In recent times,sixth generation(6G)communication technologies have become a hot research topic because of maximum throughput and low delay services for mobile users.It encompasses several heterogeneous resource and c...In recent times,sixth generation(6G)communication technologies have become a hot research topic because of maximum throughput and low delay services for mobile users.It encompasses several heterogeneous resource and communication standard in ensuring incessant availability of service.At the same time,the development of 6G enables the Unmanned Aerial Vehicles(UAVs)in offering cost and time-efficient solution to several applications like healthcare,surveillance,disaster management,etc.In UAV networks,energy efficiency and data collection are considered the major process for high quality network communication.But these procedures are found to be challenging because of maximum mobility,unstable links,dynamic topology,and energy restricted UAVs.These issues are solved by the use of artificial intelligence(AI)and energy efficient clustering techniques for UAVs in the 6G environment.With this inspiration,this work designs an artificial intelligence enabled cooperative cluster-based data collection technique for unmanned aerial vehicles(AECCDC-UAV)in 6G environment.The proposed AECCDC-UAV technique purposes for dividing the UAV network as to different clusters and allocate a cluster head(CH)to each cluster in such a way that the energy consumption(ECM)gets minimized.The presented AECCDC-UAV technique involves a quasi-oppositional shuffled shepherd optimization(QOSSO)algorithm for selecting the CHs and construct clusters.The QOSSO algorithm derives a fitness function involving three input parameters residual energy of UAVs,distance to neighboring UAVs,and degree of UAVs.The performance of the AECCDC-UAV technique is validated in many aspects and the obtained experimental values demonstration promising results over the recent state of art methods.展开更多
The lasting evolution of computing environment, software engineering and interaction methods leads to cloud computing. Cloud computing changes the configuration mode of resources on the Internet and all kinds of resou...The lasting evolution of computing environment, software engineering and interaction methods leads to cloud computing. Cloud computing changes the configuration mode of resources on the Internet and all kinds of resources are virtualized and provided as services. Mass participation and online interaction with social annotations become usual in human daily life. People who own similar interests on the Internet may cluster naturally into scalable and boundless communities and collective intelligence will emerge. Human is taken as an intelligent computing factor, and uncertainty becomes a basic property in cloud computing. Virtualization, soft computing and granular computing will become essential features of cloud computing. Compared with the engineering technological problems of IaaS (Infrastructure as a service), PaaS (Platform as a Service) and SaaS (Software as a Service), collective intelligence and uncertain knowledge representation will be more important frontiers in cloud computing for researchers within the community of intelligence science.展开更多
The advent of the age of Information shifts the environment we live in from off-line to on-line. The prospect of Collective Intelligence (CI) is promising. Based on this background, the aim of this paper is to discove...The advent of the age of Information shifts the environment we live in from off-line to on-line. The prospect of Collective Intelligence (CI) is promising. Based on this background, the aim of this paper is to discover the emergence mechanism and influence factors of CI in knowledge communities using the method of quantitative and qualitative analysis. On the basis of the previous research work, our model theorizes that the two dimensions of social network (i.e., interactive network structure and participant’s characteristics) affect two references of effectiveness (i.e. group knowledge production and participation of group decision). And this hypothetical model is validated with simulation data from “Zhihu” community. Our model has been useful since it offers some inspirations and directions to promote the level of CI in knowledge communities.展开更多
With technological advancements in 6G and Internet of Things(IoT), the incorporation of Unmanned Aerial Vehicles (UAVs) and cellularnetworks has become a hot research topic. At present, the proficient evolution of 6G ...With technological advancements in 6G and Internet of Things(IoT), the incorporation of Unmanned Aerial Vehicles (UAVs) and cellularnetworks has become a hot research topic. At present, the proficient evolution of 6G networks allows the UAVs to offer cost-effective and timelysolutions for real-time applications such as medicine, tracking, surveillance,etc. Energy efficiency, data collection, and route planning are crucial processesto improve the network communication. These processes are highly difficultowing to high mobility, presence of non-stationary links, dynamic