The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initiall...The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT.展开更多
This paper presents an analysis of the power flow within the Northern Interconnected Grid of Cameroon. The Newton-Raphson method has been performed, known for its accuracy, under MATLAB software, to model and solve co...This paper presents an analysis of the power flow within the Northern Interconnected Grid of Cameroon. The Newton-Raphson method has been performed, known for its accuracy, under MATLAB software, to model and solve complex power flow equations. This study simulates a series of outage scenarios to evaluate the responsiveness of the grid. The results obtained underline the crucial importance of reactive power management and highlight the urgent need to consolidate the grid infrastructure of North Cameroon. To increase grid resilience and stability, the paper recommends the strategic integration of renewables and the development of interconnections with other power grids. These measures are presented as viable solutions to meet current and future energy distribution challenges, ensuring a reliable and sustainable power supply for Cameroon.展开更多
Climate change is becoming an important issue in all fields of infrastructure development.Electricity plays a core role in the decarbonized energy system’s path to a regional zero-emission pattern.A well-built trans-...Climate change is becoming an important issue in all fields of infrastructure development.Electricity plays a core role in the decarbonized energy system’s path to a regional zero-emission pattern.A well-built trans-Mediterranean backbone grid can hedge the profound evolution of regional power generation,transmission,and consumption.To date,only Turkey and the Maghreb countries(i.e.,Morocco,Algeria,and Tunisia)are connected with the Continental European Synchronous Area.Other south-and east-shore countries have insufficient interconnection infrastructures and synchronization difficulties that have proven to be major hurdles to the implementation of large-scale solar and wind projects and achievement of climate goals.This study analyzes the current trans-boundary grid interconnections and power and carbon emission portfolios in the Mediterranean region.To align with the recently launched new climate target‘Fit for 55’program and the accelerated large-scale renewables target,a holistic review of projected trans-Mediterranean grids and their market,technical,and financial obstacles of implementation was conducted.For south-and east-shore countries,major legal and regulatory barriers encompassing non-liberalized market structure,regulation gaps of taxation and transmission tariffs,and the private sector’s access rights need to be removed.Enhancement of domestic grids,substations,and harmonized grid codes and frequency,voltage,and communication technology standards among all trans-Mediterranean countries are physical prerequisites for implementing the Trans-Mediterranean Electricity Market.In addition,the mobilization of capital instruments along with private and international investments is indispensable for the realization of supranational transmission projects.As the final section of the decarbonization roadmap,the development of electric appliances,equipment,and vehicles with higher efficiency is inevitable in the decarbonized building,transportation,and industry sectors.展开更多
The paper proposes a novel H∞ load frequency control(LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback(DOF) tracking-regulator cont...The paper proposes a novel H∞ load frequency control(LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback(DOF) tracking-regulator control scheme. To this end, we consider a nonlinear interconnected model for multiarea power systems which also include uncertainties and timevarying communication delays. The design procedure is formulated using semi-definite programming and linear matrix inequality(LMI) method. The solution of the proposed LMIs returns necessary parameters for the tracking controllers such that the impact of model uncertainty and load disturbances are minimized. The proposed controllers are capable of receiving all or part of subsystems information, whereas the outputs of each controller are local. These controllers are designed such that the resilient stability of the overall closed-loop system is guaranteed. Simulation results are provided to verify the effectiveness of the proposed scheme. Simulation results quantify that the distributed(and decentralized) controlled system behaves well in presence of large parameter perturbations and random disturbances on the power system.展开更多
The European power grid is one of the largest regional interconnected power grids in the world.It realizes a multinational grid operation,which is rare.The total installed capacity of the European power grid is the la...The European power grid is one of the largest regional interconnected power grids in the world.It realizes a multinational grid operation,which is rare.The total installed capacity of the European power grid is the largest throughout the world.In addition,the integration and utilization of renewable energy in this grid is a great benchmark for other countries and can help promote energy transformation and achieve a high proportion of renewable energy consumption.Based on the analysis of the existing status of the European interconnected power grid and the development history of this power grid,this paper summarizes four key development stages of the European power grid.In addition,the characteristics of each stage and the development prospect of the European power grid are analyzed.On this basis,this paper gives suggestions for the development and construction of China’s energy internet;this can provide valuable reference for further studies on China’s energy internet.展开更多
