期刊文献+
共找到994篇文章
< 1 2 50 >
每页显示 20 50 100
基于信号接口的IVI驱动器设计标准——IVI-Signal Interface及其应用 被引量:7
1
作者 刘金宁 孟晨 +1 位作者 方新 陈德祥 《测控技术》 CSCD 2004年第4期68-70,73,共4页
仪器互换性是通用ATS设计的重要指标。回顾仪器互换技术的发展过程 ,重点论述了IVI基金会在IVI -MSS(measure mentandstimulussubsystem)模型基础上提出的IVI -SignalInter face仪器驱动器设计标准 ,分析了它的技术规范、结构框架、工... 仪器互换性是通用ATS设计的重要指标。回顾仪器互换技术的发展过程 ,重点论述了IVI基金会在IVI -MSS(measure mentandstimulussubsystem)模型基础上提出的IVI -SignalInter face仪器驱动器设计标准 ,分析了它的技术规范、结构框架、工程应用和商业效应。IVI -SignalInterface标准基于信号接口 ,实现了更高层次的仪器互换 ,指明了未来驱动器设计的发展方向。 展开更多
关键词 IVI—signal interface 信号接口 互换性 驱动器 虚拟仪器
下载PDF
Cycle-by-Cycle Queue Length Estimation for Signalized Intersections Using Multi-Source Data 被引量:4
2
作者 Zhongyu Wang Qing Cai +2 位作者 Bing Wu Yinhai Wang Linbo Li 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2015年第2期86-93,共8页
In order to estimate vehicular queue length at signalized intersections accurately and overcome the shortcomings and restrictions of existing studies especially those based on shockwave theory,a new methodology is pre... In order to estimate vehicular queue length at signalized intersections accurately and overcome the shortcomings and restrictions of existing studies especially those based on shockwave theory,a new methodology is presented for estimating vehicular queue length using data from both point detectors and probe vehicles. The methodology applies the shockwave theory to model queue evolution over time and space. Using probe vehicle locations and times as well as point detector measured traffic states,analytical formulations for calculating the maximum and minimum( residual) queue length are developed. The proposed methodology is verified using ground truth data collected from numerical experiments conducted in Shanghai,China. It is found that the methodology has a mean absolute percentage error of 17. 09%,which is reasonably effective in estimating the queue length at traffic signalized intersections. Limitations of the proposed models and algorithms are also discussed in the paper. 展开更多
关键词 QUEUE LENGTH estimation multi-source data TRAFFIC signalS TRAFFIC SHOCKWAVE theory
下载PDF
Interface Design Of Digital Platform For Bio Signal Processing
3
作者 Jongsik Park Moonsu Jang Seongoo Lee 《Journal of Measurement Science and Instrumentation》 CAS 2010年第S1期129-132,共4页
Bio-sensor arrays for multi-channel recording have been developed recently and signal processing platforms for those signals have been studied actively.But it’s thereal situation which these technologies are generall... Bio-sensor arrays for multi-channel recording have been developed recently and signal processing platforms for those signals have been studied actively.But it’s thereal situation which these technologies are generally developed and studied respectively.So the interface design between recording array and signal processing platform is also an important issue to make bio-sensor signal processing system.In this paper,we proposed interface which has unique protocols to control sensor array and operate platform.There are two types of protocols in the interface.One is between sensor array and MCU in platform and the other is between MCU and board for wireless communication.Basically,each protocol has two kinds of modes(single,frame)and it can be extended if needed. 展开更多
关键词 interface bio-sensor digital platform signal processing
下载PDF
33% Classification Accuracy Improvement in a Motor Imagery Brain Computer Interface
4
作者 E. Bou Assi S. Rihana M. Sawan 《Journal of Biomedical Science and Engineering》 2017年第6期326-341,共16页
A right-hand motor imagery based brain-computer interface is proposed in this work. Such a system requires the identification of different brain states and their classification. Brain signals recorded by electroenceph... A right-hand motor imagery based brain-computer interface is proposed in this work. Such a system requires the identification of different brain states and their classification. Brain signals recorded by electroencephalography are naturally contaminated by various noises and interferences. Ocular artifact removal is performed by implementing an auto-matic method “Kmeans-ICA” which does not require a reference channel. This method starts by decomposing EEG signals into Independent Components;artefactual ones are then identified using Kmeans clustering, a non-supervised machine learning technique. After signal preprocessing, a Brain computer interface system