topology,and energy-restricted UAVs. With this motivation, the current research paperpresents a novel Energy Aware Data Collection with Routing Planning for6G-enabled UAV communication (EADCRP-6G) technique. The goal of theproposed EADCRP-6G technique is to conduct energy-efficient cluster-baseddata collection and optimal route planning for 6G-enabled UAV networks.EADCRP-6G technique deploys Improved Red Deer Algorithm-based Clustering (IRDAC) technique to elect an optimal set of Cluster Heads (CH) andorganize these clusters. Besides, Artificial Fish Swarm-based Route Planning(AFSRP) technique is applied to choose an optimum set of routes for UAVcommunication in 6G networks. In order to validated whether the proposedEADCRP-6G technique enhances the performance, a series of simulationswas performed and the outcomes were investigated under different dimensions.The experimental results showcase that the proposed model outperformed allother existing models under different evaluation parameters.展开更多
Traffic data collection is essential for performance assessment, safety improvement and road planning. While automated traffic data collection for highways is relatively mature, that for roundabouts is more challengin...Traffic data collection is essential for performance assessment, safety improvement and road planning. While automated traffic data collection for highways is relatively mature, that for roundabouts is more challenging due to more complex traffic scenes, data specifications and vehicle behavior. In this paper, the authors propose an automated traffic data collection system dedicated to roundabout scenes. The proposed system has mainly four steps of processing. First, camera calibration is performed for roundabout traffic scenes with a novel circle-based calibration algorithm. Second, the system uses enhanced Mixture of Gaussian algorithm with shaking removal for video segmentation, which can tolerate repeated camera displacements and background movements. Then, Kalman filtering, Kemel-based tracking and overlap-based opti- mization are employed to track vehicles while they are occluded and to derive the complete vehicle trajectories. The resulting vehicle trajectory of each individual vehicle gives the position, size, shape and speed of the vehicle at each time moment. Finally, a data mining algorithm is used to automatically extract the interested traffic data from the vehicle trajectories. The overall traffic data collection system has been implemented in software and runs on regular PC. The total processing time for a 3-hour video is currently 6 h. The automated traffic data collection system can significantly reduce cost and improve efficiency compared to manual data collection. The extracted traffic data have been compared to accurate manual measurements for 29 videos recorded on 29 different days, and an accuracy of more than 90% has been achieved.展开更多
Cyber Threat Intelligence(CTI)is a valuable resource for cybersecurity defense,but it also poses challenges due to its multi-source and heterogeneous nature.Security personnel may be unable to use CTI effectively to u...Cyber Threat Intelligence(CTI)is a valuable resource for cybersecurity defense,but it also poses challenges due to its multi-source and heterogeneous nature.Security personnel may be unable to use CTI effectively to understand the condition and trend of a cyberattack and respond promptly.To address these challenges,we propose a novel approach that consists of three steps.First,we construct the attack and defense analysis of the cybersecurity ontology(ADACO)model by integrating multiple cybersecurity databases.Second,we develop the threat evolution prediction algorithm(TEPA),which can automatically detect threats at device nodes,correlate and map multisource threat information,and dynamically infer the threat evolution process.TEPA leverages knowledge graphs to represent comprehensive threat scenarios and achieves better performance in simulated experiments by combining structural and textual features of entities.Third,we design the intelligent defense decision algorithm(IDDA),which can provide intelligent recommendations for security personnel regarding the most suitable defense techniques.IDDA outperforms the baseline methods in the comparative experiment.展开更多
An influence game is a simple game represented over an influence graph(i.e.,a labeled,weighted graph)on which the influence spread phenomenon is exerted.Influence games allow applying different properties and paramete...An influence game is a simple game represented over an influence graph(i.e.,a labeled,weighted graph)on which the influence spread phenomenon is exerted.Influence games allow applying different properties and parameters coming from cooperative game theory to the contexts of social network analysis,decision-systems,voting systems,and collective behavior.The exact calculation of several of these properties and parameters is computationally hard,even for a small number of players.Two examples of these parameters are the length and the width of a game.The length of a game is the size of its smaller winning coalition,while