Distribution networks denote important public infrastructure necessary for people’s livelihoods.However,extreme natural disasters,such as earthquakes,typhoons,and mudslides,severely threaten the safe and stable opera...Distribution networks denote important public infrastructure necessary for people’s livelihoods.However,extreme natural disasters,such as earthquakes,typhoons,and mudslides,severely threaten the safe and stable operation of distribution networks and power supplies needed for daily life.Therefore,considering the requirements for distribution network disaster prevention and mitigation,there is an urgent need for in-depth research on risk assessment methods of distribution networks under extreme natural disaster conditions.This paper accessesmultisource data,presents the data quality improvement methods of distribution networks,and conducts data-driven active fault diagnosis and disaster damage analysis and evaluation using data-driven theory.Furthermore,the paper realizes real-time,accurate access to distribution network disaster information.The proposed approach performs an accurate and rapid assessment of cross-sectional risk through case study.The minimal average annual outage time can be reduced to 3 h/a in the ring network through case study.The approach proposed in this paper can provide technical support to the further improvement of the ability of distribution networks to cope with extreme natural disasters.展开更多
A novel joint optimization strategy for the secondary user( SU) was proposed to consider the short-term and long-term video transmissions over distributed cognitive radio networks( DCRNs).Since the long-term video tra...A novel joint optimization strategy for the secondary user( SU) was proposed to consider the short-term and long-term video transmissions over distributed cognitive radio networks( DCRNs).Since the long-term video transmission consisted of a series of shortterm transmissions, the optimization problem in the video transmission was a composite optimization process. Firstly,considering some factors like primary user's( PU's) collision limitations,non-synchronization between SU and PU,and SU's limited buffer size, the short-term optimization problem was formulated as a mixed integer non-linear program( MINLP) to minimize the block probability of video packets. Secondly,combining the minimum packet block probability obtained in shortterm optimization and SU's constraint on hardware complexity,the partially observable Markov decision process( POMDP) framework was proposed to learn PU's statistic information over DCRNs.Moreover,based on the proposed framework,joint optimization strategy was designed to obtain the minimum packet loss rate in long-term video transmission. Numerical simulation results were provided to demonstrate validity of our strategies.展开更多
The limitations of the conventional master-slavesplitting(MSS)method,which is commonly applied to power flow and optimal power flow in integrated transmission and distribution(I-T&D)networks,are first analyzed.Con...The limitations of the conventional master-slavesplitting(MSS)method,which is commonly applied to power flow and optimal power flow in integrated transmission and distribution(I-T&D)networks,are first analyzed.Considering that the MSS method suffers from a slow convergence rate or even divergence under some circumstances,a least-squares-based iterative(LSI)method is proposed.Compared with the MSS method,the LSI method modifies the iterative variables in each iteration by solving a least-squares problem with the information in previous iterations.A practical implementation and a parameter tuning strategy for the LSI method are discussed.Furthermore,a LSI-PF method is proposed to solve I-T&D power flow and a LSIheterogeneous decomposition(LSI-HGD)method is proposed to solve optimal power flow.Numerical experiments demonstrate that the proposed LSI-PF and LSI-HGD methods can achieve the same accuracy as the benchmark methods.Meanwhile,these LSI methods,with appropriate settings,significantly enhance the convergence and efficiency of conventional methods.Also,in some cases,where conventional methods diverge,these LSI methods can still converge.展开更多
To satisfy the requirements of accurate operationalrisk assessment of integrated transmission and distribution networks (I-T&D), an integrated operational risk assessment (IORA) algorithm is proposed. Specific cas...To satisfy the requirements of accurate operationalrisk assessment of integrated transmission and distribution networks (I-T&D), an integrated operational risk assessment (IORA) algorithm is proposed. Specific cases demonstrate thatan I-ORA is necessary because it provides accurate handlingof the coupling between transmission and distribution networks,accurate analysis of power supply mode (PSM) changes ofimportant users and helps to improve security and stability ofpower grid operations. Two key technical requirements in theI-ORA algorithm are realized, i.e., integrated topology analysisand integrated power flow calculation. Under a certain contingency, integrated topology analysis is used to assess the risksof substation power cuts, network split and PSM changes ofimportant users, while the integrated power flow calculation,based on the self-adaptive Levenburg-Marquard method andNewton method, can be implemented to assess risks of heavyload/overload and voltage deviation. In addition, the graphicsprocessing unit is used to parallelly process some computationintensive steps. Numerical experiments show that the proposedI-ORA algorithm can realize accurate assessment for the entireI-T&D. In addition, the efficiency and convergence are satisfying,indicating the proposed I-ORA algorithm can significantly benefitreal practice in the coordination operation of I-T&D in the future.展开更多
