In this study, the problem of measuring noise pollution distribution by the intertial-based integrated navigation system is effectively suppressed. Based on nonlinear inertial navigation error modeling, a nested dual ...In this study, the problem of measuring noise pollution distribution by the intertial-based integrated navigation system is effectively suppressed. Based on nonlinear inertial navigation error modeling, a nested dual Kalman filter framework structure is developed. It consists of unscented Kalman filter (UKF)master filter and Kalman filter slave filter. This method uses nonlinear UKF for integrated navigation state estimation. At the same time, the exact noise measurement covariance is estimated by the Kalman filter dependency filter. The algorithm based on dual adaptive UKF (Dual-AUKF) has high accuracy and robustness, especially in the case of measurement information interference. Finally, vehicle-mounted and ship-mounted integrated navigation tests are conducted. Compared with traditional UKF and the Sage-Husa adaptive UKF (SH-AUKF), this method has comparable filtering accuracy and better filtering stability. The effectiveness of the proposed algorithm is verified.展开更多
With the rapid development of autopilot technology,a variety of engi-neering applications require higher and higher requirements for navigation and positioning accuracy,as well as the error range should reach centimet...With the rapid development of autopilot technology,a variety of engi-neering applications require higher and higher requirements for navigation and positioning accuracy,as well as the error range should reach centimeter level.Single navigation systems such as the inertial navigation system(INS)and the global navigation satellite system(GNSS)cannot meet the navigation require-ments in many cases of high mobility and complex environments.For the purpose of improving the accuracy of INS-GNSS integrated navigation system,an INS-GNSS integrated navigation algorithm based on TransGAN is proposed.First of all,the GNSS data in the actual test process is applied to establish the data set.Secondly,the generator and discriminator are constructed.Borrowing the model structure of generator transformer,the generator is constructed by multi-layer transformer encoder,which can obtain a wider data perception ability.The generator and discriminator are trained and optimized by the production countermeasure network,so as to realize the speed and position error compensa-tion of INS.Consequently,when GNSS works normally,TransGAN is trained into a high-precision prediction model using INS-GNSS data.The trained Trans-GAN model is emoloyed to compensate the speed and position errors for INS.Through the test analysis offlight test data,the test results are compared with the performance of traditional multi-layer perceptron(MLP)and fuzzy wavelet neural network(WNN),demonstrating that TransGAN can effectively correct the speed and position information when GNSS is interrupted,with the high accuracy.展开更多
This paper deals with the research of the GPS/INS integrated navigation system applying Extended Kalman Filter, which involves integrated principles, scheme and technology of combining with real INS and GPS receiver d...This paper deals with the research of the GPS/INS integrated navigation system applying Extended Kalman Filter, which involves integrated principles, scheme and technology of combining with real INS and GPS receiver data. Emphases are placed on the modeling of system errors and implementation of the integrated system. Both loose and tightly coupled GPS/INS integrated in schemes are analyzed. On the basis of our experience accumulated in the research of GPS/INS for many years, the GPS/INS integrated navigation developing system is developed. It can be put into efficient and economic use in the study and design of integrated navigation system. It plays an important role in the aeronautical and astronautical fields in China. This system is not only a computer aided design software but also a semi physical simulation system by obtaining real INS and GPS receiver data. So the key software unit of the developing system could be conveniently transferred into practical engineering software in actual hardware integrated system. The application of this system shows that the design ideas and integrated scheme of this development system are successful, and can achieve good navigation result.展开更多
To improve the navigation accuracy of an autonomous underwater vehicle (AUV), a novel terrain passive integrated navigation system (TPINS) is presented. According to the characteristics of the underwater environme...To improve the navigation accuracy of an autonomous underwater vehicle (AUV), a novel terrain passive integrated navigation system (TPINS) is presented. According to the characteristics of the underwater environment and AUV navigation requirements of low cost and high accuracy, a novel TPINS is designed with a configuration of the strapdown inertial navigation system (SINS), the terrain reference navigation system (TRNS), the Doppler velocity sonar (DVS), the magnetic compass and the navigation computer utilizing the unscented Kalman filter (UKF) to fuse the navigation information from various navigation sensors. Linear filter equations for the extended Kalman filter (EKF), nonlinear filter equations for the UKF and measurement equations of navigation sensors are addressed. It is indicated from the comparable simulation experiments of the EKF and the UKF that AUV navigation precision is improved substantially with the proposed sensors and the UKF when compared to the EKF. The TPINS designed with the proposed sensors and the UKF is effective in reducing AUV navigation position errors and improving the stability and precision of the AUV underwater integrated navigation.展开更多