the width of a game is the size of its larger losing coalition.Both parameters are relevant to know the levels of difficulty in reaching agreements in collective decision-making systems.Despite the above,new bio-inspired metaheuristic algorithms have recently been developed to solve the NP-hard influence maximization problem in an efficient and approximate way,being able to find small winning coalitions that maximize the influence spread within an influence graph.In this article,we apply some variations of this solution to find extreme winning and losing coalitions,and thus efficient approximate solutions for the length and the width of influence games.As a case study,we consider two real social networks,one formed by the 58 members of the European Union Council under nice voting rules,and the other formed by the 705 members of the European Parliament,connected by political affinity.Results are promising and show that it is feasible to generate approximate solutions for the length and width parameters of influence games,in reduced solving time.展开更多
Environmental assessments are critical for ensuring the sustainable development of human civilization.The integration of artificial intelligence(AI)in these assessments has shown great promise,yet the"black box&q...Environmental assessments are critical for ensuring the sustainable development of human civilization.The integration of artificial intelligence(AI)in these assessments has shown great promise,yet the"black box"nature of AI models often undermines trust due to the lack of transparency in their decision-making processes,even when these models demonstrate high accuracy.To address this challenge,we evaluated the performance of a transformer model against other AI approaches,utilizing extensive multivariate and spatiotemporal environmental datasets encompassing both natural and anthropogenic indicators.We further explored the application of saliency maps as a novel explainability tool in multi-source AI-driven environmental assessments,enabling the identification of individual indicators'contributions to the model's predictions.We find that the transformer model outperforms others,achieving an accuracy of about 98%and an area under the receiver operating characteristic curve(AUC)of 0.891.Regionally,the environmental assessment values are predominantly classified as level Ⅱ or Ⅲ in the central and southwestern study areas,level Ⅳ in the northern region,and level Ⅴ in the western region.Through explainability analysis,we identify that water hardness,total dissolved solids,and arsenic concentrations are the most influential indicators in the model.Our AI-driven environmental assessment model is accurate and explainable,offering actionable insights for targeted environmental management.Furthermore,this study advances the application of AI in environmental science by presenting a robust,explainable model that bridges the gap between machine learning and environmental governance,enhancing both understanding and trust in AI-assisted environmental assessments.展开更多
Due to their simple hardware,sensor nodes in IoT are vulnerable to attack,leading to data routing blockages or malicious tampering,which significantly disrupts secure data collection.An Intelligent Active Probing and ...Due to their simple hardware,sensor nodes in IoT are vulnerable to attack,leading to data routing blockages or malicious tampering,which significantly disrupts secure data collection.An Intelligent Active Probing and Trace-back Scheme for IoT Anomaly Detection(APTAD)is proposed to collect integrated IoT data by recruiting Mobile Edge Users(MEUs).(a)An intelligent unsupervised learning approach is used to identify anomalous data from the collected data by MEUs and help to identify anomalous nodes.(b)Recruit MEUs to trace back and propose a series of trust calculation methods to determine the trust of nodes.(c)The last,the number of active detection packets and detection paths are designed,so as to accurately identify the trust of nodes in IoT at the minimum cost of the network.A large number of experimental results show that the recruiting cost and average anomaly detection time are reduced by 6.5 times and 34.33%respectively,while the accuracy of trust identification is improved by 20%.展开更多
Automated pavement condition survey is of critical importance to road network management.There are three primary tasks involved in pavement condition surveys,namely data collection,data processing and condition evalua...Automated pavement condition survey is of critical importance to road network management.There are three primary tasks involved in pavement condition surveys,namely data collection,data processing and condition evaluation.Artificial intelligence(AI)has achieved many breakthroughs in almost every aspect of modern technology over the past decade,and undoubtedly offers a more robust approach to automated pavement condition survey.This article aims to provide a comprehensive review on data collection systems,data processing algorithms and condition evaluation methods proposed between 2010 and 2023 for intelligent pavement condition