Gait is a biological typical that defines the method by that people walk.Walking is the most significant performance which keeps our day-to-day life and physical condition.Surface electromyography(sEMG)is a weak bioel...Gait is a biological typical that defines the method by that people walk.Walking is the most significant performance which keeps our day-to-day life and physical condition.Surface electromyography(sEMG)is a weak bioelectric signal that portrays the functional state between the human muscles and nervous system to any extent.Gait classifiers dependent upon sEMG signals are extremely utilized in analysing muscle diseases and as a guide path for recovery treatment.Several approaches are established in the works for gait recognition utilizing conventional and deep learning(DL)approaches.This study designs an Enhanced Artificial Algae Algorithm with Hybrid Deep Learning based Human Gait Classification(EAAA-HDLGR)technique on sEMG signals.The EAAA-HDLGR technique extracts the time domain(TD)and frequency domain(FD)features from the sEMG signals and is fused.In addition,the EAAA-HDLGR technique exploits the hybrid deep learning(HDL)model for gait recognition.At last,an EAAA-based hyperparameter optimizer is applied for the HDL model,which is mainly derived from the quasi-oppositional based learning(QOBL)concept,showing the novelty of the work.A brief classifier outcome of the EAAA-HDLGR technique is examined under diverse aspects,and the results indicate improving the EAAA-HDLGR technique.The results imply that the EAAA-HDLGR technique accomplishes improved results with the inclusion of EAAA on gait recognition.展开更多
To explore the influence of the fusion of different features on recognition,this paper took the electromyography(EMG)signals of rectus femoris under different motions(walk,step,ramp,squat,and sitting)as samples,linear...To explore the influence of the fusion of different features on recognition,this paper took the electromyography(EMG)signals of rectus femoris under different motions(walk,step,ramp,squat,and sitting)as samples,linear features(time-domain features(variance(VAR)and root mean square(RMS)),frequency-domain features(mean frequency(MF)and mean power frequency(MPF)),and nonlinear features(empirical mode decomposition(EMD))of the samples were extracted.Two feature fusion algorithms,the series splicing method and complex vector method,were designed,which were verified by a double hidden layer(BP)error back propagation neural network.Results show that with the increase of the types and complexity of feature fusions,the recognition rate of the EMG signal to actions is gradually improved.When the EMG signal is used in the series splicing method,the recognition rate of time-domain+frequency-domain+empirical mode decomposition(TD+FD+EMD)splicing is the highest,and the average recognition rate is 92.32%.And this rate is raised to 96.1%by using the complex vector method,and the variance of the BP system is also reduced.展开更多
Data fusion generates fused data by combining multiple sources,resulting in information that is more consistent,accurate,and useful than any individual source and more reliable and consistent than the raw original dat...Data fusion generates fused data by combining multiple sources,resulting in information that is more consistent,accurate,and useful than any individual source and more reliable and consistent than the raw original data,which are often imperfect,inconsistent,complex,and uncertain.Traditional data fusion methods like probabilistic fusion,set-based fusion,and evidential belief reasoning fusion methods are computationally complex and require accurate classification and proper handling of raw data.Data fusion is the process of integrating multiple data sources.Data filtering means examining a dataset to exclude,rearrange,or apportion data according to the criteria.Different sensors generate a large amount of data,requiring the development of machine learning(ML)algorithms to overcome the challenges of traditional methods.The advancement in hardware acceleration and the abundance of data from various sensors have led to the development of machine learning(ML)algorithms,expected to address the limitations of traditional methods.However,many open issues still exist as machine learning algorithms are used for data fusion.From the literature,nine issues have been identified irrespective of any application.The decision-makers should pay attention to these issues as data fusion becomes more applicable and successful.A fuzzy analytical hierarchical process(FAHP)enables us to handle these issues.It helps to get the weights for each corresponding issue and rank issues based on these calculated weights.The most significant issue identified is the lack of deep learning models used for data fusion that improve accuracy and learning quality weighted 0.141.The least significant one is the cross-domain multimodal data fusion weighted 0.076 because the whole semantic knowledge for multimodal data cannot be captured.展开更多