is implemented;physiologically interpretable features extracting the wavelet-coherence, the wavelet-phase locking value and band power are computed and introduced into a statistical test to check for a significant difference between relaxed and motor imagery states. Features which pass the test are conserved and used for classification. Leave One Out Cross Validation is performed to evaluate the performance of the classifier. Two types of classifiers are compared: a Linear Discriminant Analysis and a Support Vector Machine. Using a Linear Discriminant Analysis, classification accuracy improved from 66% to 88.10% after ocular artifacts removal using Kmeans-ICA. The proposed methodology outperformed state of art feature extraction methods, namely, the mu rhythm band power. 展开更多
关键词 BRAIN COMPUTER interface MOTOR IMAGERY signal Processing FEATURE Extraction Kmeans Clustering CLASSIFICATION
下载PDF
On Similarities and Differences of Invasive and Non-Invasive Electrical Brain Signals in Brain-Computer Interfacing
5
作者 David Steyrl Reinmar J. Kobler Gernot R. Müller-Putz 《Journal of Biomedical Science and Engineering》 2016年第8期393-398,共7页
We perceive that some Brain-Computer Interface (BCI) researchers believe in totally different origins of invasive and non-invasive electrical BCI signals. Based on available literature we argue, however, that although... We perceive that some Brain-Computer Interface (BCI) researchers believe in totally different origins of invasive and non-invasive electrical BCI signals. Based on available literature we argue, however, that although invasive and non-invasive BCI signals are different, the underlying origin of electrical BCIs signals is the same. 展开更多
关键词 Brain-Computer interfaces Electrical Brain signals Invasive signals Non-Invasive signals COMPARISON
下载PDF
DEVELOPMENT OF A PRECISE ELECTRO CHEMICAL INTERFACE
6
作者 冯业铭 《Journal of China University of Mining and Technology》 1995年第1期74-81,共8页
Based on the circuit principle of 1186 Electro Chemical Interface preduced by Solartron Electronic Group Ltd., a precise electro chemical interface (ECI) unit, which can provide the interfacing requirements for the co... Based on the circuit principle of 1186 Electro Chemical Interface preduced by Solartron Electronic Group Ltd., a precise electro chemical interface (ECI) unit, which can provide the interfacing requirements for the control and measurement of characteristics of electro chemical cell, was developed by means of some essential improvements. Not only can it be used to control and measure the steady and non-steady state characteristics, but also it can be directly connected with Solartron 1170 series or 1250 Frequency Response Analysers (FRA) to measure the AC impedance. Besides,the EC1 can also be connected with two- or three-electrode electro chemical cell systems to test convenlently and correctly their DC and AC characteristics, and used as a four-electrode potentlostat combined with four-electrode electro chernical cell system which contains two reference electrodes (RES) for researches on the electro chemical characteristics of oil-water interface, etc. 展开更多
关键词 electro chemical interface (ECI) POTENTIOSTAT signal scanning four-electrode f oil-water interface
下载PDF
基于IVI-Signal标准的自动测试系统驱动研究 被引量:3
7
作者 张光轶 许爱强 牛双诚 《计算机测量与控制》 CSCD 2007年第2期151-153,共3页
建立通用测试软件平台,实现测试程序集和仪器资源的无关性设计是通用ATS的发展方向;驱动程序作为连接测试程序集和仪器资源的桥梁,在“无关性设计”中起着决定性作用;在分析自动测试系统基本理论和基于IVI-Signal标准的ATS软件平台体系... 建立通用测试软件平台,实现测试程序集和仪器资源的无关性设计是通用ATS的发展方向;驱动程序作为连接测试程序集和仪器资源的桥梁,在“无关性设计”中起着决定性作用;在分析自动测试系统基本理论和基于IVI-Signal标准的ATS软件平台体系基础上,运用组件技术划分信号角色、定义信号接口,根据仪器资源信号能力提出资源配置文件设计方法并给出XML语言实例,提供了基于测试资源信号能力的驱动设计方案,验证了IVI-Signal标准的可行性,为进一步工程实现提供了依据。 展开更多
关键词 自动测试系统 接口 信号角色 信号驱动
下载PDF
Performance Analysis of Machine Learning Algorithms for Classifying Hand Motion-Based EEG Brain Signals 被引量:1
8
作者 Ayman Altameem Jaideep Singh Sachdev +3 位作者 Vijander Singh Ramesh Chandra Poonia Sandeep Kumar Abdul Khader Jilani Saudagar 《Computer Systems Science & Engineering》 SCIE EI 2022年第9期1095-1107,共13页