survey.In particular,the data collection system includes AI-driven hardware devices and automated pavement data collection vehicles.The AI-driven hardware devices including right-of-way(ROW)cameras,ground penetrating radar(GPR)devices,light detection and ranging(LiDAR)devices,and advanced laser imaging systems,etc.These different hardware components can be selectively mounted on a vehicle to simultaneously collect multimedia information about the pavement.In addition,this article pays close attention to the application of artificial intelligence methods in detecting pavement distresses,measuring pavement roughness,identifying pavement rutting,analyzing skid resistance and evaluating structural strength of pavements.Based upon the analysis of a variety of the state-of-the-art artificial intelligence methodologies,remaining challenges and future needs with respect to intelligent pavement condition survey are discussed eventually.展开更多
The new generation of artificial intelligence(AI)research initiated by Chinese scholars conforms to the needs of a new information environment changes,and strives to advance traditional artificial intelligence(AI 1.0)...The new generation of artificial intelligence(AI)research initiated by Chinese scholars conforms to the needs of a new information environment changes,and strives to advance traditional artificial intelligence(AI 1.0)to a new stage of AI 2.0.As one of the important components of AI,collective intelligence(CI 1.0),i.e.,swarm intelligence,is developing to the stage of CI 2.0(crowd intelligence).Through in-depth analysis and informative argumentation,it is found that an incompatibility exists between CI 1.0 and CI 2.0.Therefore,CI 1.5 is introduced to build a bridge between the above two stages,which is based on biocollaborative behavioral mimicry.CI 1.5 is the transition from CI 1.0 to CI 2.0,which contributes to the compatibility of the two stages.Then,a new interpretation of the meta-synthesis of wisdom proposed by Qian Xuesen is given.The meta-synthesis of wisdom,as an improvement of crowd intelligence,is an advanced stage of bionic intelligence,i.e.,CI 3.0.It is pointed out that the dual-wheel drive of large language models and big data with deep uncertainty is an evolutionary path from CI 2.0 to CI 3.0,and some elaboration is made.As a result,we propose four development stages(CI 1.0,CI 1.5,CI 2.0,and CI 3.0),which form a complete framework for the development of CI.These different stages are progressively improved and have good compatibility.Due to the dominant role of cooperation in the development stages of CI,three types of cooperation in CI are discussed:indirect regulatory cooperation in lower organisms,direct communicative cooperation in higher organisms,and shared intention based collaboration in humans.Labor division is the main form of achieving cooperation and,for this reason,this paper investigates the relationship between the complexity of behavior and types of labor division.Finally,based on the overall understanding of the four development stages of CI,the future development direction and research issues of CI are explored.展开更多
Agriculture is the basic industry that concerns the national economy and people’s livelihood. In the process of transforming to modern agriculture, the traditional agriculture in our country faces the problems of ens...Agriculture is the basic industry that concerns the national economy and people’s livelihood. In the process of transforming to modern agriculture, the traditional agriculture in our country faces the problems of ensuring the quality of agricultural production, adjusting agricultural industrial structures, improving the low production efficiency and low utilization rate of resources, and environmental pollution, thus it cannot meet the needs of sustainable agricultural development. Therefore, the research on intelligent agriculture technology is imperative. This paper analyzes the key technologies of Internet of things applied in the intelligent agriculture, presents the application of Internet of things technology in agricultural planting system, constructs the intelligent agricultural planting system based on the Internet of things technology, and designs the framework of the management platform.展开更多
Medical artificial intelligence(AI)and big data technology have rapidly advanced in recent years,and they are now routinely used for image-based diagnosis.China has a massive amount of medical data.However,a uniform c...Medical artificial intelligence(AI)and big data technology have rapidly advanced in recent years,and they are now routinely used for image-based diagnosis.China has a massive amount of medical data.However,a uniform criteria for medical data quality have yet to be established.Therefore,this review aimed to develop a standardized and detailed set of quality criteria for medical data collection,storage,annotation,and management related to medical AI.This would greatly improve the process of medical data resource sharing and the use of AI in clinical medicine.展开更多
基金This work was supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2021R1F1A1063319).