This study presents a comprehensive impact analysis of the rotor angle stability of a proposed international connection between the Philippines and Sabah,Malaysia,as part of the Association of Southeast Asian Nations(...This study presents a comprehensive impact analysis of the rotor angle stability of a proposed international connection between the Philippines and Sabah,Malaysia,as part of the Association of Southeast Asian Nations(ASEAN)Power Grid.This study focuses on modeling and evaluating the dynamic performance of the interconnected system,considering the high penetration of renewable sources.Power flow,small signal stability,and transient stability analyses were conducted to assess the ability of the proposed linked power system models to withstand small and large disturbances,utilizing the Power Systems Analysis Toolbox(PSAT)software in MATLAB.All components used in the model are documented in the PSAT library.Currently,there is a lack of publicly available studies regarding the implementation of this specific system.Additionally,the study investigates the behavior of a system with a high penetration of renewable energy sources.Based on the findings,this study concludes that a system is generally stable when interconnection is realized,given its appropriate location and dynamic component parameters.Furthermore,the critical eigenvalues of the system also exhibited improvement as the renewable energy sources were augmented.展开更多
Security and stability control system(SSCS)in power systems involves collecting information and sending the decision from/to control stations at different layers;the tree structure of the SSCS requires more levels.Fai...Security and stability control system(SSCS)in power systems involves collecting information and sending the decision from/to control stations at different layers;the tree structure of the SSCS requires more levels.Failure of a station or channel can cause all the execution stations(EXs)to be out of control.The randomness of the controllable capacity of the EXs increases the difficulty of the reliability evaluation of the SSCS.In this study,the loop designed SSCS and reliability analysis are examined for the interconnected systems.The uncertainty analysis of the controllable capacity based on the evidence theory for the SSCS is proposed.The bidirectional and loop channels are introduced to reduce the layers and stations of the existing SSCS with tree configuration.The reliability evaluation and sensitivity analysis are proposed to quantify the controllability and vulnerable components for the SSCS in different configurations.By aiming at the randomness of the controllable capacity of the EXs,the uncertainty analysis of the controllable capacity of the SSCS based on the evidence theory is proposed to quantify the probability of the SSCS for balancing the active power deficiency of the grid.展开更多
The large-scale utilization and sharing of renewable energy in interconnected systems is crucial for realizing"instrumented,interconnected,and intelligent"power grids.The traditional optimal dispatch method ...The large-scale utilization and sharing of renewable energy in interconnected systems is crucial for realizing"instrumented,interconnected,and intelligent"power grids.The traditional optimal dispatch method can not coordinate the economic benefits of all the stakeholders from multiple regions of the transmission network,comprehensively.Hence,this study proposes a large-scale wind-power coordinated consumption strategy based on the Nash-Q method and establishes an economic dispatch model for interconnected systems considering the uncertainty of wind power,with optimal windpower consumption as the objective for redistributing the shared benefits between regions.Initially,based on the equivalent cost of the interests of stakeholders from different regions,the state decision models are respectively constructed,and the noncooperative game Nash equilibrium model is established.The Q-learning algorithm is then introduced for high-dimension decision variables in the game model,and the dispatch solution methods for interconnected systems are presented,integrating the noncooperative game Nash equilibrium and Q-learning algorithm.Finally,the proposed method is verified through the modified IEEE 39-bus interconnection system,and it is established that this method achieves reasonable distribution of interests between regions and promotes large-scale consumption of wind power.展开更多
Optimization and placement of spinning reserve is an important issue in power system planning and operation. Systematic way for security assessment of operating reserve needs to study. A security assessment index syst...Optimization and placement of spinning reserve is an important issue in power system planning and operation. Systematic way for security assessment of operating reserve needs to study. A security assessment index system for operating reserve in large interconnected power grids is presented in this paper. Firstly, classification and determination methods of operating reserve at home and abroad are investigated, and operating reserve is divided into transient state operating reserve and quasi-steady state operating reserve from the view of security assessment. Secondly, assessment indexes and optimization methods for transient state operating reserve are studied. Thirdly, optimization model, deterministic and probabilistic optimization methods for quasi-steady state operating reserve are explored. Finally, some principles for determination of operating reserve are suggested, and a security assessment index system is put forward. The proposed index system, considering both transient and quasi-steady state, both deterministic and probabilistic methods, provides a systematic way to assessment and arrangement of operating reserve.展开更多
