期刊文献+
共找到2,796篇文章
< 1 2 140 >
每页显示 20 50 100
An Efficient Modelling of Oversampling with Optimal Deep Learning Enabled Anomaly Detection in Streaming Data
1
作者 R.Rajakumar S.Sathiya Devi 《China Communications》 SCIE CSCD 2024年第5期249-260,共12页
Recently,anomaly detection(AD)in streaming data gained significant attention among research communities due to its applicability in finance,business,healthcare,education,etc.The recent developments of deep learning(DL... Recently,anomaly detection(AD)in streaming data gained significant attention among research communities due to its applicability in finance,business,healthcare,education,etc.The recent developments of deep learning(DL)models find helpful in the detection and classification of anomalies.This article designs an oversampling with an optimal deep learning-based streaming data classification(OS-ODLSDC)model.The aim of the OSODLSDC model is to recognize and classify the presence of anomalies in the streaming data.The proposed OS-ODLSDC model initially undergoes preprocessing step.Since streaming data is unbalanced,support vector machine(SVM)-Synthetic Minority Over-sampling Technique(SVM-SMOTE)is applied for oversampling process.Besides,the OS-ODLSDC model employs bidirectional long short-term memory(Bi LSTM)for AD and classification.Finally,the root means square propagation(RMSProp)optimizer is applied for optimal hyperparameter tuning of the Bi LSTM model.For ensuring the promising performance of the OS-ODLSDC model,a wide-ranging experimental analysis is performed using three benchmark datasets such as CICIDS 2018,KDD-Cup 1999,and NSL-KDD datasets. 展开更多
关键词 anomaly detection deep learning hyperparameter optimization OVERSAMPLING SMOTE streaming data
下载PDF
Multi-source heterogeneous data access management framework and key technologies for electric power Internet of Things
2
作者 Pengtian Guo Kai Xiao +1 位作者 Xiaohui Wang Daoxing Li 《Global Energy Interconnection》 EI CSCD 2024年第1期94-105,共12页
The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initiall... The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT. 展开更多
关键词 Power Internet of Things Object model High concurrency access Zero trust mechanism multi-source heterogeneous data
下载PDF
Runout prediction of potential landslides based on the multi-source data collaboration analysis on historical cases
3
作者 Jun Sun Yu Zhuang Ai-guo Xing 《China Geology》 CAS CSCD 2024年第2期264-276,共13页
Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to pred... Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters.This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events.Specifically,for the historical landslide cases,the landslide-induced seismic signal,geophysical surveys,and possible in-situ drone/phone videos(multi-source data collaboration)can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical(rheological)parameters.Subsequently,the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events.Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou,China gives reasonable results in comparison to the field observations.The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region(2019 Shuicheng landslide).The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide. 展开更多
关键词 Landslide runout prediction Drone survey multi-source data collaboration DAN3D numerical modeling Jianshanying landslide Guizhou Province Geological hazards survey engineering
下载PDF
Approach to Anomaly Detection in Microservice System with Multi-Source Data Streams
4
作者 ZHANG Qixun HAN Jing +2 位作者 CHENG Li ZHANG Baisheng GONG Zican 《ZTE Communications》 2022年第3期85-92,共8页
Microservices have become popular in enterprises because of their excellent scalability and timely update capabilities.However,while fine-grained modularity and service-orientation decrease the complexity of system de... Microservices have become popular in enterprises because of their excellent scalability and timely update capabilities.However,while fine-grained modularity and service-orientation decrease the complexity of system development,the complexity of system operation and maintenance has been greatly increased,on the contrary.Multiple types of system failures occur frequently,and it is hard to detect and diagnose failures in time.Furthermore,microservices are updated frequently.Existing anomaly detection models depend on offline training and cannot adapt to the frequent updates of microservices.This paper proposes an anomaly detection approach for microservice systems with multi-source data streams.This approach realizes online model construction and online anomaly detection,and is capable of self-updating and self-adapting.Experimental results show that this approach can correctly identify 78.85%of faults of different types. 展开更多