Aiming at the problem of poor observability of measurement information in the loosely-coupled integration of the inertial navigation system (INS) and the wireless sensor network (WSN), this paper presents a tightl...Aiming at the problem of poor observability of measurement information in the loosely-coupled integration of the inertial navigation system (INS) and the wireless sensor network (WSN), this paper presents a tightly-coupled integration based on the Kalman filter (KF). When the WSN is available, the difference between the distances from the blind node(BN) to the reference nodes (RNs) measured by the INS and those measured by the WSN are used as measurement information for the KF due to its better observability and independence, which can effectively improve the accuracy of the KF. Simulations show that the proposed approach reduces the mean error of the position by about 50% compared with loosely-coupled integration, while the mean error of the velocity is a little higher than that of loosely-coupled integration.展开更多
A new nonlinear algorithm is proposed for strapdown inertial navigation system (SINS)/celestial navigation system (CNS)/global positioning system (GPS) integrated navigation systems. The algorithm employs a nonl...A new nonlinear algorithm is proposed for strapdown inertial navigation system (SINS)/celestial navigation system (CNS)/global positioning system (GPS) integrated navigation systems. The algorithm employs a nonlinear system error model which can be modified by unscented Kalman filter (UKF) to give predictions of local filters. And these predictions can be fused by the federated Kalman filter. In the system error model, the rotation vector is introduced to denote vehicle's attitude and has less variables than the quaternion. Also, the UKF method is simplified to estimate the system error model, which can both lead to less calculation and reduce algorithm implement time. In the information fusion section, a modified federated Kalman filter is proposed to solve the singular covariance problem. Specifically, the new algorithm is applied to maneuvering vehicles, and simulation results show that this algorithm is more accurate than the linear integrated navigation algorithm.展开更多
A marine INS/GPS adaptive navigation system is presented. GPS with two antenna providing vessel' s altitude is selected as the auxiliary system fusing with INS to improve the performance of the hybrid system. The Kal...A marine INS/GPS adaptive navigation system is presented. GPS with two antenna providing vessel' s altitude is selected as the auxiliary system fusing with INS to improve the performance of the hybrid system. The Kalman filter is the most frequently used algorithm in the integrated navigation system, which is capable of estimating INS errors online based on the measured errors between INS and GPS. The standard Kalman filter (SKF) assumes that the statistics of the noise on each sensor are given. As long as the noise distributions do not change, the Kalman filter will give the optimal estimation. However GPS receiver will be disturbed easily and thus temporally changing measurement noise will join into the outputs of GPS, which will lead to performance degradation of the Kalman filter. Many researchers introduce fuzzy logic control method into innovation-based adaptive estimation adaptive Kalman filtering (IAE-AKF) algorithm, and accordingly propose various adaptive Kalman filters. However how to design the fuzzy logic controller is a very complicated problem still without a convincing solution. A novel IAE-AKF is proposed herein, which is based on the maximum likelihood criterion for the proper computation of the filter innovation covariance and hence of the filter gain. The approach is direct and simple without having to establish fuzzy inference rules. After having deduced the proposed IAEAKF algorithm theoretically in detail, the approach is tested by the simulation based on the system error model of the developed INS/GPS integrated marine navigation system. Simulation results show that the adaptive Kalman filter outperforms the SKF with higher accuracy, robustness and less computation. It is demonstra- ted that this proposed approach is a valid solution for the unknown changing measurement noise exited in the Kalman filter.展开更多
