The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initiall...The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT.展开更多
Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to pred...Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters.This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events.Specifically,for the historical landslide cases,the landslide-induced seismic signal,geophysical surveys,and possible in-situ drone/phone videos(multi-source data collaboration)can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical(rheological)parameters.Subsequently,the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events.Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou,China gives reasonable results in comparison to the field observations.The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region(2019 Shuicheng landslide).The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide.展开更多
Urban functional area(UFA)is a core scientific issue affecting urban sustainability.The current knowledge gap is mainly reflected in the lack of multi-scale quantitative interpretation methods from the perspective of ...Urban functional area(UFA)is a core scientific issue affecting urban sustainability.The current knowledge gap is mainly reflected in the lack of multi-scale quantitative interpretation methods from the perspective of human-land interaction.In this paper,based on multi-source big data include 250 m×250 m resolution cell phone data,1.81×105 Points of Interest(POI)data and administrative boundary data,we built a UFA identification method and demonstrated empirically in Shenyang City,China.We argue that the method we built can effectively identify multi-scale multi-type UFAs based on human activity and further reveal the spatial correlation between urban facilities and human activity.The empirical study suggests that the employment functional zones in Shenyang City are more concentrated in central cities than other single functional zones.There are more mix functional areas in the central city areas,while the planned industrial new cities need to develop comprehensive functions in Shenyang.UFAs have scale effects and human-land interaction patterns.We suggest that city decision makers should apply multi-sources big data to measure urban functional service in a more refined manner from a supply-demand perspective.展开更多
Recent urban transformations have led to critical reflections on the blighted urban infrastruc-tures and called for re-stimulating vital urban places.Especially,the metro has been recognized as the backbone infrastruc...Recent urban transformations have led to critical reflections on the blighted urban infrastruc-tures and called for re-stimulating vital urban places.Especially,the metro has been recognized as the backbone infrastructure for urban mobility and the associated economy agglomeration.To date,limited research has been devoted to investigating the relationship between metro vitality and built environment in mega-cities empirically.This paper presents a multisource urban data-driven approach to quantify the metro vibrancy and its association with the underlying built environment.Massive smart card data is processed to extract metro ridership,which denotes the vibrancy around the metro station in physical space.Social media check-ins are crawled to measure the vitality of metros in virtual spaces.Both physical and virtual vibrancy are integrated into a holistic metro vibrancy metric using an entropy-based weighting method.Certain built environment characteristics,including land use,transportation and buildings are modeled as independent variables.The significant influences of built environ-mental factors on the metro vibrancy are unraveled using the ordinary least square regression and the spatial lag model.With experiments conducted in Shenzhen,Singapore and London,this study comes up with a conclusion that spatial distributions of metro vibrancy metrics in three cities are spatially autocorrelated.The regression analysis suggests that in all the three cities,more affluent urban areas tend to have higher metro virbrancy,while the road density,land use and buildings tend to impact metro vibrancy in only one or two cities.These results demonstrate the relationship between the metro vibrancy and built environment is affected by complex urban contexts.These findings help us to understand metro vibrancy thus make proper policy to re-stimulate the important metro infrastructure in the future.展开更多
The components of urban surface cover are diversified,and component temperature has greater physical significance and application values in the studies on urban thermal environment.Although the multi-angle retrieval a...The components of urban surface cover are diversified,and component temperature has greater physical significance and application values in the studies on urban thermal environment.Although the multi-angle retrieval algorithm of component temperature has been matured gradually,its application in the studies on urban thermal environment is restricted due to the difficulty in acquiring urban-scale multi-angle thermal infrared data.Therefore,based on the existing multi-source multi-band remote sensing data,access to appropriate urban-scale component temperature is an urgent issue to be solved in current studies on urban thermal infrared remote sensing.Then,a retrieval algorithm of urban component temperature by multi-source multi-band remote sensing data on the basis of MODIS and Landsat TM images was proposed with expectations achieved in this work,which was finally validated by the experiment on urban images of Changsha,China.The results show that:1) Mean temperatures of impervious surface components and vegetation components are the maximum and minimum,respectively,which are in accordance with the distribution laws of actual surface temperature; 2) High-accuracy retrieval results are obtained in vegetation component temperature.Moreover,through a contrast between retrieval results and measured data,it is found that the retrieval temperature of impervious surface component has the maximum deviation from measured temperature and its deviation is greater than 1 ℃,while the deviation in vegetation component temperature is relatively low at 0.5 ℃.展开更多