The volatile and intermittent nature of distributed generators(DGs) in active distribution networks(ADNs) increases the uncertainty of operating states. The introduction of distribution phasor measurement units(D-PMUs...The volatile and intermittent nature of distributed generators(DGs) in active distribution networks(ADNs) increases the uncertainty of operating states. The introduction of distribution phasor measurement units(D-PMUs) enhances the monitoring level. The trade-offs of computational performance and robustness of state estimation in monitoring the network states are of great significance for ADNs with D-PMUs and DGs. This paper proposes a second-order cone programming(SOCP) based robust state estimation(RSE) method considering multi-source measurements. Firstly, a linearized state estimation model related to the SOCP state variables is formulated. The phase angle measurements of D-PMUs are converted to equivalent power measurements. Then, a revised SOCP-based RSE method with the weighted least absolute value estimator is proposed to enhance the convergence and bad data identification. Multi-time slots of D-PMU measurements are utilized to improve the estimation accuracy of RSE. Finally, the effectiveness of the proposed method is illustrated in the modified IEEE 33-node and IEEE 123-node systems.展开更多
In the field of high-speed circuits, the analysis of mixed circuit networks containing both distributed parameter elements and lumped parameter elements becomes ever important. This paper presents a new method for ana...In the field of high-speed circuits, the analysis of mixed circuit networks containing both distributed parameter elements and lumped parameter elements becomes ever important. This paper presents a new method for analyzing mixed circuit networks. It adds transmission line end currents to the circuit variables of the classical modified nodal approach and can be applied directly to the mixed circuit networks. We also introduce a frequency-domain technique without requiring decoupling for multiconductor transmission lines. The two methods are combined together to efficiently analyze high-speed circuit networks containing uniform,nonuniform,and frequency-dependent transmission lines. Numerical experiment is presented and the results are compared with that computed by PSPICE.展开更多
Traditional seawater desalination requires high amounts of energy, with correspondingly high costs and limited benefits, hindering wider applications of the process. To further improve the comprehensive economic benef...Traditional seawater desalination requires high amounts of energy, with correspondingly high costs and limited benefits, hindering wider applications of the process. To further improve the comprehensive economic benefits of seawater desalination, the desalination load can be combined with renewable energy sources such as solar energy, wind energy, and ocean energy or with the power grid to ensure its effective regulation. Utilizing energy internet(EI) technology, energy balance demand of the regional power grid, and coordinated control between coastal multi-source multi-load and regional distribution network with desalination load is reviewed herein. Several key technologies, including coordinated control of coastal multi-source multi-load system with seawater desalination load, flexible interaction between seawater desalination and regional distribution network, and combined control of coastal multi-source multi-load storage system with seawater desalination load, are discussed in detail. Adoption of the flexible interaction between seawater desalination and regional distribution networks is beneficial for solving water resource problems, improving the ability to dissipate distributed renewable energy, balancing and increasing grid loads, improving the safety and economy of coastal power grids, and achieving coordinated and comprehensive application of power grids, renewable energy sources, and coastal loads.展开更多
This paper presents an analysis method, based on MacCormack's technique, for the evaluation of the time domain sensitivity of distributed parameter elements in high-speed circuit networks. Sensitivities can be calcul...This paper presents an analysis method, based on MacCormack's technique, for the evaluation of the time domain sensitivity of distributed parameter elements in high-speed circuit networks. Sensitivities can be calculated from electrical and physical parameters of the distributed parameter elements. The proposed method is a direct numerical method of time-space discretization and does not require complicated mathematical deductive process. Therefore, it is very convenient to program this method. It can be applied to sensitivity analysis of general transmission lines in linear or nonlinear circuit networks. The proposed method is second-order-accurate. Numerical experiment is presented to demonstrate its accuracy and efficiency.展开更多
