The auto-parametric resonance of a continuous-beam bridge model subjected to a two-point periodic excitation is experimentally and numerically investigated in this study.An auto-parametric resonance experiment of the ...The auto-parametric resonance of a continuous-beam bridge model subjected to a two-point periodic excitation is experimentally and numerically investigated in this study.An auto-parametric resonance experiment of the test model is conducted to observe and measure the auto-parametric resonance of a continuous beam under a two-point excitation on columns.The parametric vibration equation is established for the test model using the finite-element method.The auto-parametric resonance stability of the structure is analyzed by using Newmark's method and the energy-growth exponent method.The effects of the phase difference of the two-point excitation on the stability boundaries of auto-parametric resonance are studied for the test model.Compared with the experiment,the numerical instability predictions of auto-parametric resonance are consistent with the test phenomena,and the numerical stability boundaries of auto-parametric resonance agree with the experimental ones.For a continuous beam bridge,when the ratio of multipoint excitation frequency(applied to the columns)to natural frequency of the continuous girder is approximately equal to 2,the continuous beam may undergo a strong auto-parametric resonance.Combined with the present experiment and analysis,a hypothesis of Volgograd Bridge's serpentine vibration is discussed.展开更多
A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solu...A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solution of bridge vibrations induced by vehicle deceleration are realized using this method.The method’s validity and reliability are substantiated through numerical examples.A simply supported beam bridge with a corrugated steel web is taken as an example and the effects of parameters such as the initial vehicle speed,braking acceleration,braking location,and road surface roughness on the mid-span displacement and impact factor of the bridge are analyzed.The results show that vehicle braking significantly amplifies mid-span displacement and impact factor responses in comparison to uniform vehicular motion across the bridge.Notably,the influence of wheelto-bridge friction forces is of particular significance and cannot be overlooked.When the vehicle initiates braking near the middle of the span,both the mid-span displacement and impact factor of the bridge exhibit substantial increases,further escalating with higher braking acceleration.Under favorable road surface conditions,the midspan displacement and the impact factor during vehicle braking may exceed the design values stipulated by codes.It is important to note that road surface roughness exerts a more pronounced effect on the impact factor of the bridge in comparison to the effects of vehicle braking.展开更多
In order to study the effect of temperature difference load (TDL) along the vertical direction of a simply supported beam bridge section on the vertical irregularity, a rail-bridge-piers calculation model was establ...In order to study the effect of temperature difference load (TDL) along the vertical direction of a simply supported beam bridge section on the vertical irregularity, a rail-bridge-piers calculation model was established. Taking 32 m simply supported box beam bridge which is widely used in the construction of pas- senger dedicated line in China as an example, influences of the temperature variation between the bottom and top of the bridge, temperature curve index, type of temperature gradient, and beam height on track vertical irregularity were analyzed with the model. The results show that TDL has more effects on long wave track irregularity than on short one, and the wavelength mainly affected is approxi- mately equal to the beam span. The amplitude of irregu- larity caused by TDL is largely affected by the temperature variation, temperature curve index, and type of temperature gradient, so it is necessary to monitor the temperaturedistribution of bridges in different regions to provide accurate calculation parameters. In order to avoid the irregularity exceeding the limit values, the height of 32, 48, and 64 m simply supported box beam bridges must not be less than 2.15, 3.2, and 4.05 m, respectively.展开更多
To analyze the dynamic response and reliability of a continuous beam bridge under the action of an extra heavy vehicle, a vehicle–bridge coupled vibration model was established based on the virtual work principle and...To analyze the dynamic response and reliability of a continuous beam bridge under the action of an extra heavy vehicle, a vehicle–bridge coupled vibration model was established based on the virtual work principle and vehicle–bridge displacement compatibility equation, which can accurately simulate the dynamic characteristics of the vehicle and bridge. Results show that deck roughness has an important function in the effect of the vehicle on the bridge. When an extra heavy vehicle passes through the continuous beam bridge at a low speed of 5 km/h, the impact coefficient reaches a high value, which should not be disregarded in bridge safety assessments. Considering that no specific law exists between the impact coefficient and vehicle speed, vehicle speed should not be unduly limited and deck roughness repairing should be paid considerable attention. Deck roughness has a significant influence on the reliability index, which decreases as deck roughness increases. For the continuous beam bridge in this work, the reliability index of each control section is greater than the minimum reliability index. No reinforcement measures are required for over-sized transport.展开更多