Multi-source seismic technology is an efficient seismic acquisition method that requires a group of blended seismic data to be separated into single-source seismic data for subsequent processing. The separation of ble...Multi-source seismic technology is an efficient seismic acquisition method that requires a group of blended seismic data to be separated into single-source seismic data for subsequent processing. The separation of blended seismic data is a linear inverse problem. According to the relationship between the shooting number and the simultaneous source number of the acquisition system, this separation of blended seismic data is divided into an easily determined or overdetermined linear inverse problem and an underdetermined linear inverse problem that is difficult to solve. For the latter, this paper presents an optimization method that imposes the sparsity constraint on wavefields to construct the object function of inversion, and the problem is solved by using the iterative thresholding method. For the most extremely underdetermined separation problem with single-shooting and multiple sources, this paper presents a method of pseudo-deblending with random noise filtering. In this method, approximate common shot gathers are received through the pseudo-deblending process, and the random noises that appear when the approximate common shot gathers are sorted into common receiver gathers are eliminated through filtering methods. The separation methods proposed in this paper are applied to three types of numerical simulation data, including pure data without noise, data with random noise, and data with linear regular noise to obtain satisfactory results. The noise suppression effects of these methods are sufficient, particularly with single-shooting blended seismic data, which verifies the effectiveness of the proposed methods.展开更多
Due to the complex nature of multi-source geological data, it is difficult to rebuild every geological structure through a single 3D modeling method. The multi-source data interpretation method put forward in this ana...Due to the complex nature of multi-source geological data, it is difficult to rebuild every geological structure through a single 3D modeling method. The multi-source data interpretation method put forward in this analysis is based on a database-driven pattern and focuses on the discrete and irregular features of geological data. The geological data from a variety of sources covering a range of accuracy, resolution, quantity and quality are classified and integrated according to their reliability and consistency for 3D modeling. The new interpolation-approximation fitting construction algorithm of geological surfaces with the non-uniform rational B-spline(NURBS) technique is then presented. The NURBS technique can retain the balance among the requirements for accuracy, surface continuity and data storage of geological structures. Finally, four alternative 3D modeling approaches are demonstrated with reference to some examples, which are selected according to the data quantity and accuracy specification. The proposed approaches offer flexible modeling patterns for different practical engineering demands.展开更多
In order to estimate vehicular queue length at signalized intersections accurately and overcome the shortcomings and restrictions of existing studies especially those based on shockwave theory,a new methodology is pre...In order to estimate vehicular queue length at signalized intersections accurately and overcome the shortcomings and restrictions of existing studies especially those based on shockwave theory,a new methodology is presented for estimating vehicular queue length using data from both point detectors and probe vehicles. The methodology applies the shockwave theory to model queue evolution over time and space. Using probe vehicle locations and times as well as point detector measured traffic states,analytical formulations for calculating the maximum and minimum( residual) queue length are developed. The proposed methodology is verified using ground truth data collected from numerical experiments conducted in Shanghai,China. It is found that the methodology has a mean absolute percentage error of 17. 09%,which is reasonably effective in estimating the queue length at traffic signalized intersections. Limitations of the proposed models and algorithms are also discussed in the paper.展开更多
Multi-Source data plays an important role in the evolution of media convergence.Its fusion processing enables the further mining of data and utilization of data value and broadens the path for the sharing and dissemin...Multi-Source data plays an important role in the evolution of media convergence.Its fusion processing enables the further mining of data and utilization of data value and broadens the path for the sharing and dissemination of media data.However,it also faces serious problems in terms of protecting user and data privacy.Many privacy protectionmethods have been proposed to solve the problemof privacy leakage during the process of data sharing,but they suffer fromtwo flaws:1)the lack of algorithmic frameworks for specific scenarios such as dynamic datasets in the media domain;2)the inability to solve the problem of the high computational complexity of ciphertext in multi-source data privacy protection,resulting in long encryption and decryption times.In this paper,we propose a multi-source data privacy protection method based on homomorphic encryption and blockchain technology,which solves the privacy protection problem ofmulti-source heterogeneous data in the dissemination ofmedia and reduces ciphertext processing time.We deployed the proposedmethod on theHyperledger platformfor testing and compared it with the privacy protection schemes based on k-anonymity and differential privacy.The experimental results showthat the key generation,encryption,and decryption times of the proposedmethod are lower than those in data privacy protection methods based on k-anonymity technology and differential privacy technology.This significantly reduces the processing time ofmulti-source data,which gives it potential for use in many applications.展开更多
Land cover classification is the core of converting satellite imagery to available geographic data.However,spectral signatures do not always provide enough information in classification decisions.Thus,the application ...Land cover classification is the core of converting satellite imagery to available geographic data.However,spectral signatures do not always provide enough information in classification decisions.Thus,the application of multi-source data becomes necessary.This paper presents an evidential reasoning (ER) approach to incorporate Landsat TM imagery,altitude and slope data.Results show that multi-source data contribute to the classification accuracy achieved by the ER method,whereas play a negative role to that derived by maximum likelihood classifier (MLC).In comparison to the results derived based on TM imagery alone,the overall accuracy rate of the ER method increases by 7.66% and that of the MLC method decreases by 8.35% when all data sources (TM plus altitude and slope) are accessible.The ER method is regarded as a better approach for multi-source image classification.In addition,the method produces not only an accurate classification result,but also the uncertainty which presents the inherent difficulty in classification decisions.The uncertainty associated to the ER classification image is evaluated and proved to be useful for improved classification accuracy.展开更多