关键词 anomaly detection data stream microservice monitored indicator system log
下载PDF
Separation method for multi-source blended seismic data
5
作者 王汉闯 陈生昌 +1 位作者 张博 佘德平 《Applied Geophysics》 SCIE CSCD 2013年第3期251-264,357,共15页
Multi-source seismic technology is an efficient seismic acquisition method that requires a group of blended seismic data to be separated into single-source seismic data for subsequent processing. The separation of ble... Multi-source seismic technology is an efficient seismic acquisition method that requires a group of blended seismic data to be separated into single-source seismic data for subsequent processing. The separation of blended seismic data is a linear inverse problem. According to the relationship between the shooting number and the simultaneous source number of the acquisition system, this separation of blended seismic data is divided into an easily determined or overdetermined linear inverse problem and an underdetermined linear inverse problem that is difficult to solve. For the latter, this paper presents an optimization method that imposes the sparsity constraint on wavefields to construct the object function of inversion, and the problem is solved by using the iterative thresholding method. For the most extremely underdetermined separation problem with single-shooting and multiple sources, this paper presents a method of pseudo-deblending with random noise filtering. In this method, approximate common shot gathers are received through the pseudo-deblending process, and the random noises that appear when the approximate common shot gathers are sorted into common receiver gathers are eliminated through filtering methods. The separation methods proposed in this paper are applied to three types of numerical simulation data, including pure data without noise, data with random noise, and data with linear regular noise to obtain satisfactory results. The noise suppression effects of these methods are sufficient, particularly with single-shooting blended seismic data, which verifies the effectiveness of the proposed methods. 展开更多
关键词 multi-source data separation linear inverse problem sparsest constraint pseudo-deblending filtering
下载PDF
Super point detection based on sampling and data streaming algorithms
6
作者 程光 强士卿 《Journal of Southeast University(English Edition)》 EI CAS 2009年第2期224-227,共4页
In order to improve the precision of super point detection and control measurement resource consumption, this paper proposes a super point detection method based on sampling and data streaming algorithms (SDSD), and... In order to improve the precision of super point detection and control measurement resource consumption, this paper proposes a super point detection method based on sampling and data streaming algorithms (SDSD), and proves that only sources or destinations with a lot of flows can be sampled probabilistically using the SDSD algorithm. The SDSD algorithm uses both the IP table and the flow bloom filter (BF) data structures to maintain the IP and flow information. The IP table is used to judge whether an IP address has been recorded. If the IP exists, then all its subsequent flows will be recorded into the flow BF; otherwise, the IP flow is sampled. This paper also analyzes the accuracy and memory requirements of the SDSD algorithm , and tests them using the CERNET trace. The theoretical analysis and experimental tests demonstrate that the most relative errors of the super points estimated by the SDSD algorithm are less than 5%, whereas the results of other algorithms are about 10%. Because of the BF structure, the SDSD algorithm is also better than previous algorithms in terms of memory consumption. 展开更多
关键词 super point flow sampling data streaming
下载PDF
Alternative 3D Modeling Approaches Based on Complex Multi-Source Geological Data Interpretation 被引量:5
7
作者 李明超 韩彦青 +1 位作者 缪正建 高伟 《Transactions of Tianjin University》 EI CAS 2014年第1期7-14,共8页
Due to the complex nature of multi-source geological data, it is difficult to rebuild every geological structure through a single 3D modeling method. The multi-source data interpretation method put forward in this ana... Due to the complex nature of multi-source geological data, it is difficult to rebuild every geological structure through a single 3D modeling method. The multi-source data interpretation method put forward in this analysis is based on a database-driven pattern and focuses on the discrete and irregular features of geological data. The geological data from a variety of sources covering a range of accuracy, resolution, quantity and quality are classified and integrated according to their reliability and consistency for 3D modeling. The new interpolation-approximation fitting construction algorithm of geological surfaces with the non-uniform rational B-spline(NURBS) technique is then presented. The NURBS technique can retain the balance among the requirements for accuracy, surface continuity and data storage of geological structures. Finally, four alternative 3D modeling approaches are demonstrated with reference to some examples, which are selected according to the data quantity and accuracy specification. The proposed approaches offer flexible modeling patterns for different practical engineering demands. 展开更多