在无中心飞行器集群网络中,非直通条件节点间不同的中继路径可能导致较大路径损耗落差,为有限资源前提下网络传输能力的提升带来困难。参考5G移动通信中的终端直通(Device to Device,D2D)技术与中继通信中的虚拟多输入多输出(Multiple-I...在无中心飞行器集群网络中,非直通条件节点间不同的中继路径可能导致较大路径损耗落差,为有限资源前提下网络传输能力的提升带来困难。参考5G移动通信中的终端直通(Device to Device,D2D)技术与中继通信中的虚拟多输入多输出(Multiple-Input Multiple-Output,MIMO)技术,提出一套D2D通信与虚拟MIMO技术结合的无中心飞行器集群网络传输方案。重点研究在正交资源模式下,将不同的协作传输协议与空时编码进行组合,在信噪比、误比特率、接入概率等方面对通信性能的影响。仿真结果表明:D2D通信与虚拟MIMO技术结合的传输方案在不增加资源的前提下,对集群网络的通信性能有明显提升,且引入分布式空时编码可进一步优化误比特率性能,但3种传输协议在不同传输质量评价方向的改善有所不同。展开更多
As the integration of distributed generations(DGs)transforms the traditional distribution network into the active distribution network,voltage stability assessments(VSA)of transmission grid and distribution grid are n...As the integration of distributed generations(DGs)transforms the traditional distribution network into the active distribution network,voltage stability assessments(VSA)of transmission grid and distribution grid are not suitable to be studied separately.This paper presents a distributed continuation power flow method for VSA of global transmission and distribution grid.Two different parameterization schemes are adopted to guarantee the coherence of load growth in transmission and distribution grids.In the correction step,the boundary bus voltage,load parameter and equivalent power are communicated between the transmission and distribution control centers to realize the distributed computation of load margin.The optimal multiplier technique is used to improve the convergence of the proposed method.The three-phase unbalanced characteristic of distribution networks and the reactive capability limits of DGs are considered.Simulation results on two integrated transmission and distribution test systems show that the proposed method is effective.展开更多
Power is an important part of the energy industry,relating to national economy and people’s livelihood,and it is of great significance to ensure the security and stability in operation of power transmission and distr...Power is an important part of the energy industry,relating to national economy and people’s livelihood,and it is of great significance to ensure the security and stability in operation of power transmission and distribution system.Based on Wireless Sensor Network technology(WSN)and combined with the monitoring and operating requirements of power transmission and distribution system,this paper puts forward an application system for monitoring,inspection,security,and interactive service of layered power transmission and distribution system.Furthermore,this paper demonstrates the system verification projects in Wuxi,Jiangsu Province and Lianxiangyuan Community in Beijing,which have been widely used nationwide.展开更多
文摘Distribution networks denote important public infrastructure necessary for people’s livelihoods.However,extreme natural disasters,such as earthquakes,typhoons,and mudslides,severely threaten the safe and stable operation of distribution networks and power supplies needed for daily life.Therefore,considering the requirements for distribution network disaster prevention and mitigation,there is an urgent need for in-depth research on risk assessment methods of distribution networks under extreme natural disaster conditions.This paper accessesmultisource data,presents the data quality improvement methods of distribution networks,and conducts data-driven active fault diagnosis and disaster damage analysis and evaluation using data-driven theory.Furthermore,the paper realizes real-time,accurate access to distribution network disaster information.The proposed approach performs an accurate and rapid assessment of cross-sectional risk through case study.The minimal average annual outage time can be reduced to 3 h/a in the ring network through case study.The approach proposed in this paper can provide technical support to the further improvement of the ability of distribution networks to cope with extreme natural disasters.
基金National Natural Science Foundation of China(No.61301101)
文摘A novel joint optimization strategy for the secondary user( SU) was proposed to consider the short-term and long-term video transmissions over distributed cognitive radio networks( DCRNs).Since the long-term video transmission consisted of a series of shortterm transmissions, the optimization problem in the video transmission was a composite optimization process. Firstly,considering some factors like primary user's( PU's) collision limitations,non-synchronization between SU and PU,and SU's limited buffer size, the short-term optimization problem was formulated as a mixed integer non-linear program( MINLP) to minimize the block probability of video packets. Secondly,combining the minimum packet block probability obtained in shortterm optimization and SU's constraint on hardware complexity,the partially observable Markov decision process( POMDP) framework was proposed to learn PU's statistic information over DCRNs.Moreover,based on the proposed framework,joint optimization strategy was designed to obtain the minimum packet loss rate in long-term video transmission. Numerical simulation results were provided to demonstrate validity of our strategies.