After the North China grid and the Central China grid get into connection with the UHVAC demonstration, a new phenomenon is discovered according to some simulations. That is, the faults at the remote end of the UHV in...After the North China grid and the Central China grid get into connection with the UHVAC demonstration, a new phenomenon is discovered according to some simulations. That is, the faults at the remote end of the UHV interconnected grid will result in significant power fluctuation and voltage drop on the UHV transmission line and even system splitting. But the faults near the UHV line only have marginal effects. Further, the simulation results also indicate that the short-circuit current of the buses near the UHV line is larger than that of the buses far away from the UHV line. This phenomenon is divergent from the traditional view. In this paper, the detail will be introduced, and the factors influencing the system stability after faults are presented and analyzed. The results indicate that transmission power of the UHV line and of the lines between the remote end and the major grid influence the fluctuation on UHV line. The load model and the grid structure of the remote end also have effect on it. Finally, corresponding control scheme is presented to improve the operation conditions of the UHV interconnected grid and ensure its security and stability.展开更多
At the end of last year, the editors from Power and Electrical Engineers interviewed Zhou Xiaoxin on "Fundamental Research on Enhancing Operation Reliability for Large-Scale Interconnected Power Grids", a pr...At the end of last year, the editors from Power and Electrical Engineers interviewed Zhou Xiaoxin on "Fundamental Research on Enhancing Operation Reliability for Large-Scale Interconnected Power Grids", a project of "973 Program". Mr. Zhou, the chief engineer of China Electric Power Research Institute(CEPRI) and an academician of Chinese Academy of Sciences, is the chief scientist in charge of this research project.展开更多
By considering the influence of renewable energy sources(RESs)integration on multi-area interconnected hybrid power systems,this paper proposes an equivalent input disturbance(EID)-based load frequency control(LFC)str...By considering the influence of renewable energy sources(RESs)integration on multi-area interconnected hybrid power systems,this paper proposes an equivalent input disturbance(EID)-based load frequency control(LFC)strategy,which can effectively overcome the factors of random disturbance,model uncertainties and communication delay.First,an equivalent mathematical LFC model of an interconnected system is constructed.Then,the proposed robust controllers,based on the idea of EID,are designed to suppress the randomness and volatility of the renewable energy grid connection and coordinate the frequency fluctuation of the interconnected power system.Finally,the validity and superiority of the established topology structure and the superiority of the proposed strategy are demonstrated by dynamic time domain response experiments under the condition of high penetration of renewable energy.展开更多
Interconnections in microelectronic packaging are not only the physical carrier to realize the function of electronic circuits,but also the weak spots in reliability tests.Most of failures in power devices are caused ...Interconnections in microelectronic packaging are not only the physical carrier to realize the function of electronic circuits,but also the weak spots in reliability tests.Most of failures in power devices are caused by the malfunction of interconnections,including failure of bonding wire as well as cracks of solder layer.In fact,the interconnection failure of power devices is the result of a combination of factors such as electricity,temperature,and force.It is significant to investigate the failure mechanisms of various factors for the failure analysis of interconnections in power devices.This paper reviews the main failure modes of bonding wire and solder layer in the interconnection structure of power devices,and its failure mechanism.Then the reliability test method and failure analysis techniques of interconnection in power device are introduced.These methods are of great significance to the reliability analysis and life prediction of power devices.展开更多
Traditional seawater desalination requires high amounts of energy, with correspondingly high costs and limited benefits, hindering wider applications of the process. To further improve the comprehensive economic benef...Traditional seawater desalination requires high amounts of energy, with correspondingly high costs and limited benefits, hindering wider applications of the process. To further improve the comprehensive economic benefits of seawater desalination, the desalination load can be combined with renewable energy sources such as solar energy, wind energy, and ocean energy or with the power grid to ensure its effective regulation. Utilizing energy internet(EI) technology, energy balance demand of the regional power grid, and coordinated control between coastal multi-source multi-load and regional distribution network with desalination load is reviewed herein. Several key technologies, including coordinated control of coastal multi-source multi-load system with seawater desalination load, flexible interaction between seawater desalination and regional distribution network, and combined control of coastal multi-source multi-load storage system with seawater desalination load, are discussed in detail. Adoption of the flexible interaction between seawater desalination and regional distribution networks is beneficial for solving water resource problems, improving the ability to dissipate distributed renewable energy, balancing and increasing grid loads, improving the safety and economy of coastal power grids, and achieving coordinated and comprehensive application of power grids, renewable energy sources, and coastal loads.展开更多
With the increasing demand worldwide for power grid interconnection,a growing number of related projects are under planning or construction.Despite the rapid growth of cross-border interconnection projects,the systema...With the increasing demand worldwide for power grid interconnection,a growing number of related projects are under planning or construction.Despite the rapid growth of cross-border interconnection projects,the systematic research on profit models for these projects is insufficient.This paper first analyzes the profit sources of interconnection projects.Based on the analysis results,profit models are considered under different regulatory systems for three types of crossborder interconnection projects:fully market-oriented,semi-marketization,and fully supervised.Finally,measures for increasing the profitability and sustainable development of power interconnection projects are proposed.展开更多