关键词 multi-source data geological data interpretation interpolation-approximation fitting 3D geological sur-face modeling
下载PDF
Cycle-by-Cycle Queue Length Estimation for Signalized Intersections Using Multi-Source Data 被引量:4
8
作者 Zhongyu Wang Qing Cai +2 位作者 Bing Wu Yinhai Wang Linbo Li 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2015年第2期86-93,共8页
In order to estimate vehicular queue length at signalized intersections accurately and overcome the shortcomings and restrictions of existing studies especially those based on shockwave theory,a new methodology is pre... In order to estimate vehicular queue length at signalized intersections accurately and overcome the shortcomings and restrictions of existing studies especially those based on shockwave theory,a new methodology is presented for estimating vehicular queue length using data from both point detectors and probe vehicles. The methodology applies the shockwave theory to model queue evolution over time and space. Using probe vehicle locations and times as well as point detector measured traffic states,analytical formulations for calculating the maximum and minimum( residual) queue length are developed. The proposed methodology is verified using ground truth data collected from numerical experiments conducted in Shanghai,China. It is found that the methodology has a mean absolute percentage error of 17. 09%,which is reasonably effective in estimating the queue length at traffic signalized intersections. Limitations of the proposed models and algorithms are also discussed in the paper. 展开更多
关键词 QUEUE LENGTH estimation multi-source data TRAFFIC SIGNALS TRAFFIC SHOCKWAVE theory
下载PDF
Research on Data Fusion of Adaptive Weighted Multi-Source Sensor 被引量:4
9
作者 Donghui Li Cong Shen +5 位作者 Xiaopeng Dai Xinghui Zhu Jian Luo Xueting Li Haiwen Chen Zhiyao Liang 《Computers, Materials & Continua》 SCIE EI 2019年第9期1217-1231,共15页
Data fusion can effectively process multi-sensor information to obtain more accurate and reliable results than a single sensor.The data of water quality in the environment comes from different sensors,thus the data mu... Data fusion can effectively process multi-sensor information to obtain more accurate and reliable results than a single sensor.The data of water quality in the environment comes from different sensors,thus the data must be fused.In our research,self-adaptive weighted data fusion method is used to respectively integrate the data from the PH value,temperature,oxygen dissolved and NH3 concentration of water quality environment.Based on the fusion,the Grubbs method is used to detect the abnormal data so as to provide data support for estimation,prediction and early warning of the water quality. 展开更多
关键词 Adaptive weighting multi-source sensor data fusion loss of data processing grubbs elimination
下载PDF
Multi-Source Data Privacy Protection Method Based on Homomorphic Encryption and Blockchain 被引量:3
10
作者 Ze Xu Sanxing Cao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第7期861-881,共21页
Multi-Source data plays an important role in the evolution of media convergence.Its fusion processing enables the further mining of data and utilization of data value and broadens the path for the sharing and dissemin... Multi-Source data plays an important role in the evolution of media convergence.Its fusion processing enables the further mining of data and utilization of data value and broadens the path for the sharing and dissemination of media data.However,it also faces serious problems in terms of protecting user and data privacy.Many privacy protectionmethods have been proposed to solve the problemof privacy leakage during the process of data sharing,but they suffer fromtwo flaws:1)the lack of algorithmic frameworks for specific scenarios such as dynamic datasets in the media domain;2)the inability to solve the problem of the high computational complexity of ciphertext in multi-source data privacy protection,resulting in long encryption and decryption times.In this paper,we propose a multi-source data privacy protection method based on homomorphic encryption and blockchain technology,which solves the privacy protection problem ofmulti-source heterogeneous data in the dissemination ofmedia and reduces ciphertext processing time.We deployed the proposedmethod on theHyperledger platformfor testing and compared it with the privacy protection schemes based on k-anonymity and differential privacy.The experimental results showthat the key generation,encryption,and decryption times of the proposedmethod are lower than those in data privacy protection methods based on k-anonymity technology and differential privacy technology.This significantly reduces the processing time ofmulti-source data,which gives it potential for use in many applications. 展开更多
