期刊文献+
共找到43,241篇文章
< 1 2 250 >
每页显示 20 50 100
A Railway Fastener Inspection Method Based on Abnormal Sample Generation
1
作者 Shubin Zheng Yue Wang +3 位作者 Liming Li Xieqi Chen Lele Peng Zhanhao Shang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期565-592,共28页
Regular fastener detection is necessary to ensure the safety of railways.However,the number of abnormal fasteners is significantly lower than the number of normal fasteners in real railways.Existing supervised inspect... Regular fastener detection is necessary to ensure the safety of railways.However,the number of abnormal fasteners is significantly lower than the number of normal fasteners in real railways.Existing supervised inspectionmethods have insufficient detection ability in cases of imbalanced samples.To solve this problem,we propose an approach based on deep convolutional neural networks(DCNNs),which consists of three stages:fastener localization,abnormal fastener sample generation based on saliency detection,and fastener state inspection.First,a lightweight YOLOv5s is designed to achieve fast and precise localization of fastener regions.Then,the foreground clip region of a fastener image is extracted by the designed fastener saliency detection network(F-SDNet),combined with data augmentation to generate a large number of abnormal fastener samples and balance the number of abnormal and normal samples.Finally,a fastener inspection model called Fastener ResNet-8 is constructed by being trained with the augmented fastener dataset.Results show the effectiveness of our proposed method in solving the problem of sample imbalance in fastener detection.Qualitative and quantitative comparisons show that the proposed F-SDNet outperforms other state-of-the-art methods in clip region extraction,reaching MAE and max F-measure of 0.0215 and 0.9635,respectively.In addition,the FPS of the fastener state inspection model reached 86.2,and the average accuracy reached 98.7%on 614 augmented fastener test sets and 99.9%on 7505 real fastener datasets. 展开更多
关键词 Railway fastener sample generation inspection model deep learning
下载PDF
Rock mass quality prediction on tunnel faces with incomplete multi-source dataset via tree-augmented naive Bayesian network
2
作者 Hongwei Huang Chen Wu +3 位作者 Mingliang Zhou Jiayao Chen Tianze Han Le Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期323-337,共15页
Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantita... Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantitative parameters.However,due to the harsh on-site construction conditions,it is rather difficult to obtain some of the evaluation parameters which are essential for the rock mass quality prediction.In this study,a novel improved Swin Transformer is proposed to detect,segment,and quantify rock mass characteristic parameters such as water leakage,fractures,weak interlayers.The site experiment results demonstrate that the improved Swin Transformer achieves optimal segmentation results and achieving accuracies of 92%,81%,and 86%for water leakage,fractures,and weak interlayers,respectively.A multisource rock tunnel face characteristic(RTFC)dataset includes 11 parameters for predicting rock mass quality is established.Considering the limitations in predictive performance of incomplete evaluation parameters exist in this dataset,a novel tree-augmented naive Bayesian network(BN)is proposed to address the challenge of the incomplete dataset and achieved a prediction accuracy of 88%.In comparison with other commonly used Machine Learning models the proposed BN-based approach proved an improved performance on predicting the rock mass quality with the incomplete dataset.By utilizing the established BN,a further sensitivity analysis is conducted to quantitatively evaluate the importance of the various parameters,results indicate that the rock strength and fractures parameter exert the most significant influence on rock mass quality. 展开更多
关键词 Rock mass quality Tunnel faces Incomplete multi-source dataset Improved Swin Transformer Bayesian networks
下载PDF
A multi-source information fusion layer counting method for penetration fuze based on TCN-LSTM
3
作者 Yili Wang Changsheng Li Xiaofeng Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期463-474,共12页
When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ... When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ferromagnetic materials,thereby posing challenges in accurately determining the number of layers.To address this issue,this research proposes a layer counting method for penetration fuze that incorporates multi-source information fusion,utilizing both the temporal convolutional network(TCN)and the long short-term memory(LSTM)recurrent network.By leveraging the strengths of these two network structures,the method extracts temporal and high-dimensional features from the multi-source physical field during the penetration process,establishing a relationship between the multi-source physical field and the distance between the fuze and the target plate.A simulation model is developed to simulate the overload and magnetic field of a projectile penetrating multiple layers of target plates,capturing the multi-source physical field signals and their patterns during the penetration process.The analysis reveals that the proposed multi-source fusion layer counting method reduces errors by 60% and 50% compared to single overload layer counting and single magnetic anomaly signal layer counting,respectively.The model's predictive performance is evaluated under various operating conditions,including different ratios of added noise to random sample positions,penetration speeds,and spacing between target plates.The maximum errors in fuze penetration time predicted by the three modes are 0.08 ms,0.12 ms,and 0.16 ms,respectively,confirming the robustness of the proposed model.Moreover,the model's predictions indicate that the fitting degree for large interlayer spacings is superior to that for small interlayer spacings due to the influence of stress waves. 