analysis framework was developed for detecting and extracting various types of urban roads from high-resolution optical images and Lidar data. The proposed method is designed and implemented using a rule-oriented approach based on a masking strategy. The overall accuracy (OA) of the final road map was 89.2%, and the kappa coefficient of agreement was 0.83, which show the efficiency and performance of the method in different conditions and interclass noises. The results also demonstrate the high capability of this object-based method in simultaneous identification of a wide variety of road elements in complex urban areas using both high-resolution satellite images and Lidar data.展开更多
High-resolution reconstruction of solar speckle image is one of the important research contents in astronomical image processing. High-resolution image reconstruction based on deep learning can obtain the end-to-end m...High-resolution reconstruction of solar speckle image is one of the important research contents in astronomical image processing. High-resolution image reconstruction based on deep learning can obtain the end-to-end mapping function from low-resolution image to high-resolution image through neural network model learning, which can recover the high-frequency information of the image. However, when used to reconstruct the sun speckle image with single feature, more noise and fuzzy local details, there are some shortcomings such as too smooth edge and easy loss of high-frequency information. In this paper, the structure features of input image and reconstructed image are added to CycleGAN network to get MCycleGAN. High frequency information is obtained from structural features by generator network, and the feature difference is calculated to enhance the ability of network to reconstruct high-frequency information. The edge of the reconstructed image is clearer. Compared with the speckle mask method level 1+ used by Yunnan Observatory, the results show that the proposed algorithm has the advantages of small error, fast reconstruction speed and high image clarity.展开更多
Inverse synthetic aperture radar (ISAR) image can be represented and reconstructed by sparse recovery (SR) approaches. However, the existing SR algorithms, which are used for ISAR imaging, have suffered from high comp...Inverse synthetic aperture radar (ISAR) image can be represented and reconstructed by sparse recovery (SR) approaches. However, the existing SR algorithms, which are used for ISAR imaging, have suffered from high computational cost and poor imaging quality under a low signal to noise ratio (SNR) condition. This paper proposes a fast decoupled ISAR imaging method by exploiting the inherent structural sparse information of the targets. Firstly, the ISAR imaging problem is decoupled into two sub-problems. One is range direction imaging and the other is azimuth direction focusing. Secondly, an efficient two-stage SR method is proposed to obtain higher resolution range profiles by using jointly sparse information. Finally, the residual linear Bregman iteration via fast Fourier transforms (RLBI-FFT) is proposed to perform the azimuth focusing on low SNR efficiently. Theoretical analysis and simulation results show that the proposed method has better performence to efficiently implement higher-resolution ISAR imaging under the low SNR condition.展开更多
In this paper,we proposed a monopulse forward-looking high-resolution imaging algorithm based on adaptive iteration for missile-borne detector.Through iteration,the proposed algorithm automatically selects the echo si...In this paper,we proposed a monopulse forward-looking high-resolution imaging algorithm based on adaptive iteration for missile-borne detector.Through iteration,the proposed algorithm automatically selects the echo signal of isolated strong-scattering points from the receiving echo signal data to accurately estimate the actual optimal monopulse response curve(MRC) of the same distance range,and we applied optimal MRC to realize the azimuth self-focusing in the process of imaging.We use real-time echo data to perform error correction for obtaining the optimal MRC,and the azimuth angulation accuracy may reach the optimum at a certain distance dimension.We experimentally demonstrate the validity,reliability and high performance of the proposed algorithm.The azimuth angulation accuracy may reach up to ten times of the detection beam-width.The simulation experiments have verified the feasibility of this strategy,with the average height measurement error being 7.8%.In the out-field unmanned aerial vehicle(UAV) tests,the height measurement error is less than 25 m,and the whole response time can satisfy the requirements of a missile-borne detector.展开更多