A novel model is proposed which comprises of a beam bridge subjected to an axial load and an infinite series of moving loads. The moving loads, whose distance between the neighbouring ones is the length of the beam br...A novel model is proposed which comprises of a beam bridge subjected to an axial load and an infinite series of moving loads. The moving loads, whose distance between the neighbouring ones is the length of the beam bridge, coupled with the axial force can lead the vibration of the beam bridge to codimension-two bifurcation. Of particular concern is a parameter regime where non-persistence set regions undergo a transition to persistence regions. The boundary of each stripe represents a bifurcation which can drive the system off a kind of dynamics and jump to another one, causing damage due to the resulting amplitude jumps. The Galerkin method, averaging method, invertible linear transformation, and near identity nonlinear transformations are used to obtain the universal unfolding for the codimension-two bifurcation of the mid-span deflection. The efficiency of the theoretical analysis obtained in this paper is verified via numerical simulations.展开更多
A nonlinear beam formulation is presented based on the Gurtin-Murdoch surface elasticity and the modified couple stress theory. The developed model theoretically takes into account coupled effects of the energy of sur...A nonlinear beam formulation is presented based on the Gurtin-Murdoch surface elasticity and the modified couple stress theory. The developed model theoretically takes into account coupled effects of the energy of surface layer and microstructures size- dependency. The mid-plane stretching of a beam is incorporated using von-Karman nonlinear strains. Hamilton's principle is used to determine the nonlinear governing equation of motion and the corresponding boundary conditions. As a case study, pull-in instability of an electromechanical nano-bridge structure is studied using the proposed formulation. The nonlinear governing equation is solved by the analytical reduced order method (ROM) as well as the numerical solution. Effects of various parameters including surface layer, size dependency, dispersion forces, and structural damping on the pull- in parameters of the nano-bridges are discussed. Comparison of the results with the literature reveals capability of the present model in demonstrating the impact of nano- scale phenomena on the pull-in threshold of the nano-bridges.展开更多
At present, the bearing capacity evaluation is mainly based on load detection, which requires closed traffic and has certain risks. With the increase of service time, the cracks of reinforced concrete beam bridge will...At present, the bearing capacity evaluation is mainly based on load detection, which requires closed traffic and has certain risks. With the increase of service time, the cracks of reinforced concrete beam bridge will gradually develop and the stiffness will reduce, resulting in the decrease of bearing capacity. Therefore, in this paper, the calculation of stiffness reduction coefficient by using crack characteristic parameters, which provides basic data for bearing capacity evaluation, has been studied. In this paper, using regression analysis through fracture characteristics of four model beam observation and test load-displacement curve characteristic parameters, crack flexural rigidity of the beam bridge relationship has been set up. The qualitative assessment based appearance of cracks in the structure of checks has been converted to quantitative assessment. And compared with the test results of a real bridge, comparative results show that the assessment is objective and reliable. It makes the assessment more objective and scientific. A new way of Quantitative assessment of the structural performance has been provided for a large number of existing reinforced concrete beam bridge.展开更多
Railway bridges are susceptible to over-height truck collisions and to address this issue,it is necessary to attenuate the effect of these impacts to ensure the safety of transportation operations.This study experimen...Railway bridges are susceptible to over-height truck collisions and to address this issue,it is necessary to attenuate the effect of these impacts to ensure the safety of transportation operations.This study experimentally investigates the effectiveness of crash beams as a cushioning mechanism for railway bridges against collisions.Over-height truck and railway bridge impact events were simulated in a 1:5 scale experiment.The design parameters such as the stiffness of the crash beam and the bridge supports were scaled to evaluate different levels of attenuation.Seventeen experiments were conducted with five configurations consisting of four different types of crash beams and one no-crash beam arrangement.The results show that crash beams attenuate bridge total peak dynamic displacement responses between 14.5%and 35.7%,depending on the intensity of the impact and crash beam type.In addition,the results show that the average effectiveness in attenuating residual deformation for all four crash beams ranges from 43.03%to 83.40%.Finally,various designs and their effectiveness against lateral impacts with different speeds are discussed.The overall scope of this research is to provide objective information about the design of crash beams for railway bridges based on their response to over-height truck collisions at various speeds.展开更多
Based on the method of strain mode, damage identification of continuous beam bridges by comparing the variance of several curves of strain modes difference is studied. Three cases of numerical simulation demonstrate t...Based on the method of strain mode, damage identification of continuous beam bridges by comparing the variance of several curves of strain modes difference is studied. Three cases of numerical simulation demonstrate that the proposed method is applicable to detecting many a damage in a continuous beam bridge, which accurately identifies the damaged positions of the bridge, and detects the damage severity of an element by its according peak value of the curve of strain modes difference that is found to increase with the increasing damage severity.展开更多