Data fusion can effectively process multi-sensor information to obtain more accurate and reliable results than a single sensor.The data of water quality in the environment comes from different sensors,thus the data mu...Data fusion can effectively process multi-sensor information to obtain more accurate and reliable results than a single sensor.The data of water quality in the environment comes from different sensors,thus the data must be fused.In our research,self-adaptive weighted data fusion method is used to respectively integrate the data from the PH value,temperature,oxygen dissolved and NH3 concentration of water quality environment.Based on the fusion,the Grubbs method is used to detect the abnormal data so as to provide data support for estimation,prediction and early warning of the water quality.展开更多
In traditional medicine and ethnomedicine,medicinal plants have long been recognized as the basis for materials in therapeutic applications worldwide.In particular,the remarkable curative effect of traditional Chinese...In traditional medicine and ethnomedicine,medicinal plants have long been recognized as the basis for materials in therapeutic applications worldwide.In particular,the remarkable curative effect of traditional Chinese medicine during corona virus disease 2019(COVID-19)pandemic has attracted extensive attention globally.Medicinal plants have,therefore,become increasingly popular among the public.However,with increasing demand for and profit with medicinal plants,commercial fraudulent events such as adulteration or counterfeits sometimes occur,which poses a serious threat to the clinical outcomes and interests of consumers.With rapid advances in artificial intelligence,machine learning can be used to mine information on various medicinal plants to establish an ideal resource database.We herein present a review that mainly introduces common machine learning algorithms and discusses their application in multi-source data analysis of medicinal plants.The combination of machine learning algorithms and multi-source data analysis facilitates a comprehensive analysis and aids in the effective evaluation of the quality of medicinal plants.The findings of this review provide new possibilities for promoting the development and utilization of medicinal plants.展开更多
MORPAS is a special GIS (geographic information system) software system, based on the MAPGIS platform whose aim is to prospect and evaluate mineral resources quantificationally by synthesizing geological, geophysical,...MORPAS is a special GIS (geographic information system) software system, based on the MAPGIS platform whose aim is to prospect and evaluate mineral resources quantificationally by synthesizing geological, geophysical, geochemical and remote sensing data. It overlays geological database management, geological background and geological abnormality analysis, image processing of remote sensing and comprehensive abnormality analysis, etc.. It puts forward an integrative solution for the application of GIS in basic-level units and the construction of information engineering in the geological field. As the popularization of computer networks and the request of data sharing, it is necessary to extend its functions in data management so that all its data files can be accessed in the network server. This paper utilizes some MAPGIS functions for the second development and ADO (access data object) technique to access multi-source geological data in SQL Server databases. Then remote visiting and congruous management will be realized in the MORPAS system.展开更多
For reservoirs with complex non-Gaussian geological characteristics,such as carbonate reservoirs or reservoirs with sedimentary facies distribution,it is difficult to implement history matching directly,especially for...For reservoirs with complex non-Gaussian geological characteristics,such as carbonate reservoirs or reservoirs with sedimentary facies distribution,it is difficult to implement history matching directly,especially for the ensemble-based data assimilation methods.In this paper,we propose a multi-source information fused generative adversarial network(MSIGAN)model,which is used for parameterization of the complex geologies.In MSIGAN,various information such as facies distribution,microseismic,and inter-well connectivity,can be integrated to learn the geological features.And two major generative models in deep learning,variational autoencoder(VAE)and generative adversarial network(GAN)are combined in our model.Then the proposed MSIGAN model is integrated into the ensemble smoother with multiple data assimilation(ESMDA)method to conduct history matching.We tested the proposed method on two reservoir models with fluvial facies.The experimental results show that the proposed MSIGAN model can effectively learn the complex geological features,which can promote the accuracy of history matching.展开更多
As the pivotal green space,urban parks play an important role in urban residents’daily activities.Thy can not only bring people physical health,but also can be more likely to elicit positive sentiment to those who vi...As the pivotal green space,urban parks play an important role in urban residents’daily activities.Thy can not only bring people physical health,but also can be more likely to elicit positive sentiment to those who visit them.Recently,social media big data has provided new data sources for sentiment analysis.However,there was limited researches that explored the connection between urban parks and individual’s sentiments.Therefore,this study firstly employed a pre-trained language model(BERT,Bidirectional Encoder Representations from Transformers)to calculate sentiment scores based on social media data.Secondly,this study analysed the relationship between urban parks and individual’s sentiment from both spatial and temporal perspectives.Finally,by utilizing structural equation model(SEM),we identified 13 factors and analyzed its degree of the influence.The research findings are listed as below:①It confirmed that individuals generally experienced positive sentiment with high sentiment scores in the majority of urban parks;②The urban park type showed an influence on sentiment scores.In this study,higher sentiment scores observed in Eco-parks,comprehensive parks,and historical parks;③The urban parks level showed low impact on sentiment scores.With distinctions observed mainly at level-3 and level-4;④Compared to internal factors in parks,the external infrastructure surround them exerted more significant impact on sentiment scores.For instance,number of bus and subway stations around urban parks led to higher sentiment scores,while scenic spots and restaurants had inverse result.This study provided a novel method to quantify the services of various urban parks,which can be served as inspiration for similar studies in other cities and countries,enhancing their park planning and management strategies.展开更多