关键词 Homomorphic encryption blockchain technology multi-source data data privacy protection privacy data processing
下载PDF
Land Cover Classification with Multi-source Data Using Evidential Reasoning Approach 被引量:3
11
作者 LI Huapeng ZHANG Shuqing +1 位作者 SUN Yan GAO Jing 《Chinese Geographical Science》 SCIE CSCD 2011年第3期312-321,共10页
Land cover classification is the core of converting satellite imagery to available geographic data.However,spectral signatures do not always provide enough information in classification decisions.Thus,the application ... Land cover classification is the core of converting satellite imagery to available geographic data.However,spectral signatures do not always provide enough information in classification decisions.Thus,the application of multi-source data becomes necessary.This paper presents an evidential reasoning (ER) approach to incorporate Landsat TM imagery,altitude and slope data.Results show that multi-source data contribute to the classification accuracy achieved by the ER method,whereas play a negative role to that derived by maximum likelihood classifier (MLC).In comparison to the results derived based on TM imagery alone,the overall accuracy rate of the ER method increases by 7.66% and that of the MLC method decreases by 8.35% when all data sources (TM plus altitude and slope) are accessible.The ER method is regarded as a better approach for multi-source image classification.In addition,the method produces not only an accurate classification result,but also the uncertainty which presents the inherent difficulty in classification decisions.The uncertainty associated to the ER classification image is evaluated and proved to be useful for improved classification accuracy. 展开更多
关键词 evidential reasoning Dempster-Shafer theory of evidence multi-source data geographic ancillary data land cover classification classification uncertainty
下载PDF
Recent trends of machine learning applied to multi-source data of medicinal plants 被引量:2
12
作者 Yanying Zhang Yuanzhong Wang 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2023年第12期1388-1407,共20页
In traditional medicine and ethnomedicine,medicinal plants have long been recognized as the basis for materials in therapeutic applications worldwide.In particular,the remarkable curative effect of traditional Chinese... In traditional medicine and ethnomedicine,medicinal plants have long been recognized as the basis for materials in therapeutic applications worldwide.In particular,the remarkable curative effect of traditional Chinese medicine during corona virus disease 2019(COVID-19)pandemic has attracted extensive attention globally.Medicinal plants have,therefore,become increasingly popular among the public.However,with increasing demand for and profit with medicinal plants,commercial fraudulent events such as adulteration or counterfeits sometimes occur,which poses a serious threat to the clinical outcomes and interests of consumers.With rapid advances in artificial intelligence,machine learning can be used to mine information on various medicinal plants to establish an ideal resource database.We herein present a review that mainly introduces common machine learning algorithms and discusses their application in multi-source data analysis of medicinal plants.The combination of machine learning algorithms and multi-source data analysis facilitates a comprehensive analysis and aids in the effective evaluation of the quality of medicinal plants.The findings of this review provide new possibilities for promoting the development and utilization of medicinal plants. 展开更多
关键词 Machine learning Medicinal plant multi-source data data fusion Application
下载PDF
Multi-source Data-driven Identification of Urban Functional Areas:A Case of Shenyang,China 被引量:3
13
作者 XUE Bing XIAO Xiao +2 位作者 LI Jingzhong ZHAO Bingyu FU Bo 《Chinese Geographical Science》 SCIE CSCD 2023年第1期21-35,共15页