Image registration is an indispensable component in multi-source remote sensing image processing. In this paper, we put forward a remote sensing image registration method by including an improved multi-scale and multi...Image registration is an indispensable component in multi-source remote sensing image processing. In this paper, we put forward a remote sensing image registration method by including an improved multi-scale and multi-direction Harris algorithm and a novel compound feature. Multi-scale circle Gaussian combined invariant moments and multi-direction gray level co-occurrence matrix are extracted as features for image matching. The proposed algorithm is evaluated on numerous multi-source remote sensor images with noise and illumination changes. Extensive experimental studies prove that our proposed method is capable of receiving stable and even distribution of key points as well as obtaining robust and accurate correspondence matches. It is a promising scheme in multi-source remote sensing image registration.展开更多
基于视频的目标检测在恶劣天气情况下识别效果较差,故需弥补视频缺陷、提高检测框架的鲁棒性。针对此问题,文中设计了一个基于雷达和视频融合的目标检测框架,利用YOLOv5(You Only Look Once version 5)网络获得图片特征图与图片检测框,...基于视频的目标检测在恶劣天气情况下识别效果较差,故需弥补视频缺陷、提高检测框架的鲁棒性。针对此问题,文中设计了一个基于雷达和视频融合的目标检测框架,利用YOLOv5(You Only Look Once version 5)网络获得图片特征图与图片检测框,利用基于密度的聚类获得雷达检测框,并将雷达数据进行编码,得到基于雷达信息的目标检测结果。最后将两者的检测框叠加得到新ROI(Region of Interest),并得到融合雷达信息后的分类向量,提高了在极端天气下检测的准确率。实验结果表明,该框架的mAP(mean Average Precision)达到了60.07%,且参数量仅为7.64×10^(6),表明该框架具有轻量级、计算速度快、鲁棒性高等特点,可以被广泛应用于嵌入式与移动端平台。展开更多
基金supported by a grant from the Korea Health Technology R&D Project through the KoreaHealth Industry Development Institute (KHIDI)funded by the Ministry of Health&Welfare,Republic of Korea (grant number:HI21C1831)the Soonchunhyang University Research Fund.
文摘Gait is a biological typical that defines the method by that people walk.Walking is the most significant performance which keeps our day-to-day life and physical condition.Surface electromyography(sEMG)is a weak bioelectric signal that portrays the functional state between the human muscles and nervous system to any extent.Gait classifiers dependent upon sEMG signals are extremely utilized in analysing muscle diseases and as a guide path for recovery treatment.Several approaches are established in the works for gait recognition utilizing conventional and deep learning(DL)approaches.This study designs an Enhanced Artificial Algae Algorithm with Hybrid Deep Learning based Human Gait Classification(EAAA-HDLGR)technique on sEMG signals.The EAAA-HDLGR technique extracts the time domain(TD)and frequency domain(FD)features from the sEMG signals and is fused.In addition,the EAAA-HDLGR technique exploits the hybrid deep learning(HDL)model for gait recognition.At last,an EAAA-based hyperparameter optimizer is applied for the HDL model,which is mainly derived from the quasi-oppositional based learning(QOBL)concept,showing the novelty of the work.A brief classifier outcome of the EAAA-HDLGR technique is examined under diverse aspects,and the results indicate improving the EAAA-HDLGR technique.The results imply that the EAAA-HDLGR technique accomplishes improved results with the inclusion of EAAA on gait recognition.
基金support by the Aerospace Research Project of China under Grant No.020202。
文摘To explore the influence of the fusion of different features on recognition,this paper took the electromyography(EMG)signals of rectus femoris under different motions(walk,step,ramp,squat,and sitting)as samples,linear features(time-domain features(variance(VAR)and root mean square(RMS)),frequency-domain features(mean frequency(MF)and mean power frequency(MPF)),and nonlinear features(empirical mode decomposition(EMD))of the samples were extracted.Two feature fusion algorithms,the series splicing method and complex vector method,were designed,which were verified by a double hidden layer(BP)error back propagation neural network.Results show that with the increase of the types and complexity of feature fusions,the recognition rate of the EMG signal to actions is gradually improved.When the EMG signal is used in the series splicing method,the recognition rate of time-domain+frequency-domain+empirical mode decomposition(TD+FD+EMD)splicing is the highest,and the average recognition rate is 92.32%.And this rate is raised to 96.1%by using the complex vector method,and the variance of the BP system is also reduced.