文摘In recent times,sixth generation(6G)communication technologies have become a hot research topic because of maximum throughput and low delay services for mobile users.It encompasses several heterogeneous resource and communication standard in ensuring incessant availability of service.At the same time,the development of 6G enables the Unmanned Aerial Vehicles(UAVs)in offering cost and time-efficient solution to several applications like healthcare,surveillance,disaster management,etc.In UAV networks,energy efficiency and data collection are considered the major process for high quality network communication.But these procedures are found to be challenging because of maximum mobility,unstable links,dynamic topology,and energy restricted UAVs.These issues are solved by the use of artificial intelligence(AI)and energy efficient clustering techniques for UAVs in the 6G environment.With this inspiration,this work designs an artificial intelligence enabled cooperative cluster-based data collection technique for unmanned aerial vehicles(AECCDC-UAV)in 6G environment.The proposed AECCDC-UAV technique purposes for dividing the UAV network as to different clusters and allocate a cluster head(CH)to each cluster in such a way that the energy consumption(ECM)gets minimized.The presented AECCDC-UAV technique involves a quasi-oppositional shuffled shepherd optimization(QOSSO)algorithm for selecting the CHs and construct clusters.The QOSSO algorithm derives a fitness function involving three input parameters residual energy of UAVs,distance to neighboring UAVs,and degree of UAVs.The performance of the AECCDC-UAV technique is validated in many aspects and the obtained experimental values demonstration promising results over the recent state of art methods.
基金supported by National Key Basic Research Program of China (973 Program) under Grant No.2007CB310804China Post-doctoral Science Foundation under Grants No.20090460107, 201003794
文摘The lasting evolution of computing environment, software engineering and interaction methods leads to cloud computing. Cloud computing changes the configuration mode of resources on the Internet and all kinds of resources are virtualized and provided as services. Mass participation and online interaction with social annotations become usual in human daily life. People who own similar interests on the Internet may cluster naturally into scalable and boundless communities and collective intelligence will emerge. Human is taken as an intelligent computing factor, and uncertainty becomes a basic property in cloud computing. Virtualization, soft computing and granular computing will become essential features of cloud computing. Compared with the engineering technological problems of IaaS (Infrastructure as a service), PaaS (Platform as a Service) and SaaS (Software as a Service), collective intelligence and uncertain knowledge representation will be more important frontiers in cloud computing for researchers within the community of intelligence science.
文摘The advent of the age of Information shifts the environment we live in from off-line to on-line. The prospect of Collective Intelligence (CI) is promising. Based on this background, the aim of this paper is to discover the emergence mechanism and influence factors of CI in knowledge communities using the method of quantitative and qualitative analysis. On the basis of the previous research work, our model theorizes that the two dimensions of social network (i.e., interactive network structure and participant’s characteristics) affect two references of effectiveness (i.e. group knowledge production and participation of group decision). And this hypothetical model is validated with simulation data from “Zhihu” community. Our model has been useful since it offers some inspirations and directions to promote the level of CI in knowledge communities.