The global water demand and supply situation is becoming increasingly severe due to water shortage and uneven distribution of water resources.The highest water demand in the energy sector is attributable to power gene...The global water demand and supply situation is becoming increasingly severe due to water shortage and uneven distribution of water resources.The highest water demand in the energy sector is attributable to power generation.With cross-country and cross-continental power grid interconnections becoming a reality,electricity trading across countries and the creation of new opportunities for re-allocation of water resources are possible.This study expands the concept of virtual water and proposes a generalized virtual water flow in an interconnected power grid system to accurately estimate water resource benefits of clean power transmission from both the production and the consumption sides.By defining the water scarcity index as a price mechanism indicator,the benefits of water resources allocation through power grid interconnections are evaluated.Taking the Africa-Asia-Europe interconnection scenario as an example,the total water saving would amount to 88.95 million m^3 by 2030 and 337.8 million m^3 by 2050.This result shows that grid interconnections could promote the development of renewable energy and expand the benefits of available water resources.展开更多
With the global economy integration and progress in energy transformation,it has become a general trend to surpass national boundaries to achieve wider and optimal energy resource allocations.Consequently,there is a c...With the global economy integration and progress in energy transformation,it has become a general trend to surpass national boundaries to achieve wider and optimal energy resource allocations.Consequently,there is a critical n eed to adopt scie ntific approaches in assessi ng cross-border power grid interconnection projects.First,con sidering the promotion of large-scale renewable energy resources and improvements in system adequacy,a comprehensive assessment index system,including costs,socio-economic benefits,environmental benefits,and technical benefits,is established in this study.Second,a synthetic assessment framework is proposed for cross-border power grid interconnection projects based on the index system comprising cost-benefit analysis,with market and network simulations,iterative methods for indicator weight evaluation,and technique for order preferenee by similarity to an ideal solution(TOPSIS)method for the project rankings.Fin ally,by assessi ng and comparing three cross-border projects betwee n Europe and Asia,the proposed index system and assessment framework have been proved to be effective and feasible;the results of this system can thus support investment decision-making related to such projects in the future.展开更多
Inter-regional and transnational grid interconnection is necessary for energy development. Xinjiang, which is rich in renewable energy resources, is adjacent to countries in Central Asia and has great potential for in...Inter-regional and transnational grid interconnection is necessary for energy development. Xinjiang, which is rich in renewable energy resources, is adjacent to countries in Central Asia and has great potential for interconnection with its neighbors. This paper outlines China's relevant policies for transnational power interconnection, and introduces the energy structure, load demand endowments, and power supply status of Xinjiang, Pakistan, and five Central Asian countries. Further, it analyzes the advantages of the multinational power interconnection from the aspects of power supply and load complementation. Finally, from the perspective of technical support and practical basis, the feasibility of interconnection between Xinjiang, Pakistan, and five Central Asian countries have been analyzed. This paper provides a theoretical basis for promoting and implementing China's "Belt and Road" power transnational interconnected development strategy.展开更多
On-chip interconnect buses consume tens of percents of dynamic power in a nanometer scale integrated circuit and they will consume more power with the rapid scaling down of technology size and continuously rising cloc...On-chip interconnect buses consume tens of percents of dynamic power in a nanometer scale integrated circuit and they will consume more power with the rapid scaling down of technology size and continuously rising clock frequency, therefore it is meaningful to lower the interconnecting bus power in design. In this paper, a simple yet accurate interconnect parasitic capacitance model is presented first and then, based on this model, a novel interconnecting bus optimization method is proposed. Wire spacing is a process for spacing wires for minimum dynamic power, while wire ordering is a process that searches for wire orders that maximally enhance it. The method, i.e., combining wire spacing with wire ordering, focuses on bus dynamic power optimization with a consideration of bus performance requirements. The optimization method is verified based on various nanometer technology parameters, showing that with 50% slack of routing space, 25.71% and 32.65% of power can be saved on average by the proposed optimization method for a global bus and an intermediate bus, respectively, under a 65-nm technology node, compared with 21.78% and 27.68% of power saved on average by uniform spacing technology. The proposed method is especially suitable for computer-aided design of nanometer scale on-chip buses.展开更多
基金supported by the National Key Research and Development Program of China(grant number 2019YFE0123600)。
文摘The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT.