Strapdown inertial navigation system(SINS)/celestial navigation system(CNS)integrated navigation is widely used to achieve long-time and high-precision autonomous navigation for aircraft.In general,SINS/CNS integrated...Strapdown inertial navigation system(SINS)/celestial navigation system(CNS)integrated navigation is widely used to achieve long-time and high-precision autonomous navigation for aircraft.In general,SINS/CNS integrated navigation can be divided into two integrated modes:loosely coupled integrated navigation and tightly coupled integrated navigation.Because the loosely coupled SINS/CNS integrated system is only available in the condition of at least three stars,the latter one is becoming a research hotspot.One major challenge of SINS/CNS integrated navigation is obtaining a high-precision horizon reference.To solve this problem,an innovative tightly coupled rotational SINS/CNS integrated navigation method is proposed.In this method,the rotational SINS error equation in the navigation frame is used as the state model,and the starlight vector and star altitude are used as measurements.Semi-physical simulations are conducted to test the performance of this integrated method.Results show that this tightly coupled rotational SINS/CNS method has the best navigation accuracy compared with SINS,rotational SINS,and traditional tightly coupled SINS/CNS integrated navigation method.展开更多
In detecting system fault algorithms,the false alarm rate and undectect rate generated by residual Chi-square test can affect the stability of filters.The paper proposes a fault detection algorithm based on sequential...In detecting system fault algorithms,the false alarm rate and undectect rate generated by residual Chi-square test can affect the stability of filters.The paper proposes a fault detection algorithm based on sequential residual Chi-square test and applies to fault detection of an integrated navigation system.The simulation result shows that the algorithm can accurately detect the fault information of global positioning system(GPS),eliminate the influence of false alarm and missed detection on filter,and enhance fault tolerance of integrated navigation systems.展开更多
In view of the failure of GNSS signals,this paper proposes an INS/GNSS integrated navigation method based on the recurrent neural network(RNN).This proposed method utilizes the calculation principle of INS and the mem...In view of the failure of GNSS signals,this paper proposes an INS/GNSS integrated navigation method based on the recurrent neural network(RNN).This proposed method utilizes the calculation principle of INS and the memory function of the RNN to estimate the errors of the INS,thereby obtaining a continuous,reliable and high-precision navigation solution.The performance of the proposed method is firstly demonstrated using an INS/GNSS simulation environment.Subsequently,an experimental test on boat is also conducted to validate the performance of the method.The results show a promising application prospect for RNN in the field of positioning for INS/GNSS integrated navigation in the absence of GNSS signal,as it outperforms extreme learning machine(ELM)and EKF by approximately 30%and 60%,respectively.展开更多
In order to take full advantage of federated filter in fault-tolerant design of integrated navigation system, the limitation of fault detection algorithm for gradual changing fault detection and the poor fault toleran...In order to take full advantage of federated filter in fault-tolerant design of integrated navigation system, the limitation of fault detection algorithm for gradual changing fault detection and the poor fault tolerance of global optimal fusion algorithm are the key problems to deal with. Based on theoretical analysis of the influencing factors of federated filtering fault tolerance, global fault-tolerant fusion algorithm and information sharing algorithm are proposed based on fuzzy assessment. It achieves intelligent fault-tolerant structure with two-stage and feedback, including real-time fault detection in sub-filters, and fault-tolerant fusion and information sharing in main filter. The simulation results demonstrate that the algorithm can effectively improve fault-tolerant ability and ensure relatively high positioning precision of integrated navigation system when a subsystem having gradual changing fault.展开更多
The IMU(inertial measurement unit) error equations in the earth fixed coordinates are introduced firstly. A fading Kalman filtering is simply introduced and its shortcomings are analyzed, then an adaptive filtering ...The IMU(inertial measurement unit) error equations in the earth fixed coordinates are introduced firstly. A fading Kalman filtering is simply introduced and its shortcomings are analyzed, then an adaptive filtering is applied in IMU/GPS integrated navigation system, in which the adaptive factor is replaced by the fading factor. A practical example is given. The resuits prove that the adaptive filter combined with the fading factor is valid and reliable when applied in IMU/GPS integrated navigation system.展开更多
This paper explores multiple model adaptive estimation(MMAE) method, and with it, proposes a novel filtering algorithm. The proposed algorithm is an improved Kalman filter— multiple model adaptive estimation unscente...This paper explores multiple model adaptive estimation(MMAE) method, and with it, proposes a novel filtering algorithm. The proposed algorithm is an improved Kalman filter— multiple model adaptive estimation unscented Kalman filter(MMAE-UKF) rather than conventional Kalman filter methods,like the extended Kalman filter(EKF) and the unscented Kalman filter(UKF). UKF is used as a subfilter to obtain the system state estimate in the MMAE method. Single model filter has poor adaptability with uncertain or unknown system parameters,which the improved filtering method can overcome. Meanwhile,this algorithm is used for integrated navigation system of strapdown inertial navigation system(SINS) and celestial navigation system(CNS) by a ballistic missile's motion. The simulation results indicate that the proposed filtering algorithm has better navigation precision, can achieve optimal estimation of system state, and can be more flexible at the cost of increased computational burden.展开更多