展开更多
关键词 Penetration fuze Temporal convolutional network(TCN) Long short-term memory(LSTM) Layer counting multi-source fusion
下载PDF
Multi-source heterogeneous data access management framework and key technologies for electric power Internet of Things
4
作者 Pengtian Guo Kai Xiao +1 位作者 Xiaohui Wang Daoxing Li 《Global Energy Interconnection》 EI CSCD 2024年第1期94-105,共12页
The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initiall... The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT. 展开更多
关键词 Power Internet of Things Object model High concurrency access Zero trust mechanism multi-source heterogeneous data
下载PDF
Distributed Resource Allocation in Dispersed Computing Environment Based on UAV Track Inspection in Urban Rail Transit
5
作者 Tong Gan Shuo Dong +1 位作者 Shiyou Wang Jiaxin Li 《Computers, Materials & Continua》 SCIE EI 2024年第7期643-660,共18页
With the rapid development of urban rail transit,the existing track detection has some problems such as low efficiency and insufficient detection coverage,so an intelligent and automatic track detectionmethod based on... With the rapid development of urban rail transit,the existing track detection has some problems such as low efficiency and insufficient detection coverage,so an intelligent and automatic track detectionmethod based onUAV is urgently needed to avoid major safety accidents.At the same time,the geographical distribution of IoT devices results in the inefficient use of the significant computing potential held by a large number of devices.As a result,the Dispersed Computing(DCOMP)architecture enables collaborative computing between devices in the Internet of Everything(IoE),promotes low-latency and efficient cross-wide applications,and meets users’growing needs for computing performance and service quality.This paper focuses on examining the resource allocation challenge within a dispersed computing environment that utilizes UAV inspection tracks.Furthermore,the system takes into account both resource constraints and computational constraints and transforms the optimization problem into an energy minimization problem with computational constraints.The Markov Decision Process(MDP)model is employed to capture the connection between the dispersed computing resource allocation strategy and the system environment.Subsequently,a method based on Double Deep Q-Network(DDQN)is introduced to derive the optimal policy.Simultaneously,an experience replay mechanism is implemented to tackle the issue of increasing dimensionality.The experimental simulations validate the efficacy of the method across various scenarios. 展开更多
关键词 UAV track inspection dispersed computing resource allocation deep reinforcement learning Markov decision process
下载PDF
Calibration of CO and CO2 Monitors Used in Periodic Inspection of Vehicles at Fixed Stations for Environmental Control
6
作者 Adel Bassuoni Shehata Abdulrahman Rashed Al Askar +2 位作者 Najjy Hamad Al Yami Abdullah Suleiman Al Owaysi Sultan K. Alharbi 《Green and Sustainable Chemistry》 2024年第2期29-41,共13页
Global efforts for environmental cleanliness through the control of gaseous emissions from vehicles are gaining momentum and attracting increasing attention. Calibration plays a crucial role in these efforts by ensuri... Global efforts for environmental cleanliness through the control of gaseous emissions from vehicles are gaining momentum and attracting increasing attention. Calibration plays a crucial role in these efforts by ensuring the quantitative assessment of emissions for informed decisions on environmental treatments. This paper describes a method for the calibration of CO/CO<sub>2</sub> monitors used for periodic inspections of vehicles in cites. The calibration was performed in the selected ranges: 900 - 12,000 µmol/mol for CO and 2000 - 20,000 µmol/mol for CO<sub>2</sub>. The traceability of the measurement results to the SI units was ensured by using certified reference materials from CO/N<sub>2</sub> and CO<sub>2</sub>/N<sub>2</sub> primary gas mixtures. The method performance was evaluated by assessing its linearity, accuracy, precision, bias, and uncertainty of the calibration results. The calibration data exhibited a strong linear trend with R² values close to 1, indicating an excellent fit between the measured values and the calibration lines. Precision, expressed as relative standard deviation (%RSD), ranged from 0.48 to 4.56% for CO and from 0.97 to 3.53% for CO<sub>2</sub>, staying well below the 5% threshold for reporting results at a 95% confidence level. Accuracy measured as percent recovery, was consistently high (≥ 99.1%) for CO and ranged from 84.90% to 101.54% across the calibration range for CO<sub>2</sub>. In addition, the method exhibited minimal bias for both CO and CO<sub>2</sub> calibrations and thus provided a reliable and accurate approach for calibrating CO/CO<sub>2</sub> monitors used in vehicle inspections. Thus, it ensures the effectiveness of exhaust emission control for better environment. 展开更多