Aiming at a novel missile-borne detector in the optional burst height proximity fuze, a self-adaptive high-resolution forward-looking imaging algorithm (SAHRFL-IA) is presented. The echo data are captured by the missi...Aiming at a novel missile-borne detector in the optional burst height proximity fuze, a self-adaptive high-resolution forward-looking imaging algorithm (SAHRFL-IA) is presented. The echo data are captured by the missile-borne detector in the target regions;thereby the azimuth angulation accuracy at the same distance dimension is improved dynamically. Thus, azimuth information of the targets in the detection area may be obtained accurately. The proposed imaging algorithm breaks through the conventional misconception of merely using azimuth discrimination curves under ideal conditions during monopulse angulation. The real-time echo data from the target region are used to perform error correction for this discrimination curve, and finally the accuracy of the azimuth angulation may reach the optimum at the same distance dimension. A series of experiments demonstrate the validity, reliability and high performance of the proposed imaging algorithm. Azimuth angulation accuracy may reach ten times that of the detection beam width. Meanwhile, the running time of this algorithm satisfies the requirements of missile-borne platforms.展开更多
AIM:To evaluate a high-resolution functional imaging device that yields quantitative data regarding macular blood flow and capillary network features in eyes with diabetic retinopathy(DR).METHODS:Prospective,cross-sec...AIM:To evaluate a high-resolution functional imaging device that yields quantitative data regarding macular blood flow and capillary network features in eyes with diabetic retinopathy(DR).METHODS:Prospective,cross-sectional comparative case-series in which blood flow velocities(BFVs)and noninvasive capillary perfusion maps(nCPMs)in macular vessels were measured in patients with DR and in healthy controls using the Retinal Functional Imager(RFI)device.RESULTS:A total of 27 eyes of 21 subjects were studied[9 eyes nonproliferative diabetic retinopathy(NPDR),9 eyes proliferative diabetic retinopathy(PDR)and 9 controls].All diabetic patients were type 2.All patients with NPDR and 5 eyes with PDR also had diabetic macular edema(DME).The NPDR group included eyes with severe(n=3)and moderate NPDR(n=6),and were symptomatic.A significant decrease in venular BFVs was observed in the macular region of PDR eyes when compared to controls(2.61±0.6 mm/s and 2.92±0.72 mm/s in PDR and controls,respectively,P=0.019)as well as PDR eyes with DME compared to NPDR eyes(2.36±0.51 mm/s and 2.94±1.09 mm/s in PDR with DME and NPDR,respectively,P=0.01).CONCLUSION:The RFI,a non-invasive imaging tool,provides high-resolution functional imaging of the retinal microvasculature and quantitative measurement of BFVs in visually impaired DR patients.The isolated diminish venular BFVs in PDR eyes compared to healthy eyes and PDR eyes with DME in comparison to NPDR eyes may indicate the possibility of more retinal vein compromise than suspected in advanced DR.展开更多
基金Supported by National Natural Science Foundation of China,No.82071871Guangdong Basic and Applied Basic Research Foundation,No.2021A1515220131+1 种基金Guangdong Medical Science and Technology Research Fund Project,No.2022111520491834Clinical Research Project of Shenzhen Second People's Hospital,No.20223357022。
文摘BACKGROUND Intracranial atherosclerosis,a leading cause of stroke,involves arterial plaque formation.This study explores the link between plaque remodelling patterns and diabetes using high-resolution vessel wall imaging(HR-VWI).AIM To investigate the factors of intracranial atherosclerotic remodelling patterns and the relationship between intracranial atherosclerotic remodelling and diabetes mellitus using HR-VWI.METHODS Ninety-four patients diagnosed with middle cerebral artery or basilar artery INTRODUCTION Intracranial atherosclerotic disease is one of the main causes of ischaemic stroke in the world,accounting for approx-imately 10%of transient ischaemic attacks and 30%-50%of ischaemic strokes[1].It is the most common factor among Asian people[2].The adaptive changes in the structure and function of blood vessels that can adapt to changes in the internal and external environment are called vascular remodelling,which is a common and important pathological mechanism in atherosclerotic diseases,and the remodelling mode of atherosclerotic plaques is closely related to the occurrence of stroke.Positive remodelling(PR)is an outwards compensatory remodelling where the arterial wall grows outwards in an attempt to maintain a constant lumen diameter.For a long time,it was believed that the degree of stenosis can accurately reflect the risk of ischaemic stroke[3-5].Previous studies have revealed that lesions without significant luminal stenosis can also lead to acute events[6,7],as summarized in a recent meta-analysis study in which approximately 50%of acute/subacute ischaemic events were due to this type of lesion[6].Research[8,9]has pointed out that the PR of plaques is more dangerous and more likely to cause acute ischaemic stroke.Previous studies[10-13]have found that there are specific vascular remodelling phenomena in the coronary and carotid arteries of diabetic patients.However,due to the deep location and small lumen of intracranial arteries and limitations of imaging techniques,the relationship between intracranial arterial remodelling and diabetes is still unclear.In recent years,with the development of magnetic resonance technology and the emergence of high-resolution(HR)vascular wall imaging,a clear and multidimensional display of the intracranial vascular wall has been achieved.Therefore,in this study,HR wall imaging(HR-VWI)was used to display the remodelling characteristics of bilateral middle cerebral arteries and basilar arteries and to explore the factors of intracranial vascular remodelling and its relationship with diabetes.