With the emergence of new types of data(e.g.social media data)and cutting-edge computer technology(e.g.Natural Language Processing),the shortcomings of traditional methods(subjective and objective ways)for de-tecting ...With the emergence of new types of data(e.g.social media data)and cutting-edge computer technology(e.g.Natural Language Processing),the shortcomings of traditional methods(subjective and objective ways)for de-tecting urban livability can be overcome by an integrated approach.This study aims to develop a comprehensive approach to measure urban livability based on statistic data,geo-data(e.g.points of interest),questionnaires survey,and social media data(Instagram),from both objective and subjective angles.Hong Kong,as a city with a high level of urbanization and contrasting urban environments,is chosen as the study area in this research.Through this study,the question“which area of Hong Kong is more suitable for living”is answered by the visu-alization of GIS-based analysis.Also,the correlation between livability scores and individuals’sentiment scores are explored.Specifically,the results show that central areas of Hong Kong with a higher level of urbanization are relatively more livable than suburban regions.However,through sentiment analysis,individuals who post Instagram in suburban areas of Hong Kong usually express more positive content and happier emotion than those who post Instagram in central urban areas.The study could offer useful information for the policy action of authorities as well as the residential location choices of citizens.展开更多
The salinity of the salt lake is an important factor to evaluate whether it contains some mineral resources or not,the fault buried in the salt lake could control the abundance of the salinity.Therefore,it is of great...The salinity of the salt lake is an important factor to evaluate whether it contains some mineral resources or not,the fault buried in the salt lake could control the abundance of the salinity.Therefore,it is of great geological importance to identify the fault buried in the salt lake.Taking the Gasikule Salt Lake in China for example,the paper established a new method to identify the fault buried in the salt lake based on the multi-source remote sensing data including Landsat TM,SPOT-5 and ASTER data.It includes the acquisition and selection of the multi-source remote sensing data,data preprocessing,lake waterfront extraction,spectrum extraction of brine with different salinity,salinity index construction,salinity separation,analysis of the abnormal salinity and identification of the fault buried in salt lake,temperature inversion of brine and the fault verification.As a result,the study identified an important fault buried in the east of the Gasikule Salt Lake that controls the highest salinity abnormal.Because the level of the salinity is positively correlated to the mineral abundance,the result provides the important reference to identify the water body rich in mineral resources in the salt lake.展开更多
The development of 3D geological models involves the integration of large amounts of geological data,as well as additional accessible proprietary lithological, structural,geochemical,geophysical,and borehole data.Luan...The development of 3D geological models involves the integration of large amounts of geological data,as well as additional accessible proprietary lithological, structural,geochemical,geophysical,and borehole data.Luanchuan,the case study area,southwestern Henan Province,is an important molybdenum-tungsten -lead-zinc polymetallic belt in China.展开更多
The inter-city linkage heat data provided by Baidu Migration is employed as a characterization of inter-city linkages in order to facilitate the study of the network linkage characteristics and hierarchical structure ...The inter-city linkage heat data provided by Baidu Migration is employed as a characterization of inter-city linkages in order to facilitate the study of the network linkage characteristics and hierarchical structure of urban agglomeration in the Greater Bay Area through the use of social network analysis method.This is the inaugural application of big data based on location services in the study of urban agglomeration network structure,which represents a novel research perspective on this topic.The study reveals that the density of network linkages in the Greater Bay Area urban agglomeration has reached 100%,indicating a mature network-like spatial structure.This structure has given rise to three distinct communities:Shenzhen-Dongguan-Huizhou,Guangzhou-Foshan-Zhaoqing,and Zhuhai-Zhongshan-Jiangmen.Additionally,cities within the Greater Bay Area urban agglomeration play different roles,suggesting that varying development strategies may be necessary to achieve staggered development.The study demonstrates that large datasets represented by LBS can offer novel insights and methodologies for the examination of urban agglomeration network structures,contingent on the appropriate mining and processing of the data.展开更多
Urban geography has always been concerned about the influence of human settlements on urban vitality,but few studies reveal the influence of human settlements on urban vitality at a micro-scale.This paper analyzes the...Urban geography has always been concerned about the influence of human settlements on urban vitality,but few studies reveal the influence of human settlements on urban vitality at a micro-scale.This paper analyzes the spatial distribution characteristics of human settlements’quality and urban vitality at the micro-scale using Geodetectors and geographic weighted regression to analyze the relationship between human settlements and urban vitality.The results are shown as follows:there is still a significant development space for human settlements quality in Shahekou District,with obvious spatial dependence characteristics and significant gaps between various systems;the urban vitality of Shahekou District has obvious timeliness,and the urban vitality undergoes significant changes over time,which is related to the human settlements quality.The spatial distribution presents a single core spatial distribution structure with strong relative stability.The spatial distribution of cold and hot spots shows a pattern of“high in the north and low in the south,high in the east and low in the west”,with an increasing trend from southwest to northeast;the reachability of public transport has a significant impact on urban vitality.Its synergy with other variables is the leading force forming the spatial distribution of urban vitality.The environmental system,support system and social system are the significant factors affecting the urban vitality of Shahekou District.展开更多
基金supported by the National Key Research and Development Program of China(grant number 2019YFE0123600)。
文摘The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT.