The principles of the SINS/DVL integrated navigation system are introduced, and the compass status accuracy is compared. When the heading is changed, the dead reckoning algorithm using the heading information of the S...The principles of the SINS/DVL integrated navigation system are introduced, and the compass status accuracy is compared. When the heading is changed, the dead reckoning algorithm using the heading information of the SINS (Strapdown inertial navigation systems) and DVL (doppler velocity log) is adopted to substitute the SINS/DVL integrated system. The simulation results show that the method can improve the accuracy of integrated navigation system when AUV (autonomous underwater vehicle) is in motion.展开更多
Aiming at the problem that the traditional Unscented Kalman Filtering(UKF) algorithm can't solve the problem that the measurement covariance matrix is unknown and the measured value contains outliers,this paper pr...Aiming at the problem that the traditional Unscented Kalman Filtering(UKF) algorithm can't solve the problem that the measurement covariance matrix is unknown and the measured value contains outliers,this paper proposes a robust adaptive UKF algorithm based on Support Vector Regression(SVR).The algorithm combines the advantages of support vector regression with small samples,nonlinear learning ability and online estimation capability of adaptive algorithm based on innovation.Firstly,the SVR model is trained by using the innovation in the sliding window,and the new innovation is monitored.If the deviation between the estimated innovation and the measured innovation exceeds a given threshold,then measured innovation will be replaced by the predicted innovation,and then the processed innovation is used to calculate the measurement noise covariance matrix using the adaptive estimation algorithm.Simulation experiments and measured data experiments show that SVRUKF is significantly better than the traditional UKF,robust UKF and adaptive UKF algorithms for the case where the covariance matrix is unknown and the measured values have outliers.展开更多
For the underwater integrated navigation system, information fusion is an important technology. This paper introduces the Kalman filter as the most useful information fusion technology, and then gives a summary of the...For the underwater integrated navigation system, information fusion is an important technology. This paper introduces the Kalman filter as the most useful information fusion technology, and then gives a summary of the Kalman filter applied in underwater integrated navigation system at present, and points out the further research directions in this field.展开更多
GPS (Global Positioning System) has been widely used in car navigation systems. Most car navigation systems estimate the car position from GPS and DR (dead reckoning). However, the unknown GPS noise characteristic and...GPS (Global Positioning System) has been widely used in car navigation systems. Most car navigation systems estimate the car position from GPS and DR (dead reckoning). However, the unknown GPS noise characteristic and the unbounded DR accumulation of errors over time make the position information with undesirable position errors. The map matching can improve the position accuracy and availability of the vehicular position system. In this paper, general principle of map matching is investigated according to segmentation and feature extraction, and a map matching algorithm based on D-S (Dempster-Shafer) evidence reasoning for GPS integrated navigation system is proposed, which can find the exact road on which a car moves. For the experiments, a car navigation system is developed with some sensors and the field test demonstrates the effectiveness and applicability of the algorithm for the car location and navigation.展开更多
Inertial/gravity matching integrated navigation system can effectively improve the longendurance navigation ability of underwater vehicles.Through the analysis of the matching process,the problem of unequal-interval i...Inertial/gravity matching integrated navigation system can effectively improve the longendurance navigation ability of underwater vehicles.Through the analysis of the matching process,the problem of unequal-interval in matching trajectory is addressed by an unequal-interval data fusion algorithm which is based on the unequal-interval characteristics analysis of the matching trajectory.Compared with previously available methods,the proposed algorithm improves the location precision.In conclusion,simulations of the integrated navigation system demonstrated the effectiveness and superiority of the proposed algorithm.展开更多