关键词 MONITORS Periodic inspection CO/CO2 Calibration LINEARITY Precision Accuracy
下载PDF
Automatic Road Tunnel Crack Inspection Based on Crack Area Sensing and Multiscale Semantic Segmentation
7
作者 Dingping Chen Zhiheng Zhu +1 位作者 Jinyang Fu Jilin He 《Computers, Materials & Continua》 SCIE EI 2024年第4期1679-1703,共25页
The detection of crack defects on the walls of road tunnels is a crucial step in the process of ensuring travel safetyand performing routine tunnel maintenance. The automatic and accurate detection of cracks on the su... The detection of crack defects on the walls of road tunnels is a crucial step in the process of ensuring travel safetyand performing routine tunnel maintenance. The automatic and accurate detection of cracks on the surface of roadtunnels is the key to improving the maintenance efficiency of road tunnels. Machine vision technology combinedwith a deep neural network model is an effective means to realize the localization and identification of crackdefects on the surface of road tunnels.We propose a complete set of automatic inspection methods for identifyingcracks on the walls of road tunnels as a solution to the problem of difficulty in identifying cracks during manualmaintenance. First, a set of equipment applied to the real-time acquisition of high-definition images of walls inroad tunnels is designed. Images of walls in road tunnels are acquired based on the designed equipment, whereimages containing crack defects are manually identified and selected. Subsequently, the training and validationsets used to construct the crack inspection model are obtained based on the acquired images, whereas the regionscontaining cracks and the pixels of the cracks are finely labeled. After that, a crack area sensing module is designedbased on the proposed you only look once version 7 model combined with coordinate attention mechanism (CAYOLOV7) network to locate the crack regions in the road tunnel surface images. Only subimages containingcracks are acquired and sent to the multiscale semantic segmentation module for extraction of the pixels to whichthe cracks belong based on the DeepLab V3+ network. The precision and recall of the crack region localizationon the surface of a road tunnel based on our proposed method are 82.4% and 93.8%, respectively. Moreover, themean intersection over union (MIoU) and pixel accuracy (PA) values for achieving pixel-level detection accuracyare 76.84% and 78.29%, respectively. The experimental results on the dataset show that our proposed two-stagedetection method outperforms other state-of-the-art models in crack region localization and detection. Based onour proposedmethod, the images captured on the surface of a road tunnel can complete crack detection at a speed often frames/second, and the detection accuracy can reach 0.25 mm, which meets the requirements for maintenanceof an actual project. The designed CA-YOLO V7 network enables precise localization of the area to which a crackbelongs in images acquired under different environmental and lighting conditions in road tunnels. The improvedDeepLab V3+ network based on lightweighting is able to extract crack morphology in a given region more quicklywhile maintaining segmentation accuracy. The established model combines defect localization and segmentationmodels for the first time, realizing pixel-level defect localization and extraction on the surface of road tunnelsin complex environments, and is capable of determining the actual size of cracks based on the physical coordinatesystemafter camera calibration. The trainedmodelhas highaccuracy andcanbe extendedandapplied to embeddedcomputing devices for the assessment and repair of damaged areas in different types of road tunnels. 展开更多
关键词 Road tunnel crack inspection crack area sensing multiscale semantic segmentation CA-YOLO V7 DeepLab V3+
下载PDF
Runout prediction of potential landslides based on the multi-source data collaboration analysis on historical cases
8
作者 Jun Sun Yu Zhuang Ai-guo Xing 《China Geology》 CAS CSCD 2024年第2期264-276,共13页
Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to pred... Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters.This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events.Specifically,for the historical landslide cases,the landslide-induced seismic signal,geophysical surveys,and possible in-situ drone/phone videos(multi-source data collaboration)can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical(rheological)parameters.Subsequently,the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events.Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou,China gives reasonable results in comparison to the field observations.The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region(2019 Shuicheng landslide).The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide. 展开更多