基金This study was approved by the Medical Ethics Committee of Beijing Tsinghua Changgung Hospital(20002-0-02).
文摘BACKGROUND No studies have yet been conducted on changes in microcirculatory hemody-namics of colorectal adenomas in vivo under endoscopy.The microcirculation of the colorectal adenoma could be observed in vivo by a novel high-resolution magnification endoscopy with blue laser imaging(BLI),thus providing a new insight into the microcirculation of early colon tumors.AIM To observe the superficial microcirculation of colorectal adenomas using the novel magnifying colonoscope with BLI and quantitatively analyzed the changes in hemodynamic parameters.METHODS From October 2019 to January 2020,11 patients were screened for colon adenomas with the novel high-resolution magnification endoscope with BLI.Video images were recorded and processed with Adobe Premiere,Adobe Photoshop and Image-pro Plus software.Four microcirculation parameters:Microcirculation vessel density(MVD),mean vessel width(MVW)with width standard deviation(WSD),and blood flow velocity(BFV),were calculated for adenomas and the surrounding normal mucosa.RESULTS A total of 16 adenomas were identified.Compared with the normal surrounding mucosa,the superficial vessel density in the adenomas was decreased(MVD:0.95±0.18 vs 1.17±0.28μm/μm2,P<0.05).MVW(5.11±1.19 vs 4.16±0.76μm,P<0.05)and WSD(11.94±3.44 vs 9.04±3.74,P<0.05)were both increased.BFV slowed in the adenomas(709.74±213.28 vs 1256.51±383.31μm/s,P<0.05).CONCLUSION The novel high-resolution magnification endoscope with BLI can be used for in vivo study of adenoma superficial microcirculation.Superficial vessel density was decreased,more irregular,with slower blood flow.
基金Supported by The Clinical Innovation Guidance Program of Hunan Provincial Science and Technology Department,China,No.2021SK51714The Hunan Nature Science Foundation,China,No.2023JJ30531.
文摘BACKGROUND Vertebral artery dissection(VAD)is a rare but life-threatening condition characterized by tearing of the intimal layer of the vertebral artery,leading to stenosis,occlusion or rupture.The clinical presentation of VAD can be heterogeneous,with common symptoms including headache,dizziness and balance problems.Timely diagnosis and treatment are crucial for favorable outcomes;however,VAD is often missed due to its variable clinical presentation and lack of robust diagnostic guidelines.High-resolution magnetic resonance imaging(HRMRI)has emerged as a reliable diagnostic tool for VAD,providing detailed visualization of vessel wall abnormalities.CASE SUMMARY A young male patient presented with an acute onset of severe headache,vomiting,and seizures,followed by altered consciousness.Imaging studies revealed bilateral VAD,basilar artery thrombosis,multiple brainstem and cerebellar infarcts,and subarachnoid hemorrhage.Digital subtraction angiography(DSA)revealed vertebral artery stenosis but failed to detect the dissection,potentially because intramural thrombosis obscured the VAD.In contrast,HRMRI confirmed the diagnosis by revealing specific signs of dissection.The patient was managed conservatively with antiplatelet therapy and other supportive measures,such as blood pressure control and pain management.After 5 mo of rehabilitation,the patient showed significant improvement in swallowing and limb strength.CONCLUSION HR-MRI can provide precise evidence for the identification of VAD.