The Successive Orthogonalization Decentralized Kalman Filter (SODKF ) is a new method which is used for large system state estimation. It can be applied not only to large system decentralization, but also to precisi...The Successive Orthogonalization Decentralized Kalman Filter (SODKF ) is a new method which is used for large system state estimation. It can be applied not only to large system decentralization, but also to precision realization at approximately the same level of the global filter, thus, making possible the engineering operation as well as shortening the computing time. This paper discusses the principles and features of SODKF when used in GPS/INS integrated navigation system. The system will be firstly divided into three subsystems and then corrected in both open and closed loops. The system simulation results by two integrated patterns show that SODKF is efficient and realizable. While the three subsystems are simulated in series, the computing speed doubles that of the global system. In addition, its optimal estimating precision remains unchanged. It can be concluded from this paper that large integrated navigation systems with GPS, INS, Terrain Match, Loran C, Doppler Radar and Radio Altimeter can be made more efficient by this multi subsystem of navigation.展开更多
An integrated navlgation based on the kinematic or dynamic state model and the raw measurements has the advantages of high redundancy, high reliability, as well as high ability of fault tolerance and simplicity in cal...An integrated navlgation based on the kinematic or dynamic state model and the raw measurements has the advantages of high redundancy, high reliability, as well as high ability of fault tolerance and simplicity in calculation. In order to control the influences of measurements outliers and the kinematic model errors on the integrated navigation results, a robust estimation method and an adaptive data fusion method are applied. An integrated navigation example using simulated data is performed and analyzed.展开更多
基金supported by China Postdoctoral Science Foundation(2023M741882)the National Natural Science Foundation of China(62103222,62273195)。
文摘In this study, the problem of measuring noise pollution distribution by the intertial-based integrated navigation system is effectively suppressed. Based on nonlinear inertial navigation error modeling, a nested dual Kalman filter framework structure is developed. It consists of unscented Kalman filter (UKF)master filter and Kalman filter slave filter. This method uses nonlinear UKF for integrated navigation state estimation. At the same time, the exact noise measurement covariance is estimated by the Kalman filter dependency filter. The algorithm based on dual adaptive UKF (Dual-AUKF) has high accuracy and robustness, especially in the case of measurement information interference. Finally, vehicle-mounted and ship-mounted integrated navigation tests are conducted. Compared with traditional UKF and the Sage-Husa adaptive UKF (SH-AUKF), this method has comparable filtering accuracy and better filtering stability. The effectiveness of the proposed algorithm is verified.
文摘With the rapid development of autopilot technology,a variety of engi-neering applications require higher and higher requirements for navigation and positioning accuracy,as well as the error range should reach centimeter level.Single navigation systems such as the inertial navigation system(INS)and the global navigation satellite system(GNSS)cannot meet the navigation require-ments in many cases of high mobility and complex environments.For the purpose of improving the accuracy of INS-GNSS integrated navigation system,an INS-GNSS integrated navigation algorithm based on TransGAN is proposed.First of all,the GNSS data in the actual test process is applied to establish the data set.Secondly,the generator and discriminator are constructed.Borrowing the model structure of generator transformer,the generator is constructed by multi-layer transformer encoder,which can obtain a wider data perception ability.The generator and discriminator are trained and optimized by the production countermeasure network,so as to realize the speed and position error compensa-tion of INS.Consequently,when GNSS works normally,TransGAN is trained into a high-precision prediction model using INS-GNSS data.The trained Trans-GAN model is emoloyed to compensate the speed and position errors for INS.Through the test analysis offlight test data,the test results are compared with the performance of traditional multi-layer perceptron(MLP)and fuzzy wavelet neural network(WNN),demonstrating that TransGAN can effectively correct the speed and position information when GNSS is interrupted,with the high accuracy.
文摘This paper deals with the research of the GPS/INS integrated navigation system applying Extended Kalman Filter, which involves integrated principles, scheme and technology of combining with real INS and GPS receiver data. Emphases are placed on the modeling of system errors and implementation of the integrated system. Both loose and tightly coupled GPS/INS integrated in schemes are analyzed. On the basis of our experience accumulated in the research of GPS/INS for many years, the GPS/INS integrated navigation developing system is developed. It can be put into efficient and economic use in the study and design of integrated navigation system. It plays an important role in the aeronautical and astronautical fields in China. This system is not only a computer aided design software but also a semi physical simulation system by obtaining real INS and GPS receiver data. So the key software unit of the developing system could be conveniently transferred into practical engineering software in actual hardware integrated system. The application of this system shows that the design ideas and integrated scheme of this development system are successful, and can achieve good navigation result.