Brain-computer interfaces (BCIs) records brain activity using electroencephalogram (EEG) headsets in the form of EEG signals;these signals can berecorded, processed and classified into different hand movements, which... Brain-computer interfaces (BCIs) records brain activity using electroencephalogram (EEG) headsets in the form of EEG signals;these signals can berecorded, processed and classified into different hand movements, which can beused to control other IoT devices. Classification of hand movements will beone step closer to applying these algorithms in real-life situations using EEGheadsets. This paper uses different feature extraction techniques and sophisticatedmachine learning algorithms to classify hand movements from EEG brain signalsto control prosthetic hands for amputated persons. To achieve good classificationaccuracy, denoising and feature extraction of EEG signals is a significant step. Wesaw a considerable increase in all the machine learning models when the movingaverage filter was applied to the raw EEG data. Feature extraction techniques likea fast fourier transform (FFT) and continuous wave transform (CWT) were usedin this study;three types of features were extracted, i.e., FFT Features, CWTCoefficients and CWT scalogram images. We trained and compared differentmachine learning (ML) models like logistic regression, random forest, k-nearestneighbors (KNN), light gradient boosting machine (GBM) and XG boost onFFT and CWT features and deep learning (DL) models like VGG-16, DenseNet201 and ResNet50 trained on CWT scalogram images. XG Boost with FFTfeatures gave the maximum accuracy of 88%. 展开更多
关键词 Machine learning brain signal hand motion recognition braincomputer interface convolutional neural networks
下载PDF
Classification of Imagined Speech EEG Signals with DWT and SVM 被引量:4
9
作者 ZHANG Lingwei ZHOU Zhengdong +3 位作者 XU Yunfei JI Wentao WANG Jiawen SONG Zefeng 《Instrumentation》 2022年第2期56-63,共8页
With the development of human-computer interaction technology,brain-computer interface(BCI)has been widely used in medical,entertainment,military,and other fields.Imagined speech is the latest paradigm of BCI and repr... With the development of human-computer interaction technology,brain-computer interface(BCI)has been widely used in medical,entertainment,military,and other fields.Imagined speech is the latest paradigm of BCI and represents the mental process of imagining a word without making a sound or making clear facial movements.Imagined speech allows patients with physical disabilities to communicate with the outside world and use smart devices through imagination.Imagined speech can meet the needs of more complex manipulative tasks considering its more intuitive features.This study proposes a classification method of imagined speech Electroencephalogram(EEG)signals with discrete wavelet transform(DWT)and support vector machine(SVM).An open dataset that consists of 15 subjects imagining speaking six different words,namely,up,down,left,right,backward,and forward,is used.The objective is to improve the classification accuracy of imagined speech BCI system.The features of EEG signals are first extracted by DWT,and the imagined words are clas-sified by SVM with the above features.Experimental results show that the proposed method achieves an average accuracy of 61.69%,which is better than those of existing methods for classifying imagined speech tasks. 展开更多
关键词 Brain-computer interface(BCI) EEG Imagined Speech Discrete Wavelet Transform(DWT) signal Processing Support Vector Machine(SVM)
下载PDF
Development of prosthetic arm using body actioned SEMG signals
10
作者 Karan Veer Tanu Sharma Amod Kumar 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2016年第6期58-65,共8页
People's working capability is badly affected when they sufer an amputated arm.Artifcial replacements with prosthetic devices to get a satisfactory level of performance for essential functions with the currently a... People's working capability is badly affected when they sufer an amputated arm.Artifcial replacements with prosthetic devices to get a satisfactory level of performance for essential functions with the currently available prosthetic technology are very dificult.Myoelectric arm prostheses are becoming popular because they are operated by a natural contraction of intact muscles.Hence,SEMG based artifdal arm was fabricated.The system cousists of diferent electronic and mechanical assemblies for operation of hand utilizing microcontroller in order to have minimum signal loss during its processing.With the hep of relay switching connected to low power DC motor,system is capable of opening and closing of grip according to individual wish. 展开更多
关键词 SEMG electrodes variable gripping myoelectric controls electronic interface signals processing.