基金supported by the National Natural Science Foundation of China(41977215)。
文摘Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters.This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events.Specifically,for the historical landslide cases,the landslide-induced seismic signal,geophysical surveys,and possible in-situ drone/phone videos(multi-source data collaboration)can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical(rheological)parameters.Subsequently,the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events.Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou,China gives reasonable results in comparison to the field observations.The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region(2019 Shuicheng landslide).The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide.
基金Under the auspices of Natural Science Foundation of China(No.41971166)。
文摘Urban functional area(UFA)is a core scientific issue affecting urban sustainability.The current knowledge gap is mainly reflected in the lack of multi-scale quantitative interpretation methods from the perspective of human-land interaction.In this paper,based on multi-source big data include 250 m×250 m resolution cell phone data,1.81×105 Points of Interest(POI)data and administrative boundary data,we built a UFA identification method and demonstrated empirically in Shenyang City,China.We argue that the method we built can effectively identify multi-scale multi-type UFAs based on human activity and further reveal the spatial correlation between urban facilities and human activity.The empirical study suggests that the employment functional zones in Shenyang City are more concentrated in central cities than other single functional zones.There are more mix functional areas in the central city areas,while the planned industrial new cities need to develop comprehensive functions in Shenyang.UFAs have scale effects and human-land interaction patterns.We suggest that city decision makers should apply multi-sources big data to measure urban functional service in a more refined manner from a supply-demand perspective.
基金supported by the National Natural Science Foundation of China[grant numbers 42071360 and 71961137003]Natural Science Foundation of Guangdong Provinces[grant number 2019A1515011049]+2 种基金the ESRC under JPI Urban Europe/NSFC[grant number ES/T000287/1]the European Research Council(ERC)under the European Union’s Horizon 2020 research and innova-tion programme[grant number 949670]the Basic Research Program of Shenzhen Science and Technology Innovation Committee[JCYJ20180305125113883].
文摘Recent urban transformations have led to critical reflections on the blighted urban infrastruc-tures and called for re-stimulating vital urban places.Especially,the metro has been recognized as the backbone infrastructure for urban mobility and the associated economy agglomeration.To date,limited research has been devoted to investigating the relationship between metro vitality and built environment in mega-cities empirically.This paper presents a multisource urban data-driven approach to quantify the metro vibrancy and its association with the underlying built environment.Massive smart card data is processed to extract metro ridership,which denotes the vibrancy around the metro station in physical space.Social media check-ins are crawled to measure the vitality of metros in virtual spaces.Both physical and virtual vibrancy are integrated into a holistic metro vibrancy metric using an entropy-based weighting method.Certain built environment characteristics,including land use,transportation and buildings are modeled as independent variables.The significant influences of built environ-mental factors on the metro vibrancy are unraveled using the ordinary least square regression and the spatial lag model.With experiments conducted in Shenzhen,Singapore and London,this study comes up with a conclusion that spatial distributions of metro vibrancy metrics in three cities are spatially autocorrelated.The regression analysis suggests that in all the three cities,more affluent urban areas tend to have higher metro virbrancy,while the road density,land use and buildings tend to impact metro vibrancy in only one or two cities.These results demonstrate the relationship between the metro vibrancy and built environment is affected by complex urban contexts.These findings help us to understand metro vibrancy thus make proper policy to re-stimulate the important metro infrastructure in the future.
基金Projects(41171326,40771198)supported by the National Natural Science Foundation of ChinaProject(08JJ6023)supported by the Natural Science Foundation of Hunan Province,China
文摘The components of urban surface cover are diversified,and component temperature has greater physical significance and application values in the studies on urban thermal environment.Although the multi-angle retrieval algorithm of component temperature has been matured gradually,its application in the studies on urban thermal environment is restricted due to the difficulty in acquiring urban-scale multi-angle thermal infrared data.Therefore,based on the existing multi-source multi-band remote sensing data,access to appropriate urban-scale component temperature is an urgent issue to be solved in current studies on urban thermal infrared remote sensing.Then,a retrieval algorithm of urban component temperature by multi-source multi-band remote sensing data on the basis of MODIS and Landsat TM images was proposed with expectations achieved in this work,which was finally validated by the experiment on urban images of Changsha,China.The results show that:1) Mean temperatures of impervious surface components and vegetation components are the maximum and minimum,respectively,which are in accordance with the distribution laws of actual surface temperature; 2) High-accuracy retrieval results are obtained in vegetation component temperature.Moreover,through a contrast between retrieval results and measured data,it is found that the retrieval temperature of impervious surface component has the maximum deviation from measured temperature and its deviation is greater than 1 ℃,while the deviation in vegetation component temperature is relatively low at 0.5 ℃.