The application of mobile formwork cast-in-situ beam technology is conducive to providing quality assurance for bridge constructions.At the same time,it can improve the overall mechanization level of the construction ...The application of mobile formwork cast-in-situ beam technology is conducive to providing quality assurance for bridge constructions.At the same time,it can improve the overall mechanization level of the construction process and further accelerate the construction progress,so as to shorten the construction period and improve the economic benefits of enterprises.In fact,this construction method has been widely applied.In order to assure a positive outcome from the use of this technology,this paper analyzes the application of mobile formwork cast-in-situ beam technology in bridge construction to provide reference.展开更多
Considering arch rib, lateral brace, suspender, girder, pier and track position, the model for the interaction between long-span tied arch continuous bridge and multiple tracks was established by using steel-concrete ...Considering arch rib, lateral brace, suspender, girder, pier and track position, the model for the interaction between long-span tied arch continuous bridge and multiple tracks was established by using steel-concrete composite section beam element to simulate concrete-filled steel tube(CFST) arch rib, using the beam element with rigid arm to simulate the prestressed concrete girder and using nonlinear bar element to simulate longitudinal constraint between track and bridge. Taking a(77+3×156.8+77) m tied arch continuous bridge with four tracks on the Harbin-Qiqihar Passenger Dedicated Line as an example, the arrangement of continuously welded rail(CWR) was explored. The longitudinal force in CWR on the tied arch continuous bridge, the pier top horizontal force and torque due to the unbalance load case, were analyzed under the action of temperature, vertical live load, train braking and wind load.Studies show that, it can significantly reduce track displacement to set the track expansion devices at main span arch springing on both sides; the track stress due to arch temperature variation can reach 40.8 MPa; the track stress, pier top horizontal force and torque are related to the number of loaded tracks and train running direction, and the bending force applied to unloaded track is close to the loaded track, while the braking force applied to unloaded track is 1/4 to 1/2 of the loaded track; the longitudinal force of track due to the wind load is up to 12.4 MPa, which should be considered.展开更多
A proven beam-track contact model was used to analyze the track-structure interaction of CWR (continuously welded track) on bridge. Considering the impact of adjacent bridges, the tower-cable-track-beam-pier-pile fini...A proven beam-track contact model was used to analyze the track-structure interaction of CWR (continuously welded track) on bridge. Considering the impact of adjacent bridges, the tower-cable-track-beam-pier-pile finite element model of the cable-stayed bridge was established. Taking a bridge group including 40-32m simply-supported beam and (32+80+112)m single-tower cable-stayed bridge and 17-32m simply-supported beam on the Kunming-Shanghai high-speed railway as an example, the characteristics of CWR longitudinal force on the cable-stayed bridge were studied. It is shown that adjacent bridges must be considered in the calculation of the track expansion force and bending force on cable-stayed bridge. When the span amount of adjacent bridges is too numerous, it can be simplified as six spans; the fixed bearing of adjacent simply-supported beams should be placed on the side near the cable-stayed bridge; the track expansion device should be set at the bridge tower to reduce the track force near the bridge abutment.展开更多
A convenient approach is proposed for analyzing the ultimate load carrying capacity of concrete filled steel tubular (CFST) arch bridge with stiffening girders. A fiber model beam element is specially used to simulate...A convenient approach is proposed for analyzing the ultimate load carrying capacity of concrete filled steel tubular (CFST) arch bridge with stiffening girders. A fiber model beam element is specially used to simulate the stiffening girder and CFST arch rib. The geometric nonlinearity, material nonlinearity, influence of the construction process and the contribution of prestressing reinforcement are all taken into consideration. The accuracy of this method is validated by comparing its results with experimental results. Finally, the ultimate strength of an abnormal CFST arch bridge with stiffening girders is investigated and the effect of construction method is discussed. It is concluded that the construction process has little effect on the ultimate strength of the bridge.展开更多
Three beam samples of bridge deck pavement were prepared, with gradation types of AC-13, and AC-16 and combined AC-13+AC-16. Four-point bending test was adopted to investigate the fatigue performance of these beam sa...Three beam samples of bridge deck pavement were prepared, with gradation types of AC-13, and AC-16 and combined AC-13+AC-16. Four-point bending test was adopted to investigate the fatigue performance of these beam samples. The experimental results indicate that the initial bending stiffness is related to the type of beam sample samples decreases as the increase of the controlled strain fatigue resistance and bigger limiting bending strain at pared with single beam sample, the fatigue performance and testing temperature. Fatigue life of these level. The AC-13 beam sample exhibits better the given strain level and temperature. Corn- of combining beam samnle is relatively poor.展开更多