文摘This paper presents an analysis of the power flow within the Northern Interconnected Grid of Cameroon. The Newton-Raphson method has been performed, known for its accuracy, under MATLAB software, to model and solve complex power flow equations. This study simulates a series of outage scenarios to evaluate the responsiveness of the grid. The results obtained underline the crucial importance of reactive power management and highlight the urgent need to consolidate the grid infrastructure of North Cameroon. To increase grid resilience and stability, the paper recommends the strategic integration of renewables and the development of interconnections with other power grids. These measures are presented as viable solutions to meet current and future energy distribution challenges, ensuring a reliable and sustainable power supply for Cameroon.
基金supported by the National Science Foundation of China(Grant No.41701232).
文摘Climate change is becoming an important issue in all fields of infrastructure development.Electricity plays a core role in the decarbonized energy system’s path to a regional zero-emission pattern.A well-built trans-Mediterranean backbone grid can hedge the profound evolution of regional power generation,transmission,and consumption.To date,only Turkey and the Maghreb countries(i.e.,Morocco,Algeria,and Tunisia)are connected with the Continental European Synchronous Area.Other south-and east-shore countries have insufficient interconnection infrastructures and synchronization difficulties that have proven to be major hurdles to the implementation of large-scale solar and wind projects and achievement of climate goals.This study analyzes the current trans-boundary grid interconnections and power and carbon emission portfolios in the Mediterranean region.To align with the recently launched new climate target‘Fit for 55’program and the accelerated large-scale renewables target,a holistic review of projected trans-Mediterranean grids and their market,technical,and financial obstacles of implementation was conducted.For south-and east-shore countries,major legal and regulatory barriers encompassing non-liberalized market structure,regulation gaps of taxation and transmission tariffs,and the private sector’s access rights need to be removed.Enhancement of domestic grids,substations,and harmonized grid codes and frequency,voltage,and communication technology standards among all trans-Mediterranean countries are physical prerequisites for implementing the Trans-Mediterranean Electricity Market.In addition,the mobilization of capital instruments along with private and international investments is indispensable for the realization of supranational transmission projects.As the final section of the decarbonization roadmap,the development of electric appliances,equipment,and vehicles with higher efficiency is inevitable in the decarbonized building,transportation,and industry sectors.
文摘The paper proposes a novel H∞ load frequency control(LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback(DOF) tracking-regulator control scheme. To this end, we consider a nonlinear interconnected model for multiarea power systems which also include uncertainties and timevarying communication delays. The design procedure is formulated using semi-definite programming and linear matrix inequality(LMI) method. The solution of the proposed LMIs returns necessary parameters for the tracking controllers such that the impact of model uncertainty and load disturbances are minimized. The proposed controllers are capable of receiving all or part of subsystems information, whereas the outputs of each controller are local. These controllers are designed such that the resilient stability of the overall closed-loop system is guaranteed. Simulation results are provided to verify the effectiveness of the proposed scheme. Simulation results quantify that the distributed(and decentralized) controlled system behaves well in presence of large parameter perturbations and random disturbances on the power system.
基金funded by the State Grid Science and Technology Research Program:“Research on coordination development mode and reliability evaluation of source,network,load and storage considering the safety requirements(No.B3440818K005)”
文摘The European power grid is one of the largest regional interconnected power grids in the world.It realizes a multinational grid operation,which is rare.The total installed capacity of the European power grid is the largest throughout the world.In addition,the integration and utilization of renewable energy in this grid is a great benchmark for other countries and can help promote energy transformation and achieve a high proportion of renewable energy consumption.Based on the analysis of the existing status of the European interconnected power grid and the development history of this power grid,this paper summarizes four key development stages of the European power grid.In addition,the characteristics of each stage and the development prospect of the European power grid are analyzed.On this basis,this paper gives suggestions for the development and construction of China’s energy internet;this can provide valuable reference for further studies on China’s energy internet.