基金supported in part by the Higher Education Sprout Project from the Ministry of Education(MOE)and National Science and Technology Council,Taiwan(109-2628-E-224-001-MY3,112-2622-E-224-003)and in part by Isuzu Optics Corporation.Dr.Shih-Yu Chen is the corresponding author.
文摘Data fusion generates fused data by combining multiple sources,resulting in information that is more consistent,accurate,and useful than any individual source and more reliable and consistent than the raw original data,which are often imperfect,inconsistent,complex,and uncertain.Traditional data fusion methods like probabilistic fusion,set-based fusion,and evidential belief reasoning fusion methods are computationally complex and require accurate classification and proper handling of raw data.Data fusion is the process of integrating multiple data sources.Data filtering means examining a dataset to exclude,rearrange,or apportion data according to the criteria.Different sensors generate a large amount of data,requiring the development of machine learning(ML)algorithms to overcome the challenges of traditional methods.The advancement in hardware acceleration and the abundance of data from various sensors have led to the development of machine learning(ML)algorithms,expected to address the limitations of traditional methods.However,many open issues still exist as machine learning algorithms are used for data fusion.From the literature,nine issues have been identified irrespective of any application.The decision-makers should pay attention to these issues as data fusion becomes more applicable and successful.A fuzzy analytical hierarchical process(FAHP)enables us to handle these issues.It helps to get the weights for each corresponding issue and rank issues based on these calculated weights.The most significant issue identified is the lack of deep learning models used for data fusion that improve accuracy and learning quality weighted 0.141.The least significant one is the cross-domain multimodal data fusion weighted 0.076 because the whole semantic knowledge for multimodal data cannot be captured.
基金supported by National Nature Science Foundation of China (Nos. 61462046 and 61762052)Natural Science Foundation of Jiangxi Province (Nos. 20161BAB202049 and 20161BAB204172)+2 种基金the Bidding Project of the Key Laboratory of Watershed Ecology and Geographical Environment Monitoring, NASG (Nos. WE2016003, WE2016013 and WE2016015)the Science and Technology Research Projects of Jiangxi Province Education Department (Nos. GJJ160741, GJJ170632 and GJJ170633)the Art Planning Project of Jiangxi Province (Nos. YG2016250 and YG2017381)
文摘Image registration is an indispensable component in multi-source remote sensing image processing. In this paper, we put forward a remote sensing image registration method by including an improved multi-scale and multi-direction Harris algorithm and a novel compound feature. Multi-scale circle Gaussian combined invariant moments and multi-direction gray level co-occurrence matrix are extracted as features for image matching. The proposed algorithm is evaluated on numerous multi-source remote sensor images with noise and illumination changes. Extensive experimental studies prove that our proposed method is capable of receiving stable and even distribution of key points as well as obtaining robust and accurate correspondence matches. It is a promising scheme in multi-source remote sensing image registration.
文摘基于视频的目标检测在恶劣天气情况下识别效果较差,故需弥补视频缺陷、提高检测框架的鲁棒性。针对此问题,文中设计了一个基于雷达和视频融合的目标检测框架,利用YOLOv5(You Only Look Once version 5)网络获得图片特征图与图片检测框,利用基于密度的聚类获得雷达检测框,并将雷达数据进行编码,得到基于雷达信息的目标检测结果。最后将两者的检测框叠加得到新ROI(Region of Interest),并得到融合雷达信息后的分类向量,提高了在极端天气下检测的准确率。实验结果表明,该框架的mAP(mean Average Precision)达到了60.07%,且参数量仅为7.64×10^(6),表明该框架具有轻量级、计算速度快、鲁棒性高等特点,可以被广泛应用于嵌入式与移动端平台。