This paper focuses on developing an online structural condition assessment technique using long-term monitoring data measured by a structural health monitoring system. The seasonal correlations of frequency-temperatur...This paper focuses on developing an online structural condition assessment technique using long-term monitoring data measured by a structural health monitoring system. The seasonal correlations of frequency-temperature and beam-end displacement-temperature for the Runyang Suspension Bridge are performed, first. Then, a statistical modeling technique using a six-order polynomial is further applied to formulate the correlations of frequency-temperature and displacement-temperature, from which abnormal changes of measured frequencies and displacements are detected using the mean value control chart. Analysis results show that modal frequencies of higher vibration modes and displacements have remarkable seasonal correlations with the environmental temperature and the proposed method exhibits a good capability for detecting the micro damage-induced changes of modal frequencies and displacements. The results demonstrate that the proposed method can effectively eliminate temperature complications from frequency and displacement time series and is well suited for online condition monitoring of long-span suspension bridges.展开更多
The track geometry is a critical factor that affects the running safety and riding comfort of trains moving on a high-speed railway bridge.This study addresses the mapping relationship between the track deformation an...The track geometry is a critical factor that affects the running safety and riding comfort of trains moving on a high-speed railway bridge.This study addresses the mapping relationship between the track deformation and lateral deformations of bridges.Equilibrium equations and natural boundary conditions of the track-bridge system are established based on the energy variational principle,and an analytical solution is derived for the track deformation accounting for lateral bridge deformations.A five-span simply-supported bridge with continuous welded rail has been selected as the case study.The mapping rail deformations are compared to the finite element results,and both results agree well with each other,validating the analytical method proposed in this paper.The influence factors on the mapping rail deformation are further evaluated.Results show that the mapping rail deformation is consistent with the girder displacement at the area that is away from the girder ends when the flexural stiffness ratio between the track and the bridge girder is low.The interlayer stiffness has a significant effect on the mapping rail deformation when the track flexural stiffness is of a high value.展开更多
Bridges, especially highway bridges, are a key factor in nations’ development and flourish. Thus, great care should be taken to maintain and inspect their safety and serviceability. An immediate repair will prevent t...Bridges, especially highway bridges, are a key factor in nations’ development and flourish. Thus, great care should be taken to maintain and inspect their safety and serviceability. An immediate repair will prevent the loss of life and vehicles damage while crossing underpass and overpassing the heavy deteriorated bridges. Reinforced or pre-stressed concrete bridge girders become structurally deficient because of severed reasons including, increasing in the load requirements, corrosion of pre-stressing strands or reinforcement bars and collision of over-height trucks with the bulb of the concrete girders. The purpose of this case study is to evaluate and assess the damages of the highway bridges in Jordan. Since there is no mandatory program in Jordan for inspection of bridges and evaluating their conditions, this paper presents an inspection and assessment of two highway bridges along the desert highway which is the essential nerve connecting Jordan cities, and it also serves as an international road between many middle east countries. These two Bridges have never been investigated or checked since their construction in the late 1980s. The study results showed that the main factor causing the deterioration of these bridges is the collision of the over-height trucks with their elements. Relying on the collected data, solutions and repair methods were introduced to rehabilitate these bridges and assure their structural safety.展开更多
Various theories and analytical formulations were implemented and exploited in the 1980s and 1990s for the design of bridge beams or decks curved in the horizontal plane and subjected to out-of-plane loads. Nowadays, ...Various theories and analytical formulations were implemented and exploited in the 1980s and 1990s for the design of bridge beams or decks curved in the horizontal plane and subjected to out-of-plane loads. Nowadays, the Finite Element Method (FEM) is a valid tool for the analysis of structures with complex geometries and, therefore, the development of sophisticated analytical formulations is not needed anymore. However, they are still useful for the validation of FE models. This paper presents the case study of an existing viaduct built in North Italy, aiming to compare analytical approaches and numerical modelling. The bridge is characterized by an axis curved in two directions and a rectilinear segment. The global analysis of the viaduct is carried out with special attention to the attributes that cause torque action and bending moment. The theoretical developments focus on a deeper understanding of the torsional response under different constraint and loading conditions and aspire to raise awareness of the mutual interaction of flexural and torsional behaviour, that are always present in these complex curved systems. The examination of the case study is also obtained by comparing the response of isostatic and hyperstatic curvilinear steel box-girders.展开更多
We fabricate different-sized Al/AlO_x/Al Josephson junctions by using a simple bridge-free technique, in which only single-layer E-beam resist polymethyl methacrylate(PMMA) is exposed at low accelerate voltage(belo...We fabricate different-sized Al/AlO_x/Al Josephson junctions by using a simple bridge-free technique, in which only single-layer E-beam resist polymethyl methacrylate(PMMA) is exposed at low accelerate voltage(below 30 kV) and the size of junction can be varied in a large range. Compared with the bridge technique, this fabrication process is very robust because it can avoid collapsing the bridge during fabrication. This makes the bridge-free technique more popular to meet different requirements for Josephson junction devices especially for superconducting quantum bits.展开更多