基金Pre-Research Program of General Armament Department during the11th Five-Year Plan Period (No51309020503)the National Defense Basic Research Program of China (973Program)(No973-61334)+1 种基金the National Natural Science Foundation of China(No50575042)Specialized Research Fund for the Doctoral Program of Higher Education (No20050286026)
文摘To improve the navigation accuracy of an autonomous underwater vehicle (AUV), a novel terrain passive integrated navigation system (TPINS) is presented. According to the characteristics of the underwater environment and AUV navigation requirements of low cost and high accuracy, a novel TPINS is designed with a configuration of the strapdown inertial navigation system (SINS), the terrain reference navigation system (TRNS), the Doppler velocity sonar (DVS), the magnetic compass and the navigation computer utilizing the unscented Kalman filter (UKF) to fuse the navigation information from various navigation sensors. Linear filter equations for the extended Kalman filter (EKF), nonlinear filter equations for the UKF and measurement equations of navigation sensors are addressed. It is indicated from the comparable simulation experiments of the EKF and the UKF that AUV navigation precision is improved substantially with the proposed sensors and the UKF when compared to the EKF. The TPINS designed with the proposed sensors and the UKF is effective in reducing AUV navigation position errors and improving the stability and precision of the AUV underwater integrated navigation.
基金The National Basic Research Program of China(973 Program)(No.2009CB724002)the National Natural Science Foundation of China(No.50975049)+3 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20110092110039)the Aviation Science Foundation(No.20090869008)the Six Peak Talents Foundation in Jiangsu Province(No.2008143)Program of Scientific Innovation Research of College Graduate in Jiangsu Province(No.CXLX_0101)
文摘Aiming at the problem of poor observability of measurement information in the loosely-coupled integration of the inertial navigation system (INS) and the wireless sensor network (WSN), this paper presents a tightly-coupled integration based on the Kalman filter (KF). When the WSN is available, the difference between the distances from the blind node(BN) to the reference nodes (RNs) measured by the INS and those measured by the WSN are used as measurement information for the KF due to its better observability and independence, which can effectively improve the accuracy of the KF. Simulations show that the proposed approach reduces the mean error of the position by about 50% compared with loosely-coupled integration, while the mean error of the velocity is a little higher than that of loosely-coupled integration.
基金supported by the National Natural Science Foundation of China (60535010)
文摘A new nonlinear algorithm is proposed for strapdown inertial navigation system (SINS)/celestial navigation system (CNS)/global positioning system (GPS) integrated navigation systems. The algorithm employs a nonlinear system error model which can be modified by unscented Kalman filter (UKF) to give predictions of local filters. And these predictions can be fused by the federated Kalman filter. In the system error model, the rotation vector is introduced to denote vehicle's attitude and has less variables than the quaternion. Also, the UKF method is simplified to estimate the system error model, which can both lead to less calculation and reduce algorithm implement time. In the information fusion section, a modified federated Kalman filter is proposed to solve the singular covariance problem. Specifically, the new algorithm is applied to maneuvering vehicles, and simulation results show that this algorithm is more accurate than the linear integrated navigation algorithm.
基金This project was supported by the National Natural Science Foundation of China (40125013 &40376011)
文摘A marine INS/GPS adaptive navigation system is presented. GPS with two antenna providing vessel' s altitude is selected as the auxiliary system fusing with INS to improve the performance of the hybrid system. The Kalman filter is the most frequently used algorithm in the integrated navigation system, which is capable of estimating INS errors online based on the measured errors between INS and GPS. The standard Kalman filter (SKF) assumes that the statistics of the noise on each sensor are given. As long as the noise distributions do not change, the Kalman filter will give the optimal estimation. However GPS receiver will be disturbed easily and thus temporally changing measurement noise will join into the outputs of GPS, which will lead to performance degradation of the Kalman filter. Many researchers introduce fuzzy logic control method into innovation-based adaptive estimation adaptive Kalman filtering (IAE-AKF) algorithm, and accordingly propose various adaptive Kalman filters. However how to design the fuzzy logic controller is a very complicated problem still without a convincing solution. A novel IAE-AKF is proposed herein, which is based on the maximum likelihood criterion for the proper computation of the filter innovation covariance and hence of the filter gain. The approach is direct and simple without having to establish fuzzy inference rules. After having deduced the proposed IAEAKF algorithm theoretically in detail, the approach is tested by the simulation based on the system error model of the developed INS/GPS integrated marine navigation system. Simulation results show that the adaptive Kalman filter outperforms the SKF with higher accuracy, robustness and less computation. It is demonstra- ted that this proposed approach is a valid solution for the unknown changing measurement noise exited in the Kalman filter.