关键词 Landslide runout prediction Drone survey multi-source data collaboration DAN3D numerical modeling Jianshanying landslide Guizhou Province Geological hazards survey engineering
下载PDF
High-speed railway track components inspection framework based on YOLOv8 with high-performance model deployment
9
作者 Youzhi Tang Yu Qian 《High-Speed Railway》 2024年第1期42-50,共9页
Railway inspection poses significant challenges due to the extensive use of various components in vast railway networks,especially in the case of high-speed railways.These networks demand high maintenance but offer on... Railway inspection poses significant challenges due to the extensive use of various components in vast railway networks,especially in the case of high-speed railways.These networks demand high maintenance but offer only limited inspection windows.In response,this study focuses on developing a high-performance rail inspection system tailored for high-speed railways and railroads with constrained inspection timeframes.This system leverages the latest artificial intelligence advancements,incorporating YOLOv8 for detection.Our research introduces an efficient model inference pipeline based on a producer-consumer model,effectively utilizing parallel processing and concurrent computing to enhance performance.The deployment of this pipeline,implemented using C++,TensorRT,float16 quantization,and oneTBB,represents a significant departure from traditional sequential processing methods.The results are remarkable,showcasing a substantial increase in processing speed:from 38.93 Frames Per Second(FPS)to 281.06 FPS on a desktop system equipped with an Nvidia RTX A6000 GPU and from 19.50 FPS to 200.26 FPS on the Nvidia Jetson AGX Orin edge computing platform.This proposed framework has the potential to meet the real-time inspection requirements of high-speed railways. 展开更多
关键词 High-speed railway Track inspection Computer vision Deep learning Edge computing Real-time decision making
下载PDF
A path planning method for robot patrol inspection in chemical industrial parks
10
作者 王伟峰 YANG Ze +1 位作者 LI Zhao ZHAO Xuanchong 《High Technology Letters》 EI CAS 2024年第2期109-116,共8页
Safety patrol inspection in chemical industrial parks is a complex multi-objective task with multiple degrees of freedom.Traditional pointer instruments with advantages like high reliability and strong adaptability to... Safety patrol inspection in chemical industrial parks is a complex multi-objective task with multiple degrees of freedom.Traditional pointer instruments with advantages like high reliability and strong adaptability to harsh environment,are widely applied in such parks.However,they rely on manual readings which have problems like heavy patrol workload,high labor cost,high false positives/negatives and poor timeliness.To address the above problems,this study proposes a path planning method for robot patrol in chemical industrial parks,where a path optimization model based on improved iterated local search and random variable neighborhood descent(ILS-RVND)algorithm is established by integrating the actual requirements of patrol tasks in chemical industrial parks.Further,the effectiveness of the model and algorithm is verified by taking real park data as an example.The results show that compared with GA and ILS-RVND,the improved algorithm reduces quantification cost by about 24%and saves patrol time by about 36%.Apart from shortening the patrol time of robots,optimizing their patrol path and reducing their maintenance loss,the proposed algorithm also avoids the untimely patrol of robots and enhances the safety factor of equipment. 展开更多
关键词 path planning robot patrol inspection iterated local search and random variableneighborhood descent(ILS-RVND)algorithm
下载PDF
From manual to automated fabric inspection
11
《China Textile》 2024年第2期40-41,共2页
Uster,Switzerland,28th March 2024–Uster Technologies offers a flexible solution to upgrade fabric inspection from manual to automated.Integration in existing production lines is quick and easy,and the data flow also ... Uster,Switzerland,28th March 2024–Uster Technologies offers a flexible solution to upgrade fabric inspection from manual to automated.Integration in existing production lines is quick and easy,and the data flow also brings extra benefits.It means fabric producers can significantly improve their yield with fast,accurate quality monitoring. 展开更多
关键词 USTER inspection FABRIC
下载PDF
Analysis of the Application of Bridge Rapid Inspection and Evaluation Technology
12
作者 Jiang Feng Qing Yang 《Journal of Architectural Research and Development》 2024年第1期49-55,共7页
Rapid bridge inspection and evaluation mainly uses information technology to test the quality of bridge infrastructure and structures,integrates the test results with the existing management system,completes the bridg... Rapid bridge inspection and evaluation mainly uses information technology to test the quality of bridge infrastructure and structures,integrates the test results with the existing management system,completes the bridge status assessment,establishes information management files to provide bridge disease problem inspection and analysis,and provides support for the application of disposal measures.This paper briefly discusses the necessity of applying rapid inspection and evaluation technology and analyzes the bridge’s rapid inspection and evaluation content,inspection system,and application process.We look forward to the future application prospects of this technology and supporting those in this field. 展开更多