文摘This study presents a comprehensive impact analysis of the rotor angle stability of a proposed international connection between the Philippines and Sabah,Malaysia,as part of the Association of Southeast Asian Nations(ASEAN)Power Grid.This study focuses on modeling and evaluating the dynamic performance of the interconnected system,considering the high penetration of renewable sources.Power flow,small signal stability,and transient stability analyses were conducted to assess the ability of the proposed linked power system models to withstand small and large disturbances,utilizing the Power Systems Analysis Toolbox(PSAT)software in MATLAB.All components used in the model are documented in the PSAT library.Currently,there is a lack of publicly available studies regarding the implementation of this specific system.Additionally,the study investigates the behavior of a system with a high penetration of renewable energy sources.Based on the findings,this study concludes that a system is generally stable when interconnection is realized,given its appropriate location and dynamic component parameters.Furthermore,the critical eigenvalues of the system also exhibited improvement as the renewable energy sources were augmented.
基金supported by Science and Technology Project of SGCC“Research on Flat Architecture and Implementation Technology of Security and Stability Control System in Ultra Large Power Grid”(52170221000U).
文摘Security and stability control system(SSCS)in power systems involves collecting information and sending the decision from/to control stations at different layers;the tree structure of the SSCS requires more levels.Failure of a station or channel can cause all the execution stations(EXs)to be out of control.The randomness of the controllable capacity of the EXs increases the difficulty of the reliability evaluation of the SSCS.In this study,the loop designed SSCS and reliability analysis are examined for the interconnected systems.The uncertainty analysis of the controllable capacity based on the evidence theory for the SSCS is proposed.The bidirectional and loop channels are introduced to reduce the layers and stations of the existing SSCS with tree configuration.The reliability evaluation and sensitivity analysis are proposed to quantify the controllability and vulnerable components for the SSCS in different configurations.By aiming at the randomness of the controllable capacity of the EXs,the uncertainty analysis of the controllable capacity of the SSCS based on the evidence theory is proposed to quantify the probability of the SSCS for balancing the active power deficiency of the grid.
基金supported by the Fundamental Research Funds For the Central Universities(No.2017MS093)
文摘The large-scale utilization and sharing of renewable energy in interconnected systems is crucial for realizing"instrumented,interconnected,and intelligent"power grids.The traditional optimal dispatch method can not coordinate the economic benefits of all the stakeholders from multiple regions of the transmission network,comprehensively.Hence,this study proposes a large-scale wind-power coordinated consumption strategy based on the Nash-Q method and establishes an economic dispatch model for interconnected systems considering the uncertainty of wind power,with optimal windpower consumption as the objective for redistributing the shared benefits between regions.Initially,based on the equivalent cost of the interests of stakeholders from different regions,the state decision models are respectively constructed,and the noncooperative game Nash equilibrium model is established.The Q-learning algorithm is then introduced for high-dimension decision variables in the game model,and the dispatch solution methods for interconnected systems are presented,integrating the noncooperative game Nash equilibrium and Q-learning algorithm.Finally,the proposed method is verified through the modified IEEE 39-bus interconnection system,and it is established that this method achieves reasonable distribution of interests between regions and promotes large-scale consumption of wind power.
文摘Optimization and placement of spinning reserve is an important issue in power system planning and operation. Systematic way for security assessment of operating reserve needs to study. A security assessment index system for operating reserve in large interconnected power grids is presented in this paper. Firstly, classification and determination methods of operating reserve at home and abroad are investigated, and operating reserve is divided into transient state operating reserve and quasi-steady state operating reserve from the view of security assessment. Secondly, assessment indexes and optimization methods for transient state operating reserve are studied. Thirdly, optimization model, deterministic and probabilistic optimization methods for quasi-steady state operating reserve are explored. Finally, some principles for determination of operating reserve are suggested, and a security assessment index system is put forward. The proposed index system, considering both transient and quasi-steady state, both deterministic and probabilistic methods, provides a systematic way to assessment and arrangement of operating reserve.
文摘After the North China grid and the Central China grid get into connection with the UHVAC demonstration, a new phenomenon is discovered according to some simulations. That is, the faults at the remote end of the UHV interconnected grid will result in significant power fluctuation and voltage drop on the UHV transmission line and even system splitting. But the faults near the UHV line only have marginal effects. Further, the simulation results also indicate that the short-circuit current of the buses near the UHV line is larger than that of the buses far away from the UHV line. This phenomenon is divergent from the traditional view. In this paper, the detail will be introduced, and the factors influencing the system stability after faults are presented and analyzed. The results indicate that transmission power of the UHV line and of the lines between the remote end and the major grid influence the fluctuation on UHV line. The load model and the grid structure of the remote end also have effect on it. Finally, corresponding control scheme is presented to improve the operation conditions of the UHV interconnected grid and ensure its security and stability.