文摘With technological advancements in 6G and Internet of Things(IoT), the incorporation of Unmanned Aerial Vehicles (UAVs) and cellularnetworks has become a hot research topic. At present, the proficient evolution of 6G networks allows the UAVs to offer cost-effective and timelysolutions for real-time applications such as medicine, tracking, surveillance,etc. Energy efficiency, data collection, and route planning are crucial processesto improve the network communication. These processes are highly difficultowing to high mobility, presence of non-stationary links, dynamic topology,and energy-restricted UAVs. With this motivation, the current research paperpresents a novel Energy Aware Data Collection with Routing Planning for6G-enabled UAV communication (EADCRP-6G) technique. The goal of theproposed EADCRP-6G technique is to conduct energy-efficient cluster-baseddata collection and optimal route planning for 6G-enabled UAV networks.EADCRP-6G technique deploys Improved Red Deer Algorithm-based Clustering (IRDAC) technique to elect an optimal set of Cluster Heads (CH) andorganize these clusters. Besides, Artificial Fish Swarm-based Route Planning(AFSRP) technique is applied to choose an optimum set of routes for UAVcommunication in 6G networks. In order to validated whether the proposedEADCRP-6G technique enhances the performance, a series of simulationswas performed and the outcomes were investigated under different dimensions.The experimental results showcase that the proposed model outperformed allother existing models under different evaluation parameters.
文摘Traffic data collection is essential for performance assessment, safety improvement and road planning. While automated traffic data collection for highways is relatively mature, that for roundabouts is more challenging due to more complex traffic scenes, data specifications and vehicle behavior. In this paper, the authors propose an automated traffic data collection system dedicated to roundabout scenes. The proposed system has mainly four steps of processing. First, camera calibration is performed for roundabout traffic scenes with a novel circle-based calibration algorithm. Second, the system uses enhanced Mixture of Gaussian algorithm with shaking removal for video segmentation, which can tolerate repeated camera displacements and background movements. Then, Kalman filtering, Kemel-based tracking and overlap-based opti- mization are employed to track vehicles while they are occluded and to derive the complete vehicle trajectories. The resulting vehicle trajectory of each individual vehicle gives the position, size, shape and speed of the vehicle at each time moment. Finally, a data mining algorithm is used to automatically extract the interested traffic data from the vehicle trajectories. The overall traffic data collection system has been implemented in software and runs on regular PC. The total processing time for a 3-hour video is currently 6 h. The automated traffic data collection system can significantly reduce cost and improve efficiency compared to manual data collection. The extracted traffic data have been compared to accurate manual measurements for 29 videos recorded on 29 different days, and an accuracy of more than 90% has been achieved.
文摘Cyber Threat Intelligence(CTI)is a valuable resource for cybersecurity defense,but it also poses challenges due to its multi-source and heterogeneous nature.Security personnel may be unable to use CTI effectively to understand the condition and trend of a cyberattack and respond promptly.To address these challenges,we propose a novel approach that consists of three steps.First,we construct the attack and defense analysis of the cybersecurity ontology(ADACO)model by integrating multiple cybersecurity databases.Second,we develop the threat evolution prediction algorithm(TEPA),which can automatically detect threats at device nodes,correlate and map multisource threat information,and dynamically infer the threat evolution process.TEPA leverages knowledge graphs to represent comprehensive threat scenarios and achieves better performance in simulated experiments by combining structural and textual features of entities.Third,we design the intelligent defense decision algorithm(IDDA),which can provide intelligent recommendations for security personnel regarding the most suitable defense techniques.IDDA outperforms the baseline methods in the comparative experiment.
基金F.Riquelme has been partially supported by Fondecyt de Iniciación 11200113,Chile,and by the SEGIB scholarship of Fundación Carolina,SpainX.Molinero under grants PID2019-104987GB-I00(JUVOCO)M.Serna under grants PID2020-112581GB-C21(MOTION)and 2017-SGR-786(ALBCOM).