文摘Multi-source seismic technology is an efficient seismic acquisition method that requires a group of blended seismic data to be separated into single-source seismic data for subsequent processing. The separation of blended seismic data is a linear inverse problem. According to the relationship between the shooting number and the simultaneous source number of the acquisition system, this separation of blended seismic data is divided into an easily determined or overdetermined linear inverse problem and an underdetermined linear inverse problem that is difficult to solve. For the latter, this paper presents an optimization method that imposes the sparsity constraint on wavefields to construct the object function of inversion, and the problem is solved by using the iterative thresholding method. For the most extremely underdetermined separation problem with single-shooting and multiple sources, this paper presents a method of pseudo-deblending with random noise filtering. In this method, approximate common shot gathers are received through the pseudo-deblending process, and the random noises that appear when the approximate common shot gathers are sorted into common receiver gathers are eliminated through filtering methods. The separation methods proposed in this paper are applied to three types of numerical simulation data, including pure data without noise, data with random noise, and data with linear regular noise to obtain satisfactory results. The noise suppression effects of these methods are sufficient, particularly with single-shooting blended seismic data, which verifies the effectiveness of the proposed methods.
基金Supported by the National Natural Science Foundation of China(No.51379006 and No.51009106)the Program for New Century Excellent Talents in University of Ministry of Education of China(No.NCET-12-0404)the National Basic Research Program of China("973"Program,No.2013CB035903)
文摘Due to the complex nature of multi-source geological data, it is difficult to rebuild every geological structure through a single 3D modeling method. The multi-source data interpretation method put forward in this analysis is based on a database-driven pattern and focuses on the discrete and irregular features of geological data. The geological data from a variety of sources covering a range of accuracy, resolution, quantity and quality are classified and integrated according to their reliability and consistency for 3D modeling. The new interpolation-approximation fitting construction algorithm of geological surfaces with the non-uniform rational B-spline(NURBS) technique is then presented. The NURBS technique can retain the balance among the requirements for accuracy, surface continuity and data storage of geological structures. Finally, four alternative 3D modeling approaches are demonstrated with reference to some examples, which are selected according to the data quantity and accuracy specification. The proposed approaches offer flexible modeling patterns for different practical engineering demands.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51138003)
文摘In order to estimate vehicular queue length at signalized intersections accurately and overcome the shortcomings and restrictions of existing studies especially those based on shockwave theory,a new methodology is presented for estimating vehicular queue length using data from both point detectors and probe vehicles. The methodology applies the shockwave theory to model queue evolution over time and space. Using probe vehicle locations and times as well as point detector measured traffic states,analytical formulations for calculating the maximum and minimum( residual) queue length are developed. The proposed methodology is verified using ground truth data collected from numerical experiments conducted in Shanghai,China. It is found that the methodology has a mean absolute percentage error of 17. 09%,which is reasonably effective in estimating the queue length at traffic signalized intersections. Limitations of the proposed models and algorithms are also discussed in the paper.
基金funded by the High-Quality and Cutting-Edge Discipline Construction Project for Universities in Beijing (Internet Information,Communication University of China).
文摘Multi-Source data plays an important role in the evolution of media convergence.Its fusion processing enables the further mining of data and utilization of data value and broadens the path for the sharing and dissemination of media data.However,it also faces serious problems in terms of protecting user and data privacy.Many privacy protectionmethods have been proposed to solve the problemof privacy leakage during the process of data sharing,but they suffer fromtwo flaws:1)the lack of algorithmic frameworks for specific scenarios such as dynamic datasets in the media domain;2)the inability to solve the problem of the high computational complexity of ciphertext in multi-source data privacy protection,resulting in long encryption and decryption times.In this paper,we propose a multi-source data privacy protection method based on homomorphic encryption and blockchain technology,which solves the privacy protection problem ofmulti-source heterogeneous data in the dissemination ofmedia and reduces ciphertext processing time.We deployed the proposedmethod on theHyperledger platformfor testing and compared it with the privacy protection schemes based on k-anonymity and differential privacy.The experimental results showthat the key generation,encryption,and decryption times of the proposedmethod are lower than those in data privacy protection methods based on k-anonymity technology and differential privacy technology.This significantly reduces the processing time ofmulti-source data,which gives it potential for use in many applications.
基金Under the auspices of National Natural Science Foundation of China (No.40871188)Knowledge Innovation Programs of Chinese Academy of Sciences (No.INFO-115-C01-SDB4-05)
文摘Land cover classification is the core of converting satellite imagery to available geographic data.However,spectral signatures do not always provide enough information in classification decisions.Thus,the application of multi-source data becomes necessary.This paper presents an evidential reasoning (ER) approach to incorporate Landsat TM imagery,altitude and slope data.Results show that multi-source data contribute to the classification accuracy achieved by the ER method,whereas play a negative role to that derived by maximum likelihood classifier (MLC).In comparison to the results derived based on TM imagery alone,the overall accuracy rate of the ER method increases by 7.66% and that of the MLC method decreases by 8.35% when all data sources (TM plus altitude and slope) are accessible.The ER method is regarded as a better approach for multi-source image classification.In addition,the method produces not only an accurate classification result,but also the uncertainty which presents the inherent difficulty in classification decisions.The uncertainty associated to the ER classification image is evaluated and proved to be useful for improved classification accuracy.