文摘At the end of last year, the editors from Power and Electrical Engineers interviewed Zhou Xiaoxin on "Fundamental Research on Enhancing Operation Reliability for Large-Scale Interconnected Power Grids", a project of "973 Program". Mr. Zhou, the chief engineer of China Electric Power Research Institute(CEPRI) and an academician of Chinese Academy of Sciences, is the chief scientist in charge of this research project.
基金supported in part by the NSFC of China under Grant 62373373in part by the Natural Science Foundation of Hunan Province of China under Grant 2024JJ3033in part by the Science and Technology Innovation Program of Hunan Province under Grant 2022RC3051.
文摘By considering the influence of renewable energy sources(RESs)integration on multi-area interconnected hybrid power systems,this paper proposes an equivalent input disturbance(EID)-based load frequency control(LFC)strategy,which can effectively overcome the factors of random disturbance,model uncertainties and communication delay.First,an equivalent mathematical LFC model of an interconnected system is constructed.Then,the proposed robust controllers,based on the idea of EID,are designed to suppress the randomness and volatility of the renewable energy grid connection and coordinate the frequency fluctuation of the interconnected power system.Finally,the validity and superiority of the established topology structure and the superiority of the proposed strategy are demonstrated by dynamic time domain response experiments under the condition of high penetration of renewable energy.
基金supported by the National Natural Science Foundation of China(Grant No.61904127 and 62004144)Guangdong Basic and Applied Basic Research Foundation(Grant No.2021A1515010651)+2 种基金Fundamental Research Funds for the Central Universities(Grant No.202401002,203134004,20212VA100 and 2021VB006)Hubei Provincial Natural Science Foundation of China(Grant No.2020CFA032)National Key R&D Program of China(Grant No.2019YFB1704600)。
文摘Interconnections in microelectronic packaging are not only the physical carrier to realize the function of electronic circuits,but also the weak spots in reliability tests.Most of failures in power devices are caused by the malfunction of interconnections,including failure of bonding wire as well as cracks of solder layer.In fact,the interconnection failure of power devices is the result of a combination of factors such as electricity,temperature,and force.It is significant to investigate the failure mechanisms of various factors for the failure analysis of interconnections in power devices.This paper reviews the main failure modes of bonding wire and solder layer in the interconnection structure of power devices,and its failure mechanism.Then the reliability test method and failure analysis techniques of interconnection in power device are introduced.These methods are of great significance to the reliability analysis and life prediction of power devices.
基金supported by the State Grid Science and Technology Project, “Study on Multi-source and Multiload Coordination and Optimization Technology Considering Desalination of Sea Water” (No. SGTJDK00DWJS1800011)
文摘Traditional seawater desalination requires high amounts of energy, with correspondingly high costs and limited benefits, hindering wider applications of the process. To further improve the comprehensive economic benefits of seawater desalination, the desalination load can be combined with renewable energy sources such as solar energy, wind energy, and ocean energy or with the power grid to ensure its effective regulation. Utilizing energy internet(EI) technology, energy balance demand of the regional power grid, and coordinated control between coastal multi-source multi-load and regional distribution network with desalination load is reviewed herein. Several key technologies, including coordinated control of coastal multi-source multi-load system with seawater desalination load, flexible interaction between seawater desalination and regional distribution network, and combined control of coastal multi-source multi-load storage system with seawater desalination load, are discussed in detail. Adoption of the flexible interaction between seawater desalination and regional distribution networks is beneficial for solving water resource problems, improving the ability to dissipate distributed renewable energy, balancing and increasing grid loads, improving the safety and economy of coastal power grids, and achieving coordinated and comprehensive application of power grids, renewable energy sources, and coastal loads.
基金supported by the State Grid Corporation of China’s Science & Technology Project “Risk Identification and Countermeasures of SGCC in the Transition Period of Power Sector Reform.”
文摘With the increasing demand worldwide for power grid interconnection,a growing number of related projects are under planning or construction.Despite the rapid growth of cross-border interconnection projects,the systematic research on profit models for these projects is insufficient.This paper first analyzes the profit sources of interconnection projects.Based on the analysis results,profit models are considered under different regulatory systems for three types of crossborder interconnection projects:fully market-oriented,semi-marketization,and fully supervised.Finally,measures for increasing the profitability and sustainable development of power interconnection projects are proposed.