基金supported by the National Natural Science Foundation of China(61722301)
文摘Strapdown inertial navigation system(SINS)/celestial navigation system(CNS)integrated navigation is widely used to achieve long-time and high-precision autonomous navigation for aircraft.In general,SINS/CNS integrated navigation can be divided into two integrated modes:loosely coupled integrated navigation and tightly coupled integrated navigation.Because the loosely coupled SINS/CNS integrated system is only available in the condition of at least three stars,the latter one is becoming a research hotspot.One major challenge of SINS/CNS integrated navigation is obtaining a high-precision horizon reference.To solve this problem,an innovative tightly coupled rotational SINS/CNS integrated navigation method is proposed.In this method,the rotational SINS error equation in the navigation frame is used as the state model,and the starlight vector and star altitude are used as measurements.Semi-physical simulations are conducted to test the performance of this integrated method.Results show that this tightly coupled rotational SINS/CNS method has the best navigation accuracy compared with SINS,rotational SINS,and traditional tightly coupled SINS/CNS integrated navigation method.
基金supported by the National Natural Science Foundation of China(6063403060702066)+1 种基金the Aerospace Science Foundation(20090853013)Fundmental Research Foundation of NWPU(JC201015),Soaring Star of NWPU
文摘In detecting system fault algorithms,the false alarm rate and undectect rate generated by residual Chi-square test can affect the stability of filters.The paper proposes a fault detection algorithm based on sequential residual Chi-square test and applies to fault detection of an integrated navigation system.The simulation result shows that the algorithm can accurately detect the fault information of global positioning system(GPS),eliminate the influence of false alarm and missed detection on filter,and enhance fault tolerance of integrated navigation systems.
基金supported in part by the National Natural Science Foundation of China(No.41876222)。
文摘In view of the failure of GNSS signals,this paper proposes an INS/GNSS integrated navigation method based on the recurrent neural network(RNN).This proposed method utilizes the calculation principle of INS and the memory function of the RNN to estimate the errors of the INS,thereby obtaining a continuous,reliable and high-precision navigation solution.The performance of the proposed method is firstly demonstrated using an INS/GNSS simulation environment.Subsequently,an experimental test on boat is also conducted to validate the performance of the method.The results show a promising application prospect for RNN in the field of positioning for INS/GNSS integrated navigation in the absence of GNSS signal,as it outperforms extreme learning machine(ELM)and EKF by approximately 30%and 60%,respectively.
基金supported by the National Natural Science Foundationof China (60902055)
文摘In order to take full advantage of federated filter in fault-tolerant design of integrated navigation system, the limitation of fault detection algorithm for gradual changing fault detection and the poor fault tolerance of global optimal fusion algorithm are the key problems to deal with. Based on theoretical analysis of the influencing factors of federated filtering fault tolerance, global fault-tolerant fusion algorithm and information sharing algorithm are proposed based on fuzzy assessment. It achieves intelligent fault-tolerant structure with two-stage and feedback, including real-time fault detection in sub-filters, and fault-tolerant fusion and information sharing in main filter. The simulation results demonstrate that the algorithm can effectively improve fault-tolerant ability and ensure relatively high positioning precision of integrated navigation system when a subsystem having gradual changing fault.
基金Supported by the National Natural Science Foundation of China (No.40274002 No.40474001).
文摘The IMU(inertial measurement unit) error equations in the earth fixed coordinates are introduced firstly. A fading Kalman filtering is simply introduced and its shortcomings are analyzed, then an adaptive filtering is applied in IMU/GPS integrated navigation system, in which the adaptive factor is replaced by the fading factor. A practical example is given. The resuits prove that the adaptive filter combined with the fading factor is valid and reliable when applied in IMU/GPS integrated navigation system.
基金supported by the National Basic Research Program of China(973Program)(2014CB744206)
文摘This paper explores multiple model adaptive estimation(MMAE) method, and with it, proposes a novel filtering algorithm. The proposed algorithm is an improved Kalman filter— multiple model adaptive estimation unscented Kalman filter(MMAE-UKF) rather than conventional Kalman filter methods,like the extended Kalman filter(EKF) and the unscented Kalman filter(UKF). UKF is used as a subfilter to obtain the system state estimate in the MMAE method. Single model filter has poor adaptability with uncertain or unknown system parameters,which the improved filtering method can overcome. Meanwhile,this algorithm is used for integrated navigation system of strapdown inertial navigation system(SINS) and celestial navigation system(CNS) by a ballistic missile's motion. The simulation results indicate that the proposed filtering algorithm has better navigation precision, can achieve optimal estimation of system state, and can be more flexible at the cost of increased computational burden.