This paper addresses a comprehensive design of RCC T-beam Bridge based on AASHTO design standards. The bridge is designed and proposed to be constructed over an irrigation canal (Zahirshahi canal) of Kandahar province...This paper addresses a comprehensive design of RCC T-beam Bridge based on AASHTO design standards. The bridge is designed and proposed to be constructed over an irrigation canal (Zahirshahi canal) of Kandahar province, Afghanistan that has more than 30 bridges over it. Yet they are not enough, and the demand for construction of new bridges is gradually arising because of the vast urbanization in the surrounding of the canal. Most of the bridges on this canal are Reinforced Concrete Slab (RCS) bridges;?these type bridges are limited by capacity and are generally found only in smaller spans. Since they can only span short distances and are often constructed as multiple-span?bridges with vertical supports between the abutments to allow a longer length.?All constructed slab bridges over Zahirshahi canal are four-span bridges. Constructing multi-span bridges on the canal decreases waterway due to the existence of many piers and footings that could increase the water level during the peak flow, even, sometimes can cause over flow. Taking into consideration these deficiencies of the present (RCS) bridges, two-span RCC T-beam Bridge is one of the best alternatives to be constructed over the canal. In addition, canal cross-sectional dimensions are almost constant along its length, though the construction of two-span RCC T-beam bridge is applicable at any point of the canal. The design is selected based on exclusive survey of the area during all seasons including the peak flowing of the canal.展开更多
基金National Natural Science Foundation of China under Grant No.51879191。
文摘The auto-parametric resonance of a continuous-beam bridge model subjected to a two-point periodic excitation is experimentally and numerically investigated in this study.An auto-parametric resonance experiment of the test model is conducted to observe and measure the auto-parametric resonance of a continuous beam under a two-point excitation on columns.The parametric vibration equation is established for the test model using the finite-element method.The auto-parametric resonance stability of the structure is analyzed by using Newmark's method and the energy-growth exponent method.The effects of the phase difference of the two-point excitation on the stability boundaries of auto-parametric resonance are studied for the test model.Compared with the experiment,the numerical instability predictions of auto-parametric resonance are consistent with the test phenomena,and the numerical stability boundaries of auto-parametric resonance agree with the experimental ones.For a continuous beam bridge,when the ratio of multipoint excitation frequency(applied to the columns)to natural frequency of the continuous girder is approximately equal to 2,the continuous beam may undergo a strong auto-parametric resonance.Combined with the present experiment and analysis,a hypothesis of Volgograd Bridge's serpentine vibration is discussed.
基金supported by the Henan Provincial Science and Technology Research Project under Grant(152102310295).
文摘A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solution of bridge vibrations induced by vehicle deceleration are realized using this method.The method’s validity and reliability are substantiated through numerical examples.A simply supported beam bridge with a corrugated steel web is taken as an example and the effects of parameters such as the initial vehicle speed,braking acceleration,braking location,and road surface roughness on the mid-span displacement and impact factor of the bridge are analyzed.The results show that vehicle braking significantly amplifies mid-span displacement and impact factor responses in comparison to uniform vehicular motion across the bridge.Notably,the influence of wheelto-bridge friction forces is of particular significance and cannot be overlooked.When the vehicle initiates braking near the middle of the span,both the mid-span displacement and impact factor of the bridge exhibit substantial increases,further escalating with higher braking acceleration.Under favorable road surface conditions,the midspan displacement and the impact factor during vehicle braking may exceed the design values stipulated by codes.It is important to note that road surface roughness exerts a more pronounced effect on the impact factor of the bridge in comparison to the effects of vehicle braking.
基金supported by the National Science Foundation (U1234201)the Doctorial Innovation Fund of Southwest Jiaotong University
文摘In order to study the effect of temperature difference load (TDL) along the vertical direction of a simply supported beam bridge section on the vertical irregularity, a rail-bridge-piers calculation model was established. Taking 32 m simply supported box beam bridge which is widely used in the construction of pas- senger dedicated line in China as an example, influences of the temperature variation between the bottom and top of the bridge, temperature curve index, type of temperature gradient, and beam height on track vertical irregularity were analyzed with the model. The results show that TDL has more effects on long wave track irregularity than on short one, and the wavelength mainly affected is approxi- mately equal to the beam span. The amplitude of irregu- larity caused by TDL is largely affected by the temperature variation, temperature curve index, and type of temperature gradient, so it is necessary to monitor the temperaturedistribution of bridges in different regions to provide accurate calculation parameters. In order to avoid the irregularity exceeding the limit values, the height of 32, 48, and 64 m simply supported box beam bridges must not be less than 2.15, 3.2, and 4.05 m, respectively.