基金supported by the State Grid GEIGC Science and Technology Project under the “Research on Global Energy Transition Scenario and Model Development and Application under the New Pattern of Global Environmental Protection” framework(Grant No.52450018000W)
文摘The global water demand and supply situation is becoming increasingly severe due to water shortage and uneven distribution of water resources.The highest water demand in the energy sector is attributable to power generation.With cross-country and cross-continental power grid interconnections becoming a reality,electricity trading across countries and the creation of new opportunities for re-allocation of water resources are possible.This study expands the concept of virtual water and proposes a generalized virtual water flow in an interconnected power grid system to accurately estimate water resource benefits of clean power transmission from both the production and the consumption sides.By defining the water scarcity index as a price mechanism indicator,the benefits of water resources allocation through power grid interconnections are evaluated.Taking the Africa-Asia-Europe interconnection scenario as an example,the total water saving would amount to 88.95 million m^3 by 2030 and 337.8 million m^3 by 2050.This result shows that grid interconnections could promote the development of renewable energy and expand the benefits of available water resources.
基金the Science and Technology Project of Global Energy Interconnection Group Co.,Ltd.(No.524500180014).
文摘With the global economy integration and progress in energy transformation,it has become a general trend to surpass national boundaries to achieve wider and optimal energy resource allocations.Consequently,there is a critical n eed to adopt scie ntific approaches in assessi ng cross-border power grid interconnection projects.First,con sidering the promotion of large-scale renewable energy resources and improvements in system adequacy,a comprehensive assessment index system,including costs,socio-economic benefits,environmental benefits,and technical benefits,is established in this study.Second,a synthetic assessment framework is proposed for cross-border power grid interconnection projects based on the index system comprising cost-benefit analysis,with market and network simulations,iterative methods for indicator weight evaluation,and technique for order preferenee by similarity to an ideal solution(TOPSIS)method for the project rankings.Fin ally,by assessi ng and comparing three cross-border projects betwee n Europe and Asia,the proposed index system and assessment framework have been proved to be effective and feasible;the results of this system can thus support investment decision-making related to such projects in the future.
基金Supported by the State Grid Scientific and Technological Project (Title: Research on the Development and Integration Mode of Renewable Energy in Xinjiang Power Grid under the Background of Multinational Interconnection, NY71-17-008)
文摘Inter-regional and transnational grid interconnection is necessary for energy development. Xinjiang, which is rich in renewable energy resources, is adjacent to countries in Central Asia and has great potential for interconnection with its neighbors. This paper outlines China's relevant policies for transnational power interconnection, and introduces the energy structure, load demand endowments, and power supply status of Xinjiang, Pakistan, and five Central Asian countries. Further, it analyzes the advantages of the multinational power interconnection from the aspects of power supply and load complementation. Finally, from the perspective of technical support and practical basis, the feasibility of interconnection between Xinjiang, Pakistan, and five Central Asian countries have been analyzed. This paper provides a theoretical basis for promoting and implementing China's "Belt and Road" power transnational interconnected development strategy.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60725415, 60971066, and 61006028)the National High-Tech Program of China (Grant Nos. 2009AA01Z258 and 2009AA01Z260)the National Key Lab Foundation,China (Grant No. ZHD200904)
文摘On-chip interconnect buses consume tens of percents of dynamic power in a nanometer scale integrated circuit and they will consume more power with the rapid scaling down of technology size and continuously rising clock frequency, therefore it is meaningful to lower the interconnecting bus power in design. In this paper, a simple yet accurate interconnect parasitic capacitance model is presented first and then, based on this model, a novel interconnecting bus optimization method is proposed. Wire spacing is a process for spacing wires for minimum dynamic power, while wire ordering is a process that searches for wire orders that maximally enhance it. The method, i.e., combining wire spacing with wire ordering, focuses on bus dynamic power optimization with a consideration of bus performance requirements. The optimization method is verified based on various nanometer technology parameters, showing that with 50% slack of routing space, 25.71% and 32.65% of power can be saved on average by the proposed optimization method for a global bus and an intermediate bus, respectively, under a 65-nm technology node, compared with 21.78% and 27.68% of power saved on average by uniform spacing technology. The proposed method is especially suitable for computer-aided design of nanometer scale on-chip buses.