下载PDF
A Method of SSVEP Signal Identification Based on Improved eCAA 被引量:1
11
作者 LI Jiaxin DAI Fengzhi +2 位作者 YIN Di LU Peng WEN Haokang 《Instrumentation》 2023年第4期1-11,共11页
Brain-computer interfaces(BCI)based on steady-state visual evoked potentials(SSVEP)have attracted great interest because of their higher signal-to-noise ratio,less training,and faster information transfer.However,the ... Brain-computer interfaces(BCI)based on steady-state visual evoked potentials(SSVEP)have attracted great interest because of their higher signal-to-noise ratio,less training,and faster information transfer.However,the existing signal recognition methods for SSVEP do not fully pay attention to the important role of signal phase characteristics in the recognition process.Therefore,an improved method based on extended Canonical Correlation Analysis(eCCA)is proposed.The phase parameters are added from the stimulus paradigm encoded by joint frequency phase modulation to the reference signal constructed from the training data of the subjects to achieve phase constraints on eCCA,thereby improving the recognition performance of the eCCA method for SSVEP signals,and transmit the collected signals to the robotic arm system to achieve control of the robotic arm.In order to verify the effectiveness and advantages of the proposed method,this paper evaluated the method using SSVEP signals from 35 subjects.The research shows that the proposed algorithm improves the average recognition rate of SSVEP signals to 82.76%,and the information transmission rate to 116.18 bits/min,which is superior to TRCA and traditional eCAA-based methods in terms of information transmission speed and accuracy,and has better stability. 展开更多