关键词 BRIDGE Rapid inspection EVALUATION INFORMATIZATION
下载PDF
Defect Inspection Technology for Steel Truss Suspension Bridges
13
作者 Bo Liu Xu Meng +1 位作者 Ji Li Zhi Tu 《Journal of World Architecture》 2024年第2期12-16,共5页
Steel truss suspension bridges are prone to developing defects after prolonged use.These defects may include corrosion of the main cable or the steel truss.To ensure the normal and safe functioning of the suspension b... Steel truss suspension bridges are prone to developing defects after prolonged use.These defects may include corrosion of the main cable or the steel truss.To ensure the normal and safe functioning of the suspension bridge,it is necessary to inspect for defects promptly,understand the cause of the defect,and locate it through the use of inspection technology.By promptly addressing defects,the suspension bridge’s safety can be ensured.The author has analyzed the common defects and causes of steel truss suspension bridges and proposed specific inspection technologies.This research is intended to aid in the timely discovery of steel truss suspension bridge defects. 展开更多
关键词 Steel truss suspension bridge DEFECT inspection technology
下载PDF
Surface form inspection with contact coordinate measurement:a review 被引量:3
14
作者 Yijun Shen Jieji Ren +3 位作者 Nuodi Huang Yang Zhang Xinquan Zhang Limin Zhu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第2期119-147,共29页
Parts with high-quality freeform surfaces have been widely used in industries,which require strict quality control during the manufacturing process.Among all the industrial inspection methods,contact measurement with ... Parts with high-quality freeform surfaces have been widely used in industries,which require strict quality control during the manufacturing process.Among all the industrial inspection methods,contact measurement with coordinate measuring machines or computer numerical control machine tool is a fundamental technique due to its high accuracy,robustness,and universality.In this paper,the existing research in the contact measurement field is systematically reviewed.First,different configurations of the measuring machines are introduced in detail,which may have influence on the corresponding sampling and inspection path generation criteria.Then,the entire inspection pipeline is divided into two stages,namely the pre-inspection and post-inspection stages.The typical methods of each sub-stage are systematically overviewed and classified,including sampling,accessibility analysis,inspection path generation,probe tip radius compensation,surface reconstruction,and uncertainty analysis.Apart from those classical research,the applications of the emerging deep learning technique in some specific tasks of measurement are introduced.Furthermore,some potential and promising trends are provided for future investigation. 展开更多
关键词 freeform surface form inspection contact measurement coordinate measurement on-machine inspection
下载PDF
Multi-source Data-driven Identification of Urban Functional Areas:A Case of Shenyang,China 被引量:3
15
作者 XUE Bing XIAO Xiao +2 位作者 LI Jingzhong ZHAO Bingyu FU Bo 《Chinese Geographical Science》 SCIE CSCD 2023年第1期21-35,共15页
Urban functional area(UFA)is a core scientific issue affecting urban sustainability.The current knowledge gap is mainly reflected in the lack of multi-scale quantitative interpretation methods from the perspective of ... Urban functional area(UFA)is a core scientific issue affecting urban sustainability.The current knowledge gap is mainly reflected in the lack of multi-scale quantitative interpretation methods from the perspective of human-land interaction.In this paper,based on multi-source big data include 250 m×250 m resolution cell phone data,1.81×105 Points of Interest(POI)data and administrative boundary data,we built a UFA identification method and demonstrated empirically in Shenyang City,China.We argue that the method we built can effectively identify multi-scale multi-type UFAs based on human activity and further reveal the spatial correlation between urban facilities and human activity.The empirical study suggests that the employment functional zones in Shenyang City are more concentrated in central cities than other single functional zones.There are more mix functional areas in the central city areas,while the planned industrial new cities need to develop comprehensive functions in Shenyang.UFAs have scale effects and human-land interaction patterns.We suggest that city decision makers should apply multi-sources big data to measure urban functional service in a more refined manner from a supply-demand perspective. 展开更多
关键词 human-land relationship multi-source big data urban functional area identification method Shenyang City
下载PDF
Multi-Source Data Privacy Protection Method Based on Homomorphic Encryption and Blockchain 被引量:2