基金supported by the National Natural Science Foundation of China(52077193).
文摘The limitations of the conventional master-slavesplitting(MSS)method,which is commonly applied to power flow and optimal power flow in integrated transmission and distribution(I-T&D)networks,are first analyzed.Considering that the MSS method suffers from a slow convergence rate or even divergence under some circumstances,a least-squares-based iterative(LSI)method is proposed.Compared with the MSS method,the LSI method modifies the iterative variables in each iteration by solving a least-squares problem with the information in previous iterations.A practical implementation and a parameter tuning strategy for the LSI method are discussed.Furthermore,a LSI-PF method is proposed to solve I-T&D power flow and a LSIheterogeneous decomposition(LSI-HGD)method is proposed to solve optimal power flow.Numerical experiments demonstrate that the proposed LSI-PF and LSI-HGD methods can achieve the same accuracy as the benchmark methods.Meanwhile,these LSI methods,with appropriate settings,significantly enhance the convergence and efficiency of conventional methods.Also,in some cases,where conventional methods diverge,these LSI methods can still converge.
基金the State Grid Zhejiang Electric Power Co.,Ltd.(Science and Technology Project under Grant 5211JH180081:Research on security evaluation and control technology of smart platform based on dispatch cloud.)。
文摘To satisfy the requirements of accurate operationalrisk assessment of integrated transmission and distribution networks (I-T&D), an integrated operational risk assessment (IORA) algorithm is proposed. Specific cases demonstrate thatan I-ORA is necessary because it provides accurate handlingof the coupling between transmission and distribution networks,accurate analysis of power supply mode (PSM) changes ofimportant users and helps to improve security and stability ofpower grid operations. Two key technical requirements in theI-ORA algorithm are realized, i.e., integrated topology analysisand integrated power flow calculation. Under a certain contingency, integrated topology analysis is used to assess the risksof substation power cuts, network split and PSM changes ofimportant users, while the integrated power flow calculation,based on the self-adaptive Levenburg-Marquard method andNewton method, can be implemented to assess risks of heavyload/overload and voltage deviation. In addition, the graphicsprocessing unit is used to parallelly process some computationintensive steps. Numerical experiments show that the proposedI-ORA algorithm can realize accurate assessment for the entireI-T&D. In addition, the efficiency and convergence are satisfying,indicating the proposed I-ORA algorithm can significantly benefitreal practice in the coordination operation of I-T&D in the future.
基金supported by the National Key R&D Program of China (No. 2020YFB0906000 and 2020YFB0906001)。
文摘The volatile and intermittent nature of distributed generators(DGs) in active distribution networks(ADNs) increases the uncertainty of operating states. The introduction of distribution phasor measurement units(D-PMUs) enhances the monitoring level. The trade-offs of computational performance and robustness of state estimation in monitoring the network states are of great significance for ADNs with D-PMUs and DGs. This paper proposes a second-order cone programming(SOCP) based robust state estimation(RSE) method considering multi-source measurements. Firstly, a linearized state estimation model related to the SOCP state variables is formulated. The phase angle measurements of D-PMUs are converted to equivalent power measurements. Then, a revised SOCP-based RSE method with the weighted least absolute value estimator is proposed to enhance the convergence and bad data identification. Multi-time slots of D-PMU measurements are utilized to improve the estimation accuracy of RSE. Finally, the effectiveness of the proposed method is illustrated in the modified IEEE 33-node and IEEE 123-node systems.
文摘In the field of high-speed circuits, the analysis of mixed circuit networks containing both distributed parameter elements and lumped parameter elements becomes ever important. This paper presents a new method for analyzing mixed circuit networks. It adds transmission line end currents to the circuit variables of the classical modified nodal approach and can be applied directly to the mixed circuit networks. We also introduce a frequency-domain technique without requiring decoupling for multiconductor transmission lines. The two methods are combined together to efficiently analyze high-speed circuit networks containing uniform,nonuniform,and frequency-dependent transmission lines. Numerical experiment is presented and the results are compared with that computed by PSPICE.