基金financially supported by the National Natural Science Foundation of China(No.51304076)the Natural Science Foundation of Hunan Province,China(No.14JJ4064)
文摘Mineral dissemination and pore space distribution in ore particles are important features that influence heap leaching performance. To quantify the mineral dissemination and pore space distribution of an ore particle, a cylindrical copper oxide ore sample (I center dot 4.6 mm x 5.6 mm) was scanned using high-resolution X-ray computed tomography (HRXCT), a nondestructive imaging technology, at a spatial resolution of 4.85 mu m. Combined with three-dimensional (3D) image analysis techniques, the main mineral phases and pore space were segmented and the volume fraction of each phase was calculated. In addition, the mass fraction of each mineral phase was estimated and the result was validated with that obtained using traditional techniques. Furthermore, the pore phase features, including the pore size distribution, pore surface area, pore fractal dimension, pore centerline, and the pore connectivity, were investigated quantitatively. The pore space analysis results indicate that the pore size distribution closely fits a log-normal distribution and that the pore space morphology is complicated, with a large surface area and low connectivity. This study demonstrates that the combination of HRXCT and 3D image analysis is an effective tool for acquiring 3D mineralogical and pore structural data.
基金funded by the National Natural Science Foundation of China(Grant No.40571029).
文摘Measurement of vegetation coverage on a small scale is the foundation for the monitoring of changes in vegetation coverage and of the inversion model of monitoring vegetation coverage on a large scale by remote sensing. Using the object-oriented analytical software, Definiens Professional 5, a new method for calculating vegetation coverage based on high-resolution images (aerial photographs or near-surface photography) is proposed. Our research supplies references to remote sensing measurements of vegetation coverage on a small scale and accurate fundamental data for the inversion model of vegetation coverage on a large and intermediate scale to improve the accuracy of remote sensing monitoring of changes in vegetation coverage.
基金The National Natural Science Foundation of China under contract No.61671481the Qingdao Applied Fundamental Research under contract No.16-5-1-11-jchthe Fundamental Research Funds for Central Universities under contract No.18CX05014A
文摘We present a novel sea-ice classification framework based on locality preserving fusion of multi-source images information.The locality preserving fusion arises from two-fold,i.e.,the local characterization in both spatial and feature domains.We commence by simultaneously learning a projection matrix,which preserves spatial localities,and a similarity matrix,which encodes feature similarities.We map the pixels of multi-source images by the projection matrix to a set fusion vectors that preserve spatial localities of the image.On the other hand,by applying the Laplacian eigen-decomposition to the similarity matrix,we obtain another set of fusion vectors that preserve the feature local similarities.We concatenate the fusion vectors for both spatial and feature locality preservation and obtain the fusion image.Finally,we classify the fusion image pixels by a novel sliding ensemble strategy,which enhances the locality preservation in classification.Our locality preserving fusion framework is effective in classifying multi-source sea-ice images(e.g.,multi-spectral and synthetic aperture radar(SAR)images)because it not only comprehensively captures the spatial neighboring relationships but also intrinsically characterizes the feature associations between different types of sea-ices.Experimental evaluations validate the effectiveness of our framework.
基金This study was supported by the Project of“863”Marine Monitor of Hi-Tech Research and Development Program of China under contract No.2003AA604040.
文摘The fractal characteristics of tidal creeks in the Gaizhou Beach are analyzed based on high-resolution images fusionof Landsat TM and ERS2, and then the graphic models and characteristics of converse information tree of tidalcreeks in the Gaizhou Beach are established. A calculation model is established based on the above results, and at thesame time, quantitative calculation of the evolution characteristics and the diversity between the northern and thesouthern parts of the Gaizhou Beach is carried out. By the supervised classification of these images, distribution andareas of high tidal flats, middle tidal flats and low tidal flats in the Gaizhou Beach are studied quantitatively, and imagecharactistics of seashell habitats in the Gaizhou Beach and the correlation between mudflat distribution and seashellhabitats are studied. At last, the engineering problems in the Gaizhou Beach are discussed.