关键词 Brain-computer interface Electroencephalographic signal Extended Canonical Correlation Analysis(eCCA) MANIPULATOR Steady State Visual Evoked Potential
下载PDF
不同粗糙度煤岩界面超低摩擦效应与声发射特征试验研究 被引量:4
12
作者 李利萍 胡学锦 +1 位作者 潘一山 孙媛涛 《力学学报》 EI CAS CSCD 北大核心 2024年第4期1047-1056,共10页
为了揭示动载扰动作用下煤岩界面粗糙度对超低摩擦型冲击地压影响机制,采用自行研制的煤岩界面超低摩擦试验装置,以沈阳红阳三矿1082 m采深煤岩体为研究对象,通过改变煤块与砂岩块体表面粗糙度来模拟煤岩界面不同粗糙特性,以粗糙度系数... 为了揭示动载扰动作用下煤岩界面粗糙度对超低摩擦型冲击地压影响机制,采用自行研制的煤岩界面超低摩擦试验装置,以沈阳红阳三矿1082 m采深煤岩体为研究对象,通过改变煤块与砂岩块体表面粗糙度来模拟煤岩界面不同粗糙特性,以粗糙度系数表征煤岩界面粗糙程度,工作块体水平位移表征冲击过程中超低摩擦效应强度,声发射能量为工作块体摩擦滑动过程中的信号参数,进行应力波扰动下不同粗糙度煤岩界面超低摩擦试验.研究结果表明:(1)超低摩擦滑动过程中,工作块体水平位移、声发射能量计数以及累计能量曲线呈现出孕育阶段、激发阶段、稳定阶段变化特征;(2)煤岩界面粗糙度越小,工作块体水平位移和声发射能量峰值越大,煤岩界面越易发生超低摩擦效应;(3)不同煤岩界面粗糙度下,相比于其他扰动频率, 2 Hz时更易发生超低摩擦效应;(4)给出了声发射能量峰值与煤岩界面粗糙度系数对应关系.声发射能量峰值可以有效表征超低摩擦效应强度,可以用声发射能量峰值预测超低摩擦效应强度. 展开更多
关键词 煤岩界面 粗糙度 煤岩块体 超低摩擦效应 声发射信号
下载PDF
跨被试运动想象脑电信号的卷积神经网络识别方法
13
作者 魏明桦 《绵阳师范学院学报》 2024年第2期90-97,105,共9页
本文提出一种跨被试的深度神经网络识别方法,应对运动想象脑电信号的非线性、非平稳特性.该方法首先计算协方差矩阵均值,将不同被试者样本集的协方差对齐至单位矩阵,提升样本的被试间泛化性.然后,将对齐后的样本输入至卷积神经网络中,... 本文提出一种跨被试的深度神经网络识别方法,应对运动想象脑电信号的非线性、非平稳特性.该方法首先计算协方差矩阵均值,将不同被试者样本集的协方差对齐至单位矩阵,提升样本的被试间泛化性.然后,将对齐后的样本输入至卷积神经网络中,通过留一被试交叉验证法,构建跨被试的运动想象脑电信号识别方法.在BCI Competition IV dataset 2b公开数据集上进行实验,结果表明,新的方法在该数据集上取得了高的识别性能,且测试场景中的时间复杂度与现有方法相同. 展开更多
关键词 运动想象 跨被试 脑机接口 脑电信号 迁移学习
下载PDF
轨道交通信号联锁列控一体化系统软硬件设计
14
作者 邓丽敏 《科技创新与应用》 2024年第20期134-137,共4页
该文主要探究联锁列控一体化系统的软硬件设计内容。该系统的软件部分使用VC++6.0开发,包含4个功能模块,分别是进路选排、进路锁闭、信号开放与进路解锁,可以实现车站与区间范围内信号设备的一体控制,并处理进路命令和控制地面设备;该... 该文主要探究联锁列控一体化系统的软硬件设计内容。该系统的软件部分使用VC++6.0开发,包含4个功能模块,分别是进路选排、进路锁闭、信号开放与进路解锁,可以实现车站与区间范围内信号设备的一体控制,并处理进路命令和控制地面设备;该系统的硬件部分包括STM32主控芯片和PCI版驱动采集板,以及CAN通信接口等,在保证通信速率与通信质量的基础上,实现上位机与下位机的信息共享与可靠交互。该系统以轨道交通信号为基础数据,在数据采集、分析的基础上为监控列车运行和保障行驶安全提供帮助。 展开更多
关键词 轨道交通信号 联锁列控一体化 进路锁闭 PCI驱采板 通信接口