16
作者 Ze Xu Sanxing Cao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第7期861-881,共21页
Multi-Source data plays an important role in the evolution of media convergence.Its fusion processing enables the further mining of data and utilization of data value and broadens the path for the sharing and dissemin... Multi-Source data plays an important role in the evolution of media convergence.Its fusion processing enables the further mining of data and utilization of data value and broadens the path for the sharing and dissemination of media data.However,it also faces serious problems in terms of protecting user and data privacy.Many privacy protectionmethods have been proposed to solve the problemof privacy leakage during the process of data sharing,but they suffer fromtwo flaws:1)the lack of algorithmic frameworks for specific scenarios such as dynamic datasets in the media domain;2)the inability to solve the problem of the high computational complexity of ciphertext in multi-source data privacy protection,resulting in long encryption and decryption times.In this paper,we propose a multi-source data privacy protection method based on homomorphic encryption and blockchain technology,which solves the privacy protection problem ofmulti-source heterogeneous data in the dissemination ofmedia and reduces ciphertext processing time.We deployed the proposedmethod on theHyperledger platformfor testing and compared it with the privacy protection schemes based on k-anonymity and differential privacy.The experimental results showthat the key generation,encryption,and decryption times of the proposedmethod are lower than those in data privacy protection methods based on k-anonymity technology and differential privacy technology.This significantly reduces the processing time ofmulti-source data,which gives it potential for use in many applications. 展开更多
关键词 Homomorphic encryption blockchain technology multi-source data data privacy protection privacy data processing
下载PDF
Low-Cost Real-Time Automated Optical Inspection Using Deep Learning and Attention Map
17
作者 Yu Shih Chien-Chih Kuo Ching-Hung Lee 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期2087-2099,共13页
The recent trends in Industry 4.0 and Internet of Things have encour-aged many factory managers to improve inspection processes to achieve automa-tion and high detection rates.However,the corresponding cost results of... The recent trends in Industry 4.0 and Internet of Things have encour-aged many factory managers to improve inspection processes to achieve automa-tion and high detection rates.However,the corresponding cost results of sample tests are still used for quality control.A low-cost automated optical inspection system that can be integrated with production lines to fully inspect products with-out adjustments is introduced herein.The corresponding mechanism design enables each product to maintain afixed position and orientation during inspec-tion to accelerate the inspection process.The proposed system combines image recognition and deep learning to measure the dimensions of the thread and iden-tify its defects within 20 s,which is lower than the production-line productivity per 30 s.In addition,the system is designed to be used for monitoring production lines and equipment status.The dimensional tolerance of the proposed system reaches 0.012 mm,and a 100%accuracy is achieved in terms of the defect reso-lution.In addition,an attention-based visualization approach is utilized to verify the rationale for the use of the convolutional neural network model and identify the location of thread defects. 展开更多
关键词 Automated optical inspection deep learning real-time inspection ATTENTION
下载PDF
Recent trends of machine learning applied to multi-source data of medicinal plants
18
作者 Yanying Zhang Yuanzhong Wang 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2023年第12期1388-1407,共20页
In traditional medicine and ethnomedicine,medicinal plants have long been recognized as the basis for materials in therapeutic applications worldwide.In particular,the remarkable curative effect of traditional Chinese... In traditional medicine and ethnomedicine,medicinal plants have long been recognized as the basis for materials in therapeutic applications worldwide.In particular,the remarkable curative effect of traditional Chinese medicine during corona virus disease 2019(COVID-19)pandemic has attracted extensive attention globally.Medicinal plants have,therefore,become increasingly popular among the public.However,with increasing demand for and profit with medicinal plants,commercial fraudulent events such as adulteration or counterfeits sometimes occur,which poses a serious threat to the clinical outcomes and interests of consumers.With rapid advances in artificial intelligence,machine learning can be used to mine information on various medicinal plants to establish an ideal resource database.We herein present a review that mainly introduces common machine learning algorithms and discusses their application in multi-source data analysis of medicinal plants.The combination of machine learning algorithms and multi-source data analysis facilitates a comprehensive analysis and aids in the effective evaluation of the quality of medicinal plants.The findings of this review provide new possibilities for promoting the development and utilization of medicinal plants. 展开更多