Urban functional area(UFA)is a core scientific issue affecting urban sustainability.The current knowledge gap is mainly reflected in the lack of multi-scale quantitative interpretation methods from the perspective of ... Urban functional area(UFA)is a core scientific issue affecting urban sustainability.The current knowledge gap is mainly reflected in the lack of multi-scale quantitative interpretation methods from the perspective of human-land interaction.In this paper,based on multi-source big data include 250 m×250 m resolution cell phone data,1.81×105 Points of Interest(POI)data and administrative boundary data,we built a UFA identification method and demonstrated empirically in Shenyang City,China.We argue that the method we built can effectively identify multi-scale multi-type UFAs based on human activity and further reveal the spatial correlation between urban facilities and human activity.The empirical study suggests that the employment functional zones in Shenyang City are more concentrated in central cities than other single functional zones.There are more mix functional areas in the central city areas,while the planned industrial new cities need to develop comprehensive functions in Shenyang.UFAs have scale effects and human-land interaction patterns.We suggest that city decision makers should apply multi-sources big data to measure urban functional service in a more refined manner from a supply-demand perspective. 展开更多
关键词 human-land relationship multi-source big data urban functional area identification method Shenyang City
下载PDF
Improved Data Stream Clustering Method: Incorporating KD-Tree for Typicality and Eccentricity-Based Approach
14
作者 Dayu Xu Jiaming Lu +1 位作者 Xuyao Zhang Hongtao Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第2期2557-2573,共17页
Data stream clustering is integral to contemporary big data applications.However,addressing the ongoing influx of data streams efficiently and accurately remains a primary challenge in current research.This paper aims... Data stream clustering is integral to contemporary big data applications.However,addressing the ongoing influx of data streams efficiently and accurately remains a primary challenge in current research.This paper aims to elevate the efficiency and precision of data stream clustering,leveraging the TEDA(Typicality and Eccentricity Data Analysis)algorithm as a foundation,we introduce improvements by integrating a nearest neighbor search algorithm to enhance both the efficiency and accuracy of the algorithm.The original TEDA algorithm,grounded in the concept of“Typicality and Eccentricity Data Analytics”,represents an evolving and recursive method that requires no prior knowledge.While the algorithm autonomously creates and merges clusters as new data arrives,its efficiency is significantly hindered by the need to traverse all existing clusters upon the arrival of further data.This work presents the NS-TEDA(Neighbor Search Based Typicality and Eccentricity Data Analysis)algorithm by incorporating a KD-Tree(K-Dimensional Tree)algorithm integrated with the Scapegoat Tree.Upon arrival,this ensures that new data points interact solely with clusters in very close proximity.This significantly enhances algorithm efficiency while preventing a single data point from joining too many clusters and mitigating the merging of clusters with high overlap to some extent.We apply the NS-TEDA algorithm to several well-known datasets,comparing its performance with other data stream clustering algorithms and the original TEDA algorithm.The results demonstrate that the proposed algorithm achieves higher accuracy,and its runtime exhibits almost linear dependence on the volume of data,making it more suitable for large-scale data stream analysis research. 展开更多
关键词 data stream clustering TEDA KD-TREE scapegoat tree
下载PDF
Accessing Multi-Source Geological Data through Network in MORPAS Software System 被引量:3
15
作者 MeiHongbo HuGuangdao +1 位作者 ChinJian~o LiZhenhua 《Journal of China University of Geosciences》 SCIE CSCD 2003年第3期265-268,共4页
MORPAS is a special GIS (geographic information system) software system, based on the MAPGIS platform whose aim is to prospect and evaluate mineral resources quantificationally by synthesizing geological, geophysical,... MORPAS is a special GIS (geographic information system) software system, based on the MAPGIS platform whose aim is to prospect and evaluate mineral resources quantificationally by synthesizing geological, geophysical, geochemical and remote sensing data. It overlays geological database management, geological background and geological abnormality analysis, image processing of remote sensing and comprehensive abnormality analysis, etc.. It puts forward an integrative solution for the application of GIS in basic-level units and the construction of information engineering in the geological field. As the popularization of computer networks and the request of data sharing, it is necessary to extend its functions in data management so that all its data files can be accessed in the network server. This paper utilizes some MAPGIS functions for the second development and ADO (access data object) technique to access multi-source geological data in SQL Server databases. Then remote visiting and congruous management will be realized in the MORPAS system. 展开更多