下载PDF
界面设计影响蒙汉用户视觉注意的脑电研究 被引量:3
15
作者 齐悦廷 韩海燕 +2 位作者 韩晓宇 张婧文 李娜 《包装工程》 CAS 北大核心 2024年第6期290-298,共9页
目的比较蒙、汉用户在不同界面布局的条件刺激下视觉注意对脑电刺激诱发响应的调节和影响作用。方法基于Oddball实验范式的事件相关电位技术,采用图文形式和纯文本形式的宫格式、标签式,以及侧面展开式界面布局刺激,结合分析脑电数据和... 目的比较蒙、汉用户在不同界面布局的条件刺激下视觉注意对脑电刺激诱发响应的调节和影响作用。方法基于Oddball实验范式的事件相关电位技术,采用图文形式和纯文本形式的宫格式、标签式,以及侧面展开式界面布局刺激,结合分析脑电数据和行为数据,探究界面布局设计对蒙、汉用户视觉注意的影响。结果对视觉注意的早期阶段进行研究后发现,图文形式宫格式布局对汉族用户的视觉注意具有显著的刺激和调节作用,而图文形式侧面展开式布局对蒙古族双语用户的视觉注意有显著的刺激和调节作用。通过P300成分波幅发现蒙、汉用户的情绪发生变化,蒙、汉用户在纯文本形式标签式布局界面的影响下产生消极情绪,波幅降低。结论在事件相关电位技术中,通过P100成分与P300成分的波幅强度变化,可以作为界面布局刺激条件下衡量比较不同民族地区用户视觉注意与情感体验的观测量。 展开更多
关键词 界面布局 视觉注意 脑电信号 用户研究
下载PDF
基于MATLAB的《信号与系统》教学辅助系统设计
16
作者 郑素珍 《通信与信息技术》 2024年第6期117-119,共3页
信号与系统作为电子信息类专业十分重要的专业基础课程,一直以来都具有理论性强、概念抽象、难以理解的特点。MATLAB具有强大的数值计算、可视化功能和系统建模仿真能力,在高校和科研机构应用极为广泛。为提高学生对本门学科的学习兴趣... 信号与系统作为电子信息类专业十分重要的专业基础课程,一直以来都具有理论性强、概念抽象、难以理解的特点。MATLAB具有强大的数值计算、可视化功能和系统建模仿真能力,在高校和科研机构应用极为广泛。为提高学生对本门学科的学习兴趣,加深对课程内容的理解掌握,文中从信号与系统教学的需求、基于MATLAB的信号与系统教学分析现状以及二者结合运用下的广大前景出发,重点介绍了利用信号与系统的各重要知识点基本原理,运用MATLAB工具箱函数编程实现了信号与系统重要内容的模拟仿真,并设计了基于MATLAB的GUI教学辅助系统。 展开更多
关键词 信号与系统 MATLAB 图形用户界面GUI 教学辅助系统
下载PDF
基于FPGA的LVDS+RS422远距离高速通信设计与实现 被引量:2
17
作者 赵冬青 王越涛 +1 位作者 李东星 武慧军 《电子设计工程》 2024年第1期158-163,共6页
针对高速信号远距离传输时存在数据可靠性下降的问题,文中设计了一种基于FPGA的软硬件结合的长线传输方案。该系统在数据传输过程中,采用NI公司的LVDS串化器芯片SN65LV1023A和SN65LV1024B作为发送与接收芯片。驱动器和均衡器的配合使用... 针对高速信号远距离传输时存在数据可靠性下降的问题,文中设计了一种基于FPGA的软硬件结合的长线传输方案。该系统在数据传输过程中,采用NI公司的LVDS串化器芯片SN65LV1023A和SN65LV1024B作为发送与接收芯片。驱动器和均衡器的配合使用,减少了信号衰减,同时增加了电路的驱动能力和信号传输距离。在指令传输与状态反馈的电路中采用RS422通信协议,并加入保证传输可靠性的隔离芯片,极大地简化了电路。在软件方面为提高抗干扰能力,添加了8B/10B编码、指令的三判二机制和校验字,降低了误码率,提高了传输稳定性。经验证,此设计可在90 m电缆以320 Mbit/s速率零误码传输。 展开更多
关键词 FPGA 低压差分信号 RS422接口 8B/10B解编码
下载PDF
脑机接口技术发展现状及未来展望
18