文摘Building segmentation from high-resolution synthetic aperture radar (SAR) images has always been one of the important research issues. Due to the existence of speckle noise and multipath effect, the pixel values change drastically, causing the large intensity differences in pixels of building areas. Moreover, the geometric structure of buildings can cause strong scattering spots, which brings difficulties to the segmentation and extraction of buildings. To solve of these problems, this paper presents a coherence-coefficient-based Markov random field (CCMRF) approach for building segmentation from high-resolution SAR images. The method introduces the coherence coefficient of interferometric synthetic aperture radar (InSAR) into the neighborhood energy based on traditional Markov random field (MRF), which makes interferometric and spatial contextual information more fully used in SAR image segmentation. According to the Hammersley-Clifford theorem, the problem of maximum a posteriori (MAP) for image segmentation is transformed into the solution of minimizing the sum of likelihood energy and neighborhood energy. Finally, the iterative condition model (ICM) is used to find the optimal solution. The experimental results demonstrate that the proposed method can segment SAR building effectively and obtain more accurate results than the traditional MRF method and K-means clustering.
基金Under the auspices of Jiangsu Provincial Natural ScienceFoundation(No .BK2002420 )
文摘Nowadays, remote sensing imagery, especially with its high spatialresolution, has become an indispensable tool to provide timely up-gradation of urban land use andland cover information, which is a prerequisite for proper urban planning and management. Thepossible method described in the present paper to obtain urban land use types is based on theprinciple that land use can be derived from the land cover existing in a neighborhood. Here, movingwindow is used to represent the spatial pattern of land cover within a neighborhood and seven windowsizes (61mx61m, 68mx68m, 75mx75m, 87mx87m, 99mx99m, 110mx110m and 121mxl21m) are applied todetermining the most proper window size. Then, the unsupervised method of ISODATA is employed toclassify the layered land cover density maps obtained by the moving window. The results of accuracyevaluation show that the window size of 99mx99m is proper to infer urban land use categories and theproposed method has produced a land use map with a total accuracy of 85%.
文摘This paper aims at providing multi-source remote sensing images registered in geometric space for image fusion.Focusing on the characteristics and differences of multi-source remote sensing images,a feature-based registration algorithm is implemented.The key technologies include image scale-space for implementing multi-scale properties,Harris corner detection for keypoints extraction,and partial intensity invariant feature descriptor(PIIFD)for keypoints description.Eventually,a multi-scale Harris-PIIFD image registration algorithm framework is proposed.The experimental results of fifteen sets of representative real data show that the algorithm has excellent,stable performance in multi-source remote sensing image registration,and can achieve accurate spatial alignment,which has strong practical application value and certain generalization ability.
文摘The automatic registration of multi-source remote sensing images (RSI) is a research hotspot of remote sensing image preprocessing currently. A special automatic image registration module named the Image Autosync has been embedded into the ERDAS IMAGINE software of version 9.0 and above. The registration accuracies of the module verified for the remote sensing images obtained from different platforms or their different spatial resolution. Four tested registration experiments are discussed in this article to analyze the accuracy differences based on the remote sensing data which have different spatial resolution. The impact factors inducing the differences of registration accuracy are also analyzed.
基金National Natural Science Foundation of China(No.41271435)National Natural Science Foundation of China Youth Found(No.41301479)。
文摘It is proposed a high resolution remote sensing image segmentation method which combines static minimum spanning tree(MST)tessellation considering shape information and the RHMRF-FCM algorithm.It solves the problems in the traditional pixel-based HMRF-FCM algorithm in which poor noise resistance and low precision segmentation in a complex boundary exist.By using the MST model and shape information,the object boundary and geometrical noise can be expressed and reduced respectively.Firstly,the static MST tessellation is employed for dividing the image domain into some sub-regions corresponding to the components of homogeneous regions needed to be segmented.Secondly,based on the tessellation results,the RHMRF model is built,and regulation terms considering the KL information and the information entropy are introduced into the FCM objective function.Finally,the partial differential method and Lagrange function are employed to calculate the parameters of the fuzzy objective function for obtaining the global optimal segmentation results.To verify the robustness and effectiveness of the proposed algorithm,the experiments are carried out with WorldView-3(WV-3)high resolution image.The results from proposed method with different parameters and comparing methods(multi-resolution method and watershed segmentation method in eCognition software)are analyzed qualitatively and quantitatively.