关键词 multi-source geological data SQL Server accessing data through network
下载PDF
Multi-source information fused generative adversarial network model and data assimilation based history matching for reservoir with complex geologies 被引量:2
16
作者 Kai Zhang Hai-Qun Yu +7 位作者 Xiao-Peng Ma Jin-Ding Zhang Jian Wang Chuan-Jin Yao Yong-Fei Yang Hai Sun Jun Yao Jian Wang 《Petroleum Science》 SCIE CAS CSCD 2022年第2期707-719,共13页
For reservoirs with complex non-Gaussian geological characteristics,such as carbonate reservoirs or reservoirs with sedimentary facies distribution,it is difficult to implement history matching directly,especially for... For reservoirs with complex non-Gaussian geological characteristics,such as carbonate reservoirs or reservoirs with sedimentary facies distribution,it is difficult to implement history matching directly,especially for the ensemble-based data assimilation methods.In this paper,we propose a multi-source information fused generative adversarial network(MSIGAN)model,which is used for parameterization of the complex geologies.In MSIGAN,various information such as facies distribution,microseismic,and inter-well connectivity,can be integrated to learn the geological features.And two major generative models in deep learning,variational autoencoder(VAE)and generative adversarial network(GAN)are combined in our model.Then the proposed MSIGAN model is integrated into the ensemble smoother with multiple data assimilation(ESMDA)method to conduct history matching.We tested the proposed method on two reservoir models with fluvial facies.The experimental results show that the proposed MSIGAN model can effectively learn the complex geological features,which can promote the accuracy of history matching. 展开更多
关键词 multi-source information Automatic history matching Deep learning data assimilation Generative model
下载PDF
Differentially Private Real-Time Streaming Data Publication Based on Sliding Window Under Exponential Decay 被引量:2
17
作者 Lan Sun Chen Ge +2 位作者 Xin Huang Yingjie Wu Yan Gao 《Computers, Materials & Continua》 SCIE EI 2019年第1期61-78,共18页
Continuous response of range query on steaming data provides useful information for many practical applications as well as the risk of privacy disclosure.The existing research on differential privacy streaming data pu... Continuous response of range query on steaming data provides useful information for many practical applications as well as the risk of privacy disclosure.The existing research on differential privacy streaming data publication mostly pay close attention to boosting query accuracy,but pay less attention to query efficiency,and ignore the effect of timeliness on data weight.In this paper,we propose an effective algorithm of differential privacy streaming data publication under exponential decay mode.Firstly,by introducing the Fenwick tree to divide and reorganize data items in the stream,we achieve a constant time complexity for inserting a new item and getting the prefix sum.Meanwhile,we achieve time complicity linear to the number of data item for building a tree.After that,we use the advantage of matrix mechanism to deal with relevant queries and reduce the global sensitivity.In addition,we choose proper diagonal matrix further improve the range query accuracy.Finally,considering about exponential decay,every data item is weighted by the decay factor.By putting the Fenwick tree and matrix optimization together,we present complete algorithm for differentiate private real-time streaming data publication.The experiment is designed to compare the algorithm in this paper with similar algorithms for streaming data release in exponential decay.Experimental results show that the algorithm in this paper effectively improve the query efficiency while ensuring the quality of the query. 展开更多
关键词 Differential privacy streaming data PUBLICATION EXPONENTIAL decay matrix mechanism SLIDING window
下载PDF
The Identification and Geological Significance of Fault Buried in the Gasikule Salt Lake in China based on the Multi-source Remote Sensing Data 被引量:1
18
作者 WANG Junhu ZHAO Yingjun +1 位作者 WU Ding LU Donghua 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第3期996-1007,共12页