作者 《脑机接口关键科学问题、关键核心技术及其布局研究》项目组 肖松 +9 位作者 程和平 吴朝晖 张旭 王以政 陈婧 潘纲 陶虎 尧德中 段小洁 王刚 《科学与社会》 CSSCI 2024年第3期1-25,共25页
本文回顾了脑机接口技术(BCI)的发展历程,从20世纪20年代的科学幻想期到21世纪的技术爆发期,概述了BCI技术在各个阶段的关键进展和成就。文中阐述了BCI技术的基本组成部分及其分类方式,包括不同类型的BCI系统(输出式、输入式、双向交互... 本文回顾了脑机接口技术(BCI)的发展历程,从20世纪20年代的科学幻想期到21世纪的技术爆发期,概述了BCI技术在各个阶段的关键进展和成就。文中阐述了BCI技术的基本组成部分及其分类方式,包括不同类型的BCI系统(输出式、输入式、双向交互式)和信号采集方式(非侵入式、半侵入式、侵入式),并探讨了BCI技术在当前面临的心理生理学、技术、产业和监管等方面的挑战。最后,文章展望了BCI技术的未来发展方向,预计在未来几十年内,BCI技术将在硬件优化、软件集成、算法创新等方面取得显著进展,并可能实现在医疗、教育、娱乐乃至人机交互等多个领域的广泛应用。 展开更多
关键词 脑机接口 信号处理 康复应用 心理生理学 技术挑战 未来趋势
下载PDF
嵌入式系统中运动想象脑-机接口编解码算法综述
19
作者 于钦雯 周王成 +1 位作者 戴亚康 刘燕 《计算机工程与应用》 CSCD 北大核心 2024年第18期50-65,共16页
脑-机接口技术通过在大脑与外部设备之间建立信息传输通路,使用户能够对外部设备进行直接控制。近年来,基于运动想象范式的脑-机接口编解码算法研究在医疗健康、教育娱乐及日常生活设备中的应用范围越来越广,这些算法通常需要嵌入到硬... 脑-机接口技术通过在大脑与外部设备之间建立信息传输通路,使用户能够对外部设备进行直接控制。近年来,基于运动想象范式的脑-机接口编解码算法研究在医疗健康、教育娱乐及日常生活设备中的应用范围越来越广,这些算法通常需要嵌入到硬件设备中来满足实际应用的需求。介绍了近年来嵌入式系统中运动想象脑-机接口编解码算法研究现状,从传统机器学习算法和深度学习算法两个角度指出其对应的优缺点。重点介绍四类常用嵌入式平台的代表性设备及其优缺点,并针对不同的应用场景给出相应的硬件选型建议。归纳了更适用于嵌入式脑-机接口系统的评价指标并最终总结了领域内现存的挑战与未来发展方向。 展开更多
关键词 脑-机接口 运动想象 脑电信号编解码算法 嵌入式系统
下载PDF
脑机接口中脑电图-近红外光谱联合分析进展研究
20
作者 张力新 周鸿展 +3 位作者 王东 孟佳圆 许敏鹏 明东 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第3期790-797,共8页
脑机接口(BCI)能将受试者意图相关的大脑活动转化为外部设备控制指令,在神经疾病治疗、运动康复等方面具有较高应用潜力。BCI的实现需从人脑获取有意义的信号,而脑电图(EEG)可以反映神经电活动,主要用于对反映实时性要求较高的BCI系统;... 脑机接口(BCI)能将受试者意图相关的大脑活动转化为外部设备控制指令,在神经疾病治疗、运动康复等方面具有较高应用潜力。BCI的实现需从人脑获取有意义的信号,而脑电图(EEG)可以反映神经电活动,主要用于对反映实时性要求较高的BCI系统;近红外光谱(NIRS)主要反映血流动力学水平,一般用于神经生理状态等需要精确定位脑活跃区域的研究。EEG和NIRS因其非侵入、方便穿戴、成本较低等优点,成为BCI的重要信号获取方法。相比于单模态BCI系统,基于EEG-NIRS联合分析的混合BCI系统由于具有更丰富的信号特征,在生理状态检测、运动想象等领域得到了越来越多的关注与研究。该文从EEG-NIRS联合分析在脑机接口中应用的研究现状出发,在数据和特征融合程度、层面上归纳最近的相关领域研究现状,并对EEG-NIRS信号处理手段的研究前景进行了展望。 展开更多
关键词 信号处理 脑机接口 脑电图 近红外光谱
下载PDF
上一页 1 2 50 下一页 到第
使用帮助 返回顶部