文摘The geological data are constructed in vector format in geographical information system (GIS) while other data such as remote sensing images, geographical data and geochemical data are saved in raster ones. This paper converts the vector data into 8 bit images according to their importance to mineralization each by programming. We can communicate the geological meaning with the raster images by this method. The paper also fuses geographical data and geochemical data with the programmed strata data. The result shows that image fusion can express different intensities effectively and visualize the structure characters in 2 dimensions. Furthermore, it also can produce optimized information from multi-source data and express them more directly.
基金supported by the National Natural Science Foundation of China(41701499)the Sichuan Science and Technology Program(2018GZ0265)the Geomatics Technology and Application Key Laboratory of Qinghai Province(QHDX-2018-07)
文摘A large number of debris flow disasters(called Seismic debris flows) would occur after an earthquake, which can cause a great amount of damage. UAV low-altitude remote sensing technology has become a means of quickly obtaining disaster information as it has the advantage of convenience and timeliness, but the spectral information of the image is so scarce, making it difficult to accurately detect the information of earthquake debris flow disasters. Based on the above problems, a seismic debris flow detection method based on transfer learning(TL) mechanism is proposed. On the basis of the constructed seismic debris flow disaster database, the features acquired from the training of the convolutional neural network(CNN) are transferred to the disaster information detection of the seismic debris flow. The automatic detection of earthquake debris flow disaster information is then completed, and the results of object-oriented seismic debris flow disaster information detection are compared and analyzed with the detection results supported by transfer learning.
文摘Automatic road detection, in dense urban areas, is a challenging application in the remote sensing community. This is mainly because of physical and geometrical variations of road pixels, their spectral similarity to other features such as buildings, parking lots and sidewalks, and the obstruction by vehicles and trees. These problems are real obstacles in precise detection and identification of urban roads from high-resolution satellite imagery. One of the promising strategies to deal with this problem is using multi-sensors data to reduce the uncertainties of detection. In this paper, an integrated object-based analysis framework was developed for detecting and extracting various types of urban roads from high-resolution optical images and Lidar data. The proposed method is designed and implemented using a rule-oriented approach based on a masking strategy. The overall accuracy (OA) of the final road map was 89.2%, and the kappa coefficient of agreement was 0.83, which show the efficiency and performance of the method in different conditions and interclass noises. The results also demonstrate the high capability of this object-based method in simultaneous identification of a wide variety of road elements in complex urban areas using both high-resolution satellite images and Lidar data.
文摘High-resolution reconstruction of solar speckle image is one of the important research contents in astronomical image processing. High-resolution image reconstruction based on deep learning can obtain the end-to-end mapping function from low-resolution image to high-resolution image through neural network model learning, which can recover the high-frequency information of the image. However, when used to reconstruct the sun speckle image with single feature, more noise and fuzzy local details, there are some shortcomings such as too smooth edge and easy loss of high-frequency information. In this paper, the structure features of input image and reconstructed image are added to CycleGAN network to get MCycleGAN. High frequency information is obtained from structural features by generator network, and the feature difference is calculated to enhance the ability of network to reconstruct high-frequency information. The edge of the reconstructed image is clearer. Compared with the speckle mask method level 1+ used by Yunnan Observatory, the results show that the proposed algorithm has the advantages of small error, fast reconstruction speed and high image clarity.