基金supported by the State Grid Science and Technology Project, “Study on Multi-source and Multiload Coordination and Optimization Technology Considering Desalination of Sea Water” (No. SGTJDK00DWJS1800011)
文摘Traditional seawater desalination requires high amounts of energy, with correspondingly high costs and limited benefits, hindering wider applications of the process. To further improve the comprehensive economic benefits of seawater desalination, the desalination load can be combined with renewable energy sources such as solar energy, wind energy, and ocean energy or with the power grid to ensure its effective regulation. Utilizing energy internet(EI) technology, energy balance demand of the regional power grid, and coordinated control between coastal multi-source multi-load and regional distribution network with desalination load is reviewed herein. Several key technologies, including coordinated control of coastal multi-source multi-load system with seawater desalination load, flexible interaction between seawater desalination and regional distribution network, and combined control of coastal multi-source multi-load storage system with seawater desalination load, are discussed in detail. Adoption of the flexible interaction between seawater desalination and regional distribution networks is beneficial for solving water resource problems, improving the ability to dissipate distributed renewable energy, balancing and increasing grid loads, improving the safety and economy of coastal power grids, and achieving coordinated and comprehensive application of power grids, renewable energy sources, and coastal loads.
文摘This paper presents an analysis method, based on MacCormack's technique, for the evaluation of the time domain sensitivity of distributed parameter elements in high-speed circuit networks. Sensitivities can be calculated from electrical and physical parameters of the distributed parameter elements. The proposed method is a direct numerical method of time-space discretization and does not require complicated mathematical deductive process. Therefore, it is very convenient to program this method. It can be applied to sensitivity analysis of general transmission lines in linear or nonlinear circuit networks. The proposed method is second-order-accurate. Numerical experiment is presented to demonstrate its accuracy and efficiency.
文摘在无中心飞行器集群网络中,非直通条件节点间不同的中继路径可能导致较大路径损耗落差,为有限资源前提下网络传输能力的提升带来困难。参考5G移动通信中的终端直通(Device to Device,D2D)技术与中继通信中的虚拟多输入多输出(Multiple-Input Multiple-Output,MIMO)技术,提出一套D2D通信与虚拟MIMO技术结合的无中心飞行器集群网络传输方案。重点研究在正交资源模式下,将不同的协作传输协议与空时编码进行组合,在信噪比、误比特率、接入概率等方面对通信性能的影响。仿真结果表明:D2D通信与虚拟MIMO技术结合的传输方案在不增加资源的前提下,对集群网络的通信性能有明显提升,且引入分布式空时编码可进一步优化误比特率性能,但3种传输协议在不同传输质量评价方向的改善有所不同。
基金This work is supported by National Natural Science Foundation of China(No.51077042,No.51577049)Special Foundation of The doctoral program of Higher Education(No.20120094110008).
文摘As the integration of distributed generations(DGs)transforms the traditional distribution network into the active distribution network,voltage stability assessments(VSA)of transmission grid and distribution grid are not suitable to be studied separately.This paper presents a distributed continuation power flow method for VSA of global transmission and distribution grid.Two different parameterization schemes are adopted to guarantee the coherence of load growth in transmission and distribution grids.In the correction step,the boundary bus voltage,load parameter and equivalent power are communicated between the transmission and distribution control centers to realize the distributed computation of load margin.The optimal multiplier technique is used to improve the convergence of the proposed method.The three-phase unbalanced characteristic of distribution networks and the reactive capability limits of DGs are considered.Simulation results on two integrated transmission and distribution test systems show that the proposed method is effective.
基金The project was supported by the National Science and Technology Major Project of the Ministry of Science and Technology of the People’s Republic of China.
文摘Power is an important part of the energy industry,relating to national economy and people’s livelihood,and it is of great significance to ensure the security and stability in operation of power transmission and distribution system.Based on Wireless Sensor Network technology(WSN)and combined with the monitoring and operating requirements of power transmission and distribution system,this paper puts forward an application system for monitoring,inspection,security,and interactive service of layered power transmission and distribution system.Furthermore,this paper demonstrates the system verification projects in Wuxi,Jiangsu Province and Lianxiangyuan Community in Beijing,which have been widely used nationwide.