The salinity of the salt lake is an important factor to evaluate whether it contains some mineral resources or not,the fault buried in the salt lake could control the abundance of the salinity.Therefore,it is of great... The salinity of the salt lake is an important factor to evaluate whether it contains some mineral resources or not,the fault buried in the salt lake could control the abundance of the salinity.Therefore,it is of great geological importance to identify the fault buried in the salt lake.Taking the Gasikule Salt Lake in China for example,the paper established a new method to identify the fault buried in the salt lake based on the multi-source remote sensing data including Landsat TM,SPOT-5 and ASTER data.It includes the acquisition and selection of the multi-source remote sensing data,data preprocessing,lake waterfront extraction,spectrum extraction of brine with different salinity,salinity index construction,salinity separation,analysis of the abnormal salinity and identification of the fault buried in salt lake,temperature inversion of brine and the fault verification.As a result,the study identified an important fault buried in the east of the Gasikule Salt Lake that controls the highest salinity abnormal.Because the level of the salinity is positively correlated to the mineral abundance,the result provides the important reference to identify the water body rich in mineral resources in the salt lake. 展开更多
关键词 multi-source remote sensing data Gasikule Salt Lake Mangya depression China
下载PDF
3D Geological Modeling with Multi-source Data Integration in Polymetallic Region:A Case Study of Luanchuan,Henan Province,China 被引量:1
19
作者 Gongwen Wang~(1,2),Shouting Zhang~(1,2),Changhai Yan~3,Yaowu Song~3,Limei Wang~1 1.School of Earth Sciences and Resources,China University of Geosciences(Beijing),Beijing 100083,China. 2.State Key laboratory of Geological Processes and Mineral Resources,China University of Geosciences,Beijing 100083,China 3.Henan Institute of Geological Survey,Zhengzhou 450007,China 《地学前缘》 EI CAS CSCD 北大核心 2009年第S1期166-167,共2页
The development of 3D geological models involves the integration of large amounts of geological data,as well as additional accessible proprietary lithological, structural,geochemical,geophysical,and borehole data.Luan... The development of 3D geological models involves the integration of large amounts of geological data,as well as additional accessible proprietary lithological, structural,geochemical,geophysical,and borehole data.Luanchuan,the case study area,southwestern Henan Province,is an important molybdenum-tungsten -lead-zinc polymetallic belt in China. 展开更多
关键词 3D GEOLOGICAL modeling multi-source data MINERAL exploration METALLOGENIC model virtual GEOLOGICAL section Luanchuan POLYMETALLIC REGION
下载PDF
An Optimal Big Data Analytics with Concept Drift Detection on High-Dimensional Streaming Data 被引量:1
20
作者 Romany F.Mansour Shaha Al-Otaibi +3 位作者 Amal Al-Rasheed Hanan Aljuaid Irina V.Pustokhina Denis A.Pustokhin 《Computers, Materials & Continua》 SCIE EI 2021年第9期2843-2858,共16页
Big data streams started becoming ubiquitous in recent years,thanks to rapid generation of massive volumes of data by different applications.It is challenging to apply existing data mining tools and techniques directl... Big data streams started becoming ubiquitous in recent years,thanks to rapid generation of massive volumes of data by different applications.It is challenging to apply existing data mining tools and techniques directly in these big data streams.At the same time,streaming data from several applications results in two major problems such as class imbalance and concept drift.The current research paper presents a new Multi-Objective Metaheuristic Optimization-based Big Data Analytics with Concept Drift Detection(MOMBD-CDD)method on High-Dimensional Streaming Data.The presented MOMBD-CDD model has different operational stages such as pre-processing,CDD,and classification.MOMBD-CDD model overcomes class imbalance problem by Synthetic Minority Over-sampling Technique(SMOTE).In order to determine the oversampling rates and neighboring point values of SMOTE,Glowworm Swarm Optimization(GSO)algorithm is employed.Besides,Statistical Test of Equal Proportions(STEPD),a CDD technique is also utilized.Finally,Bidirectional Long Short-Term Memory(Bi-LSTM)model is applied for classification.In order to improve classification performance and to compute the optimum parameters for Bi-LSTM model,GSO-based hyperparameter tuning process is carried out.The performance of the presented model was evaluated using high dimensional benchmark streaming datasets namely intrusion detection(NSL KDDCup)dataset and ECUE spam dataset.An extensive experimental validation process confirmed the effective outcome of MOMBD-CDD model.The proposed model attained high accuracy of 97.45%and 94.23%on the applied KDDCup99 Dataset and ECUE Spam datasets respectively. 展开更多
关键词 streaming data concept drift classification model deep learning class imbalance data
下载PDF
上一页 1 2 140 下一页 到第
使用帮助 返回顶部