基金Project(50779032)supported by the National Natural Science Foundation of ChinaProject(20090451330)supported by the Postdoctoral Foundation of ChinaProject(BS2013SF007)supported by Shandong Scientific Research Award Foundation for Outstanding Young Scientists,China
文摘To analyze the dynamic response and reliability of a continuous beam bridge under the action of an extra heavy vehicle, a vehicle–bridge coupled vibration model was established based on the virtual work principle and vehicle–bridge displacement compatibility equation, which can accurately simulate the dynamic characteristics of the vehicle and bridge. Results show that deck roughness has an important function in the effect of the vehicle on the bridge. When an extra heavy vehicle passes through the continuous beam bridge at a low speed of 5 km/h, the impact coefficient reaches a high value, which should not be disregarded in bridge safety assessments. Considering that no specific law exists between the impact coefficient and vehicle speed, vehicle speed should not be unduly limited and deck roughness repairing should be paid considerable attention. Deck roughness has a significant influence on the reliability index, which decreases as deck roughness increases. For the continuous beam bridge in this work, the reliability index of each control section is greater than the minimum reliability index. No reinforcement measures are required for over-sized transport.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11002093,11172183,and 11202142)the Science and Technology Fund of the Science and Technology Department of Hebei Province,China(Grant No.11215643)
文摘A novel model is proposed which comprises of a beam bridge subjected to an axial load and an infinite series of moving loads. The moving loads, whose distance between the neighbouring ones is the length of the beam bridge, coupled with the axial force can lead the vibration of the beam bridge to codimension-two bifurcation. Of particular concern is a parameter regime where non-persistence set regions undergo a transition to persistence regions. The boundary of each stripe represents a bifurcation which can drive the system off a kind of dynamics and jump to another one, causing damage due to the resulting amplitude jumps. The Galerkin method, averaging method, invertible linear transformation, and near identity nonlinear transformations are used to obtain the universal unfolding for the codimension-two bifurcation of the mid-span deflection. The efficiency of the theoretical analysis obtained in this paper is verified via numerical simulations.
文摘A nonlinear beam formulation is presented based on the Gurtin-Murdoch surface elasticity and the modified couple stress theory. The developed model theoretically takes into account coupled effects of the energy of surface layer and microstructures size- dependency. The mid-plane stretching of a beam is incorporated using von-Karman nonlinear strains. Hamilton's principle is used to determine the nonlinear governing equation of motion and the corresponding boundary conditions. As a case study, pull-in instability of an electromechanical nano-bridge structure is studied using the proposed formulation. The nonlinear governing equation is solved by the analytical reduced order method (ROM) as well as the numerical solution. Effects of various parameters including surface layer, size dependency, dispersion forces, and structural damping on the pull- in parameters of the nano-bridges are discussed. Comparison of the results with the literature reveals capability of the present model in demonstrating the impact of nano- scale phenomena on the pull-in threshold of the nano-bridges.
文摘At present, the bearing capacity evaluation is mainly based on load detection, which requires closed traffic and has certain risks. With the increase of service time, the cracks of reinforced concrete beam bridge will gradually develop and the stiffness will reduce, resulting in the decrease of bearing capacity. Therefore, in this paper, the calculation of stiffness reduction coefficient by using crack characteristic parameters, which provides basic data for bearing capacity evaluation, has been studied. In this paper, using regression analysis through fracture characteristics of four model beam observation and test load-displacement curve characteristic parameters, crack flexural rigidity of the beam bridge relationship has been set up. The qualitative assessment based appearance of cracks in the structure of checks has been converted to quantitative assessment. And compared with the test results of a real bridge, comparative results show that the assessment is objective and reliable. It makes the assessment more objective and scientific. A new way of Quantitative assessment of the structural performance has been provided for a large number of existing reinforced concrete beam bridge.
基金Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant Nos.2016A06 and 2017A02the National Natural Science Foundation of China under Grant Nos.51678538 and 51878630+1 种基金the Transportation Consortium of South-Central States(TRANSET)US Department of Transportation(USDOT),Project No.17STUNM02。
文摘Railway bridges are susceptible to over-height truck collisions and to address this issue,it is necessary to attenuate the effect of these impacts to ensure the safety of transportation operations.This study experimentally investigates the effectiveness of crash beams as a cushioning mechanism for railway bridges against collisions.Over-height truck and railway bridge impact events were simulated in a 1:5 scale experiment.The design parameters such as the stiffness of the crash beam and the bridge supports were scaled to evaluate different levels of attenuation.Seventeen experiments were conducted with five configurations consisting of four different types of crash beams and one no-crash beam arrangement.The results show that crash beams attenuate bridge total peak dynamic displacement responses between 14.5%and 35.7%,depending on the intensity of the impact and crash beam type.In addition,the results show that the average effectiveness in attenuating residual deformation for all four crash beams ranges from 43.03%to 83.40%.Finally,various designs and their effectiveness against lateral impacts with different speeds are discussed.The overall scope of this research is to provide objective information about the design of crash beams for railway bridges based on their response to over-height truck collisions at various speeds.