文摘The principles of the SINS/DVL integrated navigation system are introduced, and the compass status accuracy is compared. When the heading is changed, the dead reckoning algorithm using the heading information of the SINS (Strapdown inertial navigation systems) and DVL (doppler velocity log) is adopted to substitute the SINS/DVL integrated system. The simulation results show that the method can improve the accuracy of integrated navigation system when AUV (autonomous underwater vehicle) is in motion.
文摘Aiming at the problem that the traditional Unscented Kalman Filtering(UKF) algorithm can't solve the problem that the measurement covariance matrix is unknown and the measured value contains outliers,this paper proposes a robust adaptive UKF algorithm based on Support Vector Regression(SVR).The algorithm combines the advantages of support vector regression with small samples,nonlinear learning ability and online estimation capability of adaptive algorithm based on innovation.Firstly,the SVR model is trained by using the innovation in the sliding window,and the new innovation is monitored.If the deviation between the estimated innovation and the measured innovation exceeds a given threshold,then measured innovation will be replaced by the predicted innovation,and then the processed innovation is used to calculate the measurement noise covariance matrix using the adaptive estimation algorithm.Simulation experiments and measured data experiments show that SVRUKF is significantly better than the traditional UKF,robust UKF and adaptive UKF algorithms for the case where the covariance matrix is unknown and the measured values have outliers.
文摘For the underwater integrated navigation system, information fusion is an important technology. This paper introduces the Kalman filter as the most useful information fusion technology, and then gives a summary of the Kalman filter applied in underwater integrated navigation system at present, and points out the further research directions in this field.
文摘GPS (Global Positioning System) has been widely used in car navigation systems. Most car navigation systems estimate the car position from GPS and DR (dead reckoning). However, the unknown GPS noise characteristic and the unbounded DR accumulation of errors over time make the position information with undesirable position errors. The map matching can improve the position accuracy and availability of the vehicular position system. In this paper, general principle of map matching is investigated according to segmentation and feature extraction, and a map matching algorithm based on D-S (Dempster-Shafer) evidence reasoning for GPS integrated navigation system is proposed, which can find the exact road on which a car moves. For the experiments, a car navigation system is developed with some sensors and the field test demonstrates the effectiveness and applicability of the algorithm for the car location and navigation.
基金Supported by the National Natural Science Foundation for Outstanding Youth(61422102)Special Fund for Basic Research on Scientific Instruments of the National Natural Science Foundation of China(61127004)
文摘Inertial/gravity matching integrated navigation system can effectively improve the longendurance navigation ability of underwater vehicles.Through the analysis of the matching process,the problem of unequal-interval in matching trajectory is addressed by an unequal-interval data fusion algorithm which is based on the unequal-interval characteristics analysis of the matching trajectory.Compared with previously available methods,the proposed algorithm improves the location precision.In conclusion,simulations of the integrated navigation system demonstrated the effectiveness and superiority of the proposed algorithm.
文摘The Successive Orthogonalization Decentralized Kalman Filter (SODKF ) is a new method which is used for large system state estimation. It can be applied not only to large system decentralization, but also to precision realization at approximately the same level of the global filter, thus, making possible the engineering operation as well as shortening the computing time. This paper discusses the principles and features of SODKF when used in GPS/INS integrated navigation system. The system will be firstly divided into three subsystems and then corrected in both open and closed loops. The system simulation results by two integrated patterns show that SODKF is efficient and realizable. While the three subsystems are simulated in series, the computing speed doubles that of the global system. In addition, its optimal estimating precision remains unchanged. It can be concluded from this paper that large integrated navigation systems with GPS, INS, Terrain Match, Loran C, Doppler Radar and Radio Altimeter can be made more efficient by this multi subsystem of navigation.
基金Project supported by the National Outstanding Youth Science Foundation ( No.49825107) and the Natural Science Foundation ( No.40244002 No.40174009) .
文摘An integrated navlgation based on the kinematic or dynamic state model and the raw measurements has the advantages of high redundancy, high reliability, as well as high ability of fault tolerance and simplicity in calculation. In order to control the influences of measurements outliers and the kinematic model errors on the integrated navigation results, a robust estimation method and an adaptive data fusion method are applied. An integrated navigation example using simulated data is performed and analyzed.