基金supported by the National Natural Science Foundation of China(61671469)
文摘Inverse synthetic aperture radar (ISAR) image can be represented and reconstructed by sparse recovery (SR) approaches. However, the existing SR algorithms, which are used for ISAR imaging, have suffered from high computational cost and poor imaging quality under a low signal to noise ratio (SNR) condition. This paper proposes a fast decoupled ISAR imaging method by exploiting the inherent structural sparse information of the targets. Firstly, the ISAR imaging problem is decoupled into two sub-problems. One is range direction imaging and the other is azimuth direction focusing. Secondly, an efficient two-stage SR method is proposed to obtain higher resolution range profiles by using jointly sparse information. Finally, the residual linear Bregman iteration via fast Fourier transforms (RLBI-FFT) is proposed to perform the azimuth focusing on low SNR efficiently. Theoretical analysis and simulation results show that the proposed method has better performence to efficiently implement higher-resolution ISAR imaging under the low SNR condition.
基金The name of the project that funded this article is 13th Five-Year Plan"equipment pre-research project,the number of this project is 30107030803。
文摘In this paper,we proposed a monopulse forward-looking high-resolution imaging algorithm based on adaptive iteration for missile-borne detector.Through iteration,the proposed algorithm automatically selects the echo signal of isolated strong-scattering points from the receiving echo signal data to accurately estimate the actual optimal monopulse response curve(MRC) of the same distance range,and we applied optimal MRC to realize the azimuth self-focusing in the process of imaging.We use real-time echo data to perform error correction for obtaining the optimal MRC,and the azimuth angulation accuracy may reach the optimum at a certain distance dimension.We experimentally demonstrate the validity,reliability and high performance of the proposed algorithm.The azimuth angulation accuracy may reach up to ten times of the detection beam-width.The simulation experiments have verified the feasibility of this strategy,with the average height measurement error being 7.8%.In the out-field unmanned aerial vehicle(UAV) tests,the height measurement error is less than 25 m,and the whole response time can satisfy the requirements of a missile-borne detector.
基金supported by the Key Army Pre-research Projects of China(30107030803)
文摘Aiming at a novel missile-borne detector in the optional burst height proximity fuze, a self-adaptive high-resolution forward-looking imaging algorithm (SAHRFL-IA) is presented. The echo data are captured by the missile-borne detector in the target regions;thereby the azimuth angulation accuracy at the same distance dimension is improved dynamically. Thus, azimuth information of the targets in the detection area may be obtained accurately. The proposed imaging algorithm breaks through the conventional misconception of merely using azimuth discrimination curves under ideal conditions during monopulse angulation. The real-time echo data from the target region are used to perform error correction for this discrimination curve, and finally the accuracy of the azimuth angulation may reach the optimum at the same distance dimension. A series of experiments demonstrate the validity, reliability and high performance of the proposed imaging algorithm. Azimuth angulation accuracy may reach ten times that of the detection beam width. Meanwhile, the running time of this algorithm satisfies the requirements of missile-borne platforms.
文摘AIM:To evaluate a high-resolution functional imaging device that yields quantitative data regarding macular blood flow and capillary network features in eyes with diabetic retinopathy(DR).METHODS:Prospective,cross-sectional comparative case-series in which blood flow velocities(BFVs)and noninvasive capillary perfusion maps(nCPMs)in macular vessels were measured in patients with DR and in healthy controls using the Retinal Functional Imager(RFI)device.RESULTS:A total of 27 eyes of 21 subjects were studied[9 eyes nonproliferative diabetic retinopathy(NPDR),9 eyes proliferative diabetic retinopathy(PDR)and 9 controls].All diabetic patients were type 2.All patients with NPDR and 5 eyes with PDR also had diabetic macular edema(DME).The NPDR group included eyes with severe(n=3)and moderate NPDR(n=6),and were symptomatic.A significant decrease in venular BFVs was observed in the macular region of PDR eyes when compared to controls(2.61±0.6 mm/s and 2.92±0.72 mm/s in PDR and controls,respectively,P=0.019)as well as PDR eyes with DME compared to NPDR eyes(2.36±0.51 mm/s and 2.94±1.09 mm/s in PDR with DME and NPDR,respectively,P=0.01).CONCLUSION:The RFI,a non-invasive imaging tool,provides high-resolution functional imaging of the retinal microvasculature and quantitative measurement of BFVs in visually impaired DR patients.The isolated diminish venular BFVs in PDR eyes compared to healthy eyes and PDR eyes with DME in comparison to NPDR eyes may indicate the possibility of more retinal vein compromise than suspected in advanced DR.