关键词 Machine learning Medicinal plant multi-source data Data fusion Application
下载PDF
Automated X-ray Defect Inspection on Occluded BGA Balls Using Hybrid Algorithm
19
作者 Ki-Yeol Eom Byungseok Min 《Computers, Materials & Continua》 SCIE EI 2023年第6期6337-6350,共14页
Automated X-ray defect inspection of occluded objects has been an essential topic in semiconductors,autonomous vehicles,and artificial intelligence devices.However,there are few solutions to segment occluded objects i... Automated X-ray defect inspection of occluded objects has been an essential topic in semiconductors,autonomous vehicles,and artificial intelligence devices.However,there are few solutions to segment occluded objects in the X-ray inspection efficiently.In particular,in the Ball Grid Array inspection of X-ray images,it is difficult to accurately segment the regions of occluded solder balls and detect defects inside solder balls.In this paper,we present a novel automatic inspection algorithm that segments solder balls,and detects defects fast and efficiently when solder balls are occluded.The proposed algorithm consists of two stages.In the first stage,the defective candidates or defects are determined through the following four steps:(i)image preprocessing such as noise removal,contrast enhancement,binarization,connected component,and morphology,(ii)limiting the inspec-tion area to the ball regions and determining if the ball regions are occluded,(iii)segmenting each ball region into one or more regions with similar gray values,and(iv)determining whether there are defects or defective candidates in the regions using a weighted sum of local threshold on local variance.If there are defective candidates,the determination of defects is finally made in the following stage.In the second stage,defects are detected using the automated inspection technique based on oblique computed tomography.The 3D precision inspection process is divided into four steps:(i)obtaining 360 projection images(one image per degree)rotating the object from 0 to 360 degrees,(ii)reconstructing a 3D image from the 360 projected images,(iii)finding the center slice of gravity for solder balls from the axial slice images in the z-direction,and getting the inspection intervals between the upper bound and the lower bound from the center slice,and(iv)finally determining whether there are defects in the averaged image of solder balls.The proposed hybrid algorithm is robust for segmenting the defects inside occluded solder balls,and improves the performance of solder ball segmentation and defect detection algorithm.Experimental results show an accuracy of more than 97%. 展开更多
关键词 HYBRID voids BGA X-ray inspection DEFECTS
下载PDF
Defect inspection of indoor components in buildings using deep learning object detection and augmented reality
20
作者 Shun-Hsiang Hsu Ho-Tin Hung +1 位作者 Yu-Qi Lin Chia-Ming Chang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第1期41-54,共14页
Visual inspection is commonly adopted for building operation,maintenance,and safety.The durability and defects of components or materials in buildings can be quickly assessed through visual inspection.However,implemen... Visual inspection is commonly adopted for building operation,maintenance,and safety.The durability and defects of components or materials in buildings can be quickly assessed through visual inspection.However,implementations of visual inspection are substantially time-consuming,labor-intensive,and error-prone because useful auxiliary tools that can instantly highlight defects or damage locations from images are not available.Therefore,an advanced building inspection framework is developed and implemented with augmented reality(AR)and real-time damage detection in this study.In this framework,engineers should walk around and film every corner of the building interior to generate the three-dimensional(3D)environment through ARKit.Meanwhile,a trained YOLOv5 model real-time detects defects during this process,even in a large-scale field,and the defect locations indicating the detected defects are then marked in this 3D environment.The defects areas can be measured with centimeter-level accuracy with the light detection and ranging(LiDAR)on devices.All required damage information,including defect positions and sizes,is collected at a time and can be rendered in the 2D and 3D views.Finally,this visual inspection can be efficiently conducted,and the previously generated environment can also be loaded to re-localize existing defect marks for future maintenance and change observation.Moreover,the proposed framework is also implemented and verified by an underground parking lot in a building to detect and quantify surface defects on concrete components.As seen in the results,the conventional building inspection is significantly improved with the aid of the proposed framework in terms of damage localization,damage quantification,and inspection efficiency. 展开更多
关键词 visual inspection damage detection augmented reality damage quantification deep learning
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部