基金This study was supported by National Key Research and Development Project(Project No.2017YFD0301506)National Social Science Foundation(Project No.71774052)+1 种基金Hunan Education Department Scientific Research Project(Project No.17K04417A092).
文摘Data fusion can effectively process multi-sensor information to obtain more accurate and reliable results than a single sensor.The data of water quality in the environment comes from different sensors,thus the data must be fused.In our research,self-adaptive weighted data fusion method is used to respectively integrate the data from the PH value,temperature,oxygen dissolved and NH3 concentration of water quality environment.Based on the fusion,the Grubbs method is used to detect the abnormal data so as to provide data support for estimation,prediction and early warning of the water quality.
基金supported by the National Natural Science Foundation of China(Grant No.:U2202213)the Special Program for the Major Science and Technology Projects of Yunnan Province,China(Grant Nos.:202102AE090051-1-01,and 202202AE090001).
文摘In traditional medicine and ethnomedicine,medicinal plants have long been recognized as the basis for materials in therapeutic applications worldwide.In particular,the remarkable curative effect of traditional Chinese medicine during corona virus disease 2019(COVID-19)pandemic has attracted extensive attention globally.Medicinal plants have,therefore,become increasingly popular among the public.However,with increasing demand for and profit with medicinal plants,commercial fraudulent events such as adulteration or counterfeits sometimes occur,which poses a serious threat to the clinical outcomes and interests of consumers.With rapid advances in artificial intelligence,machine learning can be used to mine information on various medicinal plants to establish an ideal resource database.We herein present a review that mainly introduces common machine learning algorithms and discusses their application in multi-source data analysis of medicinal plants.The combination of machine learning algorithms and multi-source data analysis facilitates a comprehensive analysis and aids in the effective evaluation of the quality of medicinal plants.The findings of this review provide new possibilities for promoting the development and utilization of medicinal plants.
文摘MORPAS is a special GIS (geographic information system) software system, based on the MAPGIS platform whose aim is to prospect and evaluate mineral resources quantificationally by synthesizing geological, geophysical, geochemical and remote sensing data. It overlays geological database management, geological background and geological abnormality analysis, image processing of remote sensing and comprehensive abnormality analysis, etc.. It puts forward an integrative solution for the application of GIS in basic-level units and the construction of information engineering in the geological field. As the popularization of computer networks and the request of data sharing, it is necessary to extend its functions in data management so that all its data files can be accessed in the network server. This paper utilizes some MAPGIS functions for the second development and ADO (access data object) technique to access multi-source geological data in SQL Server databases. Then remote visiting and congruous management will be realized in the MORPAS system.
基金supported by the National Natural Science Foundation of China under Grant 51722406,52074340,and 51874335the Shandong Provincial Natural Science Foundation under Grant JQ201808+5 种基金The Fundamental Research Funds for the Central Universities under Grant 18CX02097Athe Major Scientific and Technological Projects of CNPC under Grant ZD2019-183-008the Science and Technology Support Plan for Youth Innovation of University in Shandong Province under Grant 2019KJH002the National Research Council of Science and Technology Major Project of China under Grant 2016ZX05025001-006111 Project under Grant B08028Sinopec Science and Technology Project under Grant P20050-1
文摘For reservoirs with complex non-Gaussian geological characteristics,such as carbonate reservoirs or reservoirs with sedimentary facies distribution,it is difficult to implement history matching directly,especially for the ensemble-based data assimilation methods.In this paper,we propose a multi-source information fused generative adversarial network(MSIGAN)model,which is used for parameterization of the complex geologies.In MSIGAN,various information such as facies distribution,microseismic,and inter-well connectivity,can be integrated to learn the geological features.And two major generative models in deep learning,variational autoencoder(VAE)and generative adversarial network(GAN)are combined in our model.Then the proposed MSIGAN model is integrated into the ensemble smoother with multiple data assimilation(ESMDA)method to conduct history matching.We tested the proposed method on two reservoir models with fluvial facies.The experimental results show that the proposed MSIGAN model can effectively learn the complex geological features,which can promote the accuracy of history matching.
基金R&D Program of Beijing Municipal Education Commission(No.KM202211417015)Academic Research Projects of Beijing Union University(No.ZK10202209)+1 种基金The team-building subsidy of“Xuezhi Professorship”of the College of Applied Arts and Science of Beijing Union University(No.BUUCAS-XZJSTD-2024005)Academic Research Projects of Beijing Union University(No.ZKZD202305).