文摘Based on the method of strain mode, damage identification of continuous beam bridges by comparing the variance of several curves of strain modes difference is studied. Three cases of numerical simulation demonstrate that the proposed method is applicable to detecting many a damage in a continuous beam bridge, which accurately identifies the damaged positions of the bridge, and detects the damage severity of an element by its according peak value of the curve of strain modes difference that is found to increase with the increasing damage severity.
文摘The application of mobile formwork cast-in-situ beam technology is conducive to providing quality assurance for bridge constructions.At the same time,it can improve the overall mechanization level of the construction process and further accelerate the construction progress,so as to shorten the construction period and improve the economic benefits of enterprises.In fact,this construction method has been widely applied.In order to assure a positive outcome from the use of this technology,this paper analyzes the application of mobile formwork cast-in-situ beam technology in bridge construction to provide reference.
基金Project(51378503)supported by the National Natural Science Foundation of ChinaProject(2014M552158)supported by China Postdoctoral Science Foundation
文摘Considering arch rib, lateral brace, suspender, girder, pier and track position, the model for the interaction between long-span tied arch continuous bridge and multiple tracks was established by using steel-concrete composite section beam element to simulate concrete-filled steel tube(CFST) arch rib, using the beam element with rigid arm to simulate the prestressed concrete girder and using nonlinear bar element to simulate longitudinal constraint between track and bridge. Taking a(77+3×156.8+77) m tied arch continuous bridge with four tracks on the Harbin-Qiqihar Passenger Dedicated Line as an example, the arrangement of continuously welded rail(CWR) was explored. The longitudinal force in CWR on the tied arch continuous bridge, the pier top horizontal force and torque due to the unbalance load case, were analyzed under the action of temperature, vertical live load, train braking and wind load.Studies show that, it can significantly reduce track displacement to set the track expansion devices at main span arch springing on both sides; the track stress due to arch temperature variation can reach 40.8 MPa; the track stress, pier top horizontal force and torque are related to the number of loaded tracks and train running direction, and the bending force applied to unloaded track is close to the loaded track, while the braking force applied to unloaded track is 1/4 to 1/2 of the loaded track; the longitudinal force of track due to the wind load is up to 12.4 MPa, which should be considered.
基金Project(51178469) supported by the National Natural Science Foundation of China
文摘A proven beam-track contact model was used to analyze the track-structure interaction of CWR (continuously welded track) on bridge. Considering the impact of adjacent bridges, the tower-cable-track-beam-pier-pile finite element model of the cable-stayed bridge was established. Taking a bridge group including 40-32m simply-supported beam and (32+80+112)m single-tower cable-stayed bridge and 17-32m simply-supported beam on the Kunming-Shanghai high-speed railway as an example, the characteristics of CWR longitudinal force on the cable-stayed bridge were studied. It is shown that adjacent bridges must be considered in the calculation of the track expansion force and bending force on cable-stayed bridge. When the span amount of adjacent bridges is too numerous, it can be simplified as six spans; the fixed bearing of adjacent simply-supported beams should be placed on the side near the cable-stayed bridge; the track expansion device should be set at the bridge tower to reduce the track force near the bridge abutment.
文摘A convenient approach is proposed for analyzing the ultimate load carrying capacity of concrete filled steel tubular (CFST) arch bridge with stiffening girders. A fiber model beam element is specially used to simulate the stiffening girder and CFST arch rib. The geometric nonlinearity, material nonlinearity, influence of the construction process and the contribution of prestressing reinforcement are all taken into consideration. The accuracy of this method is validated by comparing its results with experimental results. Finally, the ultimate strength of an abnormal CFST arch bridge with stiffening girders is investigated and the effect of construction method is discussed. It is concluded that the construction process has little effect on the ultimate strength of the bridge.
基金Funded by the National Natural Science Foundation of China (No. 50878171)
文摘Three beam samples of bridge deck pavement were prepared, with gradation types of AC-13, and AC-16 and combined AC-13+AC-16. Four-point bending test was adopted to investigate the fatigue performance of these beam samples. The experimental results indicate that the initial bending stiffness is related to the type of beam sample samples decreases as the increase of the controlled strain fatigue resistance and bigger limiting bending strain at pared with single beam sample, the fatigue performance and testing temperature. Fatigue life of these level. The AC-13 beam sample exhibits better the given strain level and temperature. Corn- of combining beam samnle is relatively poor.