文摘An influence game is a simple game represented over an influence graph(i.e.,a labeled,weighted graph)on which the influence spread phenomenon is exerted.Influence games allow applying different properties and parameters coming from cooperative game theory to the contexts of social network analysis,decision-systems,voting systems,and collective behavior.The exact calculation of several of these properties and parameters is computationally hard,even for a small number of players.Two examples of these parameters are the length and the width of a game.The length of a game is the size of its smaller winning coalition,while the width of a game is the size of its larger losing coalition.Both parameters are relevant to know the levels of difficulty in reaching agreements in collective decision-making systems.Despite the above,new bio-inspired metaheuristic algorithms have recently been developed to solve the NP-hard influence maximization problem in an efficient and approximate way,being able to find small winning coalitions that maximize the influence spread within an influence graph.In this article,we apply some variations of this solution to find extreme winning and losing coalitions,and thus efficient approximate solutions for the length and the width of influence games.As a case study,we consider two real social networks,one formed by the 58 members of the European Union Council under nice voting rules,and the other formed by the 705 members of the European Parliament,connected by political affinity.Results are promising and show that it is feasible to generate approximate solutions for the length and width parameters of influence games,in reduced solving time.
基金Dreams Foundation of Jianghuai Advance Technology Center(No.2023-ZM01D006)National Natural Science Foundation of China(No.62305389)Scientific Research Project of National University of Defense Technology under Grant(22-ZZCX-07)。
文摘Environmental assessments are critical for ensuring the sustainable development of human civilization.The integration of artificial intelligence(AI)in these assessments has shown great promise,yet the"black box"nature of AI models often undermines trust due to the lack of transparency in their decision-making processes,even when these models demonstrate high accuracy.To address this challenge,we evaluated the performance of a transformer model against other AI approaches,utilizing extensive multivariate and spatiotemporal environmental datasets encompassing both natural and anthropogenic indicators.We further explored the application of saliency maps as a novel explainability tool in multi-source AI-driven environmental assessments,enabling the identification of individual indicators'contributions to the model's predictions.We find that the transformer model outperforms others,achieving an accuracy of about 98%and an area under the receiver operating characteristic curve(AUC)of 0.891.Regionally,the environmental assessment values are predominantly classified as level Ⅱ or Ⅲ in the central and southwestern study areas,level Ⅳ in the northern region,and level Ⅴ in the western region.Through explainability analysis,we identify that water hardness,total dissolved solids,and arsenic concentrations are the most influential indicators in the model.Our AI-driven environmental assessment model is accurate and explainable,offering actionable insights for targeted environmental management.Furthermore,this study advances the application of AI in environmental science by presenting a robust,explainable model that bridges the gap between machine learning and environmental governance,enhancing both understanding and trust in AI-assisted environmental assessments.
基金supported by the National Natural Science Foundation of China(62072475)the Fundamental Research Funds for the Central Universities of Central South University(CX20230356)。
文摘Due to their simple hardware,sensor nodes in IoT are vulnerable to attack,leading to data routing blockages or malicious tampering,which significantly disrupts secure data collection.An Intelligent Active Probing and Trace-back Scheme for IoT Anomaly Detection(APTAD)is proposed to collect integrated IoT data by recruiting Mobile Edge Users(MEUs).(a)An intelligent unsupervised learning approach is used to identify anomalous data from the collected data by MEUs and help to identify anomalous nodes.(b)Recruit MEUs to trace back and propose a series of trust calculation methods to determine the trust of nodes.(c)The last,the number of active detection packets and detection paths are designed,so as to accurately identify the trust of nodes in IoT at the minimum cost of the network.A large number of experimental results show that the recruiting cost and average anomaly detection time are reduced by 6.5 times and 34.33%respectively,while the accuracy of trust identification is improved by 20%.
基金the National Natural Science Foundation of China(grant no.51208419).