文摘As the pivotal green space,urban parks play an important role in urban residents’daily activities.Thy can not only bring people physical health,but also can be more likely to elicit positive sentiment to those who visit them.Recently,social media big data has provided new data sources for sentiment analysis.However,there was limited researches that explored the connection between urban parks and individual’s sentiments.Therefore,this study firstly employed a pre-trained language model(BERT,Bidirectional Encoder Representations from Transformers)to calculate sentiment scores based on social media data.Secondly,this study analysed the relationship between urban parks and individual’s sentiment from both spatial and temporal perspectives.Finally,by utilizing structural equation model(SEM),we identified 13 factors and analyzed its degree of the influence.The research findings are listed as below:①It confirmed that individuals generally experienced positive sentiment with high sentiment scores in the majority of urban parks;②The urban park type showed an influence on sentiment scores.In this study,higher sentiment scores observed in Eco-parks,comprehensive parks,and historical parks;③The urban parks level showed low impact on sentiment scores.With distinctions observed mainly at level-3 and level-4;④Compared to internal factors in parks,the external infrastructure surround them exerted more significant impact on sentiment scores.For instance,number of bus and subway stations around urban parks led to higher sentiment scores,while scenic spots and restaurants had inverse result.This study provided a novel method to quantify the services of various urban parks,which can be served as inspiration for similar studies in other cities and countries,enhancing their park planning and management strategies.
文摘With the emergence of new types of data(e.g.social media data)and cutting-edge computer technology(e.g.Natural Language Processing),the shortcomings of traditional methods(subjective and objective ways)for de-tecting urban livability can be overcome by an integrated approach.This study aims to develop a comprehensive approach to measure urban livability based on statistic data,geo-data(e.g.points of interest),questionnaires survey,and social media data(Instagram),from both objective and subjective angles.Hong Kong,as a city with a high level of urbanization and contrasting urban environments,is chosen as the study area in this research.Through this study,the question“which area of Hong Kong is more suitable for living”is answered by the visu-alization of GIS-based analysis.Also,the correlation between livability scores and individuals’sentiment scores are explored.Specifically,the results show that central areas of Hong Kong with a higher level of urbanization are relatively more livable than suburban regions.However,through sentiment analysis,individuals who post Instagram in suburban areas of Hong Kong usually express more positive content and happier emotion than those who post Instagram in central urban areas.The study could offer useful information for the policy action of authorities as well as the residential location choices of citizens.
基金This work was supported by the National Advance Research Program(Item No.Y1601-1).
文摘The salinity of the salt lake is an important factor to evaluate whether it contains some mineral resources or not,the fault buried in the salt lake could control the abundance of the salinity.Therefore,it is of great geological importance to identify the fault buried in the salt lake.Taking the Gasikule Salt Lake in China for example,the paper established a new method to identify the fault buried in the salt lake based on the multi-source remote sensing data including Landsat TM,SPOT-5 and ASTER data.It includes the acquisition and selection of the multi-source remote sensing data,data preprocessing,lake waterfront extraction,spectrum extraction of brine with different salinity,salinity index construction,salinity separation,analysis of the abnormal salinity and identification of the fault buried in salt lake,temperature inversion of brine and the fault verification.As a result,the study identified an important fault buried in the east of the Gasikule Salt Lake that controls the highest salinity abnormal.Because the level of the salinity is positively correlated to the mineral abundance,the result provides the important reference to identify the water body rich in mineral resources in the salt lake.
文摘The development of 3D geological models involves the integration of large amounts of geological data,as well as additional accessible proprietary lithological, structural,geochemical,geophysical,and borehole data.Luanchuan,the case study area,southwestern Henan Province,is an important molybdenum-tungsten -lead-zinc polymetallic belt in China.
文摘The inter-city linkage heat data provided by Baidu Migration is employed as a characterization of inter-city linkages in order to facilitate the study of the network linkage characteristics and hierarchical structure of urban agglomeration in the Greater Bay Area through the use of social network analysis method.This is the inaugural application of big data based on location services in the study of urban agglomeration network structure,which represents a novel research perspective on this topic.The study reveals that the density of network linkages in the Greater Bay Area urban agglomeration has reached 100%,indicating a mature network-like spatial structure.This structure has given rise to three distinct communities:Shenzhen-Dongguan-Huizhou,Guangzhou-Foshan-Zhaoqing,and Zhuhai-Zhongshan-Jiangmen.Additionally,cities within the Greater Bay Area urban agglomeration play different roles,suggesting that varying development strategies may be necessary to achieve staggered development.The study demonstrates that large datasets represented by LBS can offer novel insights and methodologies for the examination of urban agglomeration network structures,contingent on the appropriate mining and processing of the data.
文摘Urban geography has always been concerned about the influence of human settlements on urban vitality,but few studies reveal the influence of human settlements on urban vitality at a micro-scale.This paper analyzes the spatial distribution characteristics of human settlements’quality and urban vitality at the micro-scale using Geodetectors and geographic weighted regression to analyze the relationship between human settlements and urban vitality.The results are shown as follows:there is still a significant development space for human settlements quality in Shahekou District,with obvious spatial dependence characteristics and significant gaps between various systems;the urban vitality of Shahekou District has obvious timeliness,and the urban vitality undergoes significant changes over time,which is related to the human settlements quality.The spatial distribution presents a single core spatial distribution structure with strong relative stability.The spatial distribution of cold and hot spots shows a pattern of“high in the north and low in the south,high in the east and low in the west”,with an increasing trend from southwest to northeast;the reachability of public transport has a significant impact on urban vitality.Its synergy with other variables is the leading force forming the spatial distribution of urban vitality.The environmental system,support system and social system are the significant factors affecting the urban vitality of Shahekou District.