基金National Natural Science Foundation of China Under Grant No.50725828 & No.50808041PhD Programs Foundation of Ministry of Education of China Under Grant No. 200802861011Scientific Research Foundation of Graduate School of Southeast University Under Grant No.YBJJ0923
文摘This paper focuses on developing an online structural condition assessment technique using long-term monitoring data measured by a structural health monitoring system. The seasonal correlations of frequency-temperature and beam-end displacement-temperature for the Runyang Suspension Bridge are performed, first. Then, a statistical modeling technique using a six-order polynomial is further applied to formulate the correlations of frequency-temperature and displacement-temperature, from which abnormal changes of measured frequencies and displacements are detected using the mean value control chart. Analysis results show that modal frequencies of higher vibration modes and displacements have remarkable seasonal correlations with the environmental temperature and the proposed method exhibits a good capability for detecting the micro damage-induced changes of modal frequencies and displacements. The results demonstrate that the proposed method can effectively eliminate temperature complications from frequency and displacement time series and is well suited for online condition monitoring of long-span suspension bridges.
基金Project(2021RC2011)supported by the Science and Technology Innovation Program of Hunan Province,ChinaProjects(U1934207,52178180)supported by the National Natural Science Foundation of ChinaProject(2021M703648)supported by the China Postdoctoral Science Foundation。
文摘The track geometry is a critical factor that affects the running safety and riding comfort of trains moving on a high-speed railway bridge.This study addresses the mapping relationship between the track deformation and lateral deformations of bridges.Equilibrium equations and natural boundary conditions of the track-bridge system are established based on the energy variational principle,and an analytical solution is derived for the track deformation accounting for lateral bridge deformations.A five-span simply-supported bridge with continuous welded rail has been selected as the case study.The mapping rail deformations are compared to the finite element results,and both results agree well with each other,validating the analytical method proposed in this paper.The influence factors on the mapping rail deformation are further evaluated.Results show that the mapping rail deformation is consistent with the girder displacement at the area that is away from the girder ends when the flexural stiffness ratio between the track and the bridge girder is low.The interlayer stiffness has a significant effect on the mapping rail deformation when the track flexural stiffness is of a high value.
文摘Bridges, especially highway bridges, are a key factor in nations’ development and flourish. Thus, great care should be taken to maintain and inspect their safety and serviceability. An immediate repair will prevent the loss of life and vehicles damage while crossing underpass and overpassing the heavy deteriorated bridges. Reinforced or pre-stressed concrete bridge girders become structurally deficient because of severed reasons including, increasing in the load requirements, corrosion of pre-stressing strands or reinforcement bars and collision of over-height trucks with the bulb of the concrete girders. The purpose of this case study is to evaluate and assess the damages of the highway bridges in Jordan. Since there is no mandatory program in Jordan for inspection of bridges and evaluating their conditions, this paper presents an inspection and assessment of two highway bridges along the desert highway which is the essential nerve connecting Jordan cities, and it also serves as an international road between many middle east countries. These two Bridges have never been investigated or checked since their construction in the late 1980s. The study results showed that the main factor causing the deterioration of these bridges is the collision of the over-height trucks with their elements. Relying on the collected data, solutions and repair methods were introduced to rehabilitate these bridges and assure their structural safety.
文摘Various theories and analytical formulations were implemented and exploited in the 1980s and 1990s for the design of bridge beams or decks curved in the horizontal plane and subjected to out-of-plane loads. Nowadays, the Finite Element Method (FEM) is a valid tool for the analysis of structures with complex geometries and, therefore, the development of sophisticated analytical formulations is not needed anymore. However, they are still useful for the validation of FE models. This paper presents the case study of an existing viaduct built in North Italy, aiming to compare analytical approaches and numerical modelling. The bridge is characterized by an axis curved in two directions and a rectilinear segment. The global analysis of the viaduct is carried out with special attention to the attributes that cause torque action and bending moment. The theoretical developments focus on a deeper understanding of the torsional response under different constraint and loading conditions and aspire to raise awareness of the mutual interaction of flexural and torsional behaviour, that are always present in these complex curved systems. The examination of the case study is also obtained by comparing the response of isostatic and hyperstatic curvilinear steel box-girders.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFA0301802)the National Natural Science Foundation of China(Grant Nos.11474152,91321310,11274156,11504165,and 61521001)
文摘We fabricate different-sized Al/AlO_x/Al Josephson junctions by using a simple bridge-free technique, in which only single-layer E-beam resist polymethyl methacrylate(PMMA) is exposed at low accelerate voltage(below 30 kV) and the size of junction can be varied in a large range. Compared with the bridge technique, this fabrication process is very robust because it can avoid collapsing the bridge during fabrication. This makes the bridge-free technique more popular to meet different requirements for Josephson junction devices especially for superconducting quantum bits.
文摘This paper addresses a comprehensive design of RCC T-beam Bridge based on AASHTO design standards. The bridge is designed and proposed to be constructed over an irrigation canal (Zahirshahi