文摘Automated pavement condition survey is of critical importance to road network management.There are three primary tasks involved in pavement condition surveys,namely data collection,data processing and condition evaluation.Artificial intelligence(AI)has achieved many breakthroughs in almost every aspect of modern technology over the past decade,and undoubtedly offers a more robust approach to automated pavement condition survey.This article aims to provide a comprehensive review on data collection systems,data processing algorithms and condition evaluation methods proposed between 2010 and 2023 for intelligent pavement condition survey.In particular,the data collection system includes AI-driven hardware devices and automated pavement data collection vehicles.The AI-driven hardware devices including right-of-way(ROW)cameras,ground penetrating radar(GPR)devices,light detection and ranging(LiDAR)devices,and advanced laser imaging systems,etc.These different hardware components can be selectively mounted on a vehicle to simultaneously collect multimedia information about the pavement.In addition,this article pays close attention to the application of artificial intelligence methods in detecting pavement distresses,measuring pavement roughness,identifying pavement rutting,analyzing skid resistance and evaluating structural strength of pavements.Based upon the analysis of a variety of the state-of-the-art artificial intelligence methodologies,remaining challenges and future needs with respect to intelligent pavement condition survey are discussed eventually.
基金the National Science and Technology Innovation 2030 Major Project of the Ministry of Science and Technology of China(No.2018AAA0101200)。
文摘The new generation of artificial intelligence(AI)research initiated by Chinese scholars conforms to the needs of a new information environment changes,and strives to advance traditional artificial intelligence(AI 1.0)to a new stage of AI 2.0.As one of the important components of AI,collective intelligence(CI 1.0),i.e.,swarm intelligence,is developing to the stage of CI 2.0(crowd intelligence).Through in-depth analysis and informative argumentation,it is found that an incompatibility exists between CI 1.0 and CI 2.0.Therefore,CI 1.5 is introduced to build a bridge between the above two stages,which is based on biocollaborative behavioral mimicry.CI 1.5 is the transition from CI 1.0 to CI 2.0,which contributes to the compatibility of the two stages.Then,a new interpretation of the meta-synthesis of wisdom proposed by Qian Xuesen is given.The meta-synthesis of wisdom,as an improvement of crowd intelligence,is an advanced stage of bionic intelligence,i.e.,CI 3.0.It is pointed out that the dual-wheel drive of large language models and big data with deep uncertainty is an evolutionary path from CI 2.0 to CI 3.0,and some elaboration is made.As a result,we propose four development stages(CI 1.0,CI 1.5,CI 2.0,and CI 3.0),which form a complete framework for the development of CI.These different stages are progressively improved and have good compatibility.Due to the dominant role of cooperation in the development stages of CI,three types of cooperation in CI are discussed:indirect regulatory cooperation in lower organisms,direct communicative cooperation in higher organisms,and shared intention based collaboration in humans.Labor division is the main form of achieving cooperation and,for this reason,this paper investigates the relationship between the complexity of behavior and types of labor division.Finally,based on the overall understanding of the four development stages of CI,the future development direction and research issues of CI are explored.
文摘Agriculture is the basic industry that concerns the national economy and people’s livelihood. In the process of transforming to modern agriculture, the traditional agriculture in our country faces the problems of ensuring the quality of agricultural production, adjusting agricultural industrial structures, improving the low production efficiency and low utilization rate of resources, and environmental pollution, thus it cannot meet the needs of sustainable agricultural development. Therefore, the research on intelligent agriculture technology is imperative. This paper analyzes the key technologies of Internet of things applied in the intelligent agriculture, presents the application of Internet of things technology in agricultural planting system, constructs the intelligent agricultural planting system based on the Internet of things technology, and designs the framework of the management platform.
基金supported by the Science and Technology Planning Projects of Guangdong Province(Grant No.2018B010109008)Na-tional Key R&D Program of China(Grant No.2018YFC0116500).
文摘Medical artificial intelligence(AI)and big data technology have rapidly advanced in recent years,and they are now routinely used for image-based diagnosis.China has a massive amount of medical data.However,a uniform criteria for medical data quality have yet to be established.Therefore,this review aimed to develop a standardized and detailed set of quality criteria for medical data collection,storage,annotation,and management related to medical AI.This would greatly improve the process of medical data resource sharing and the use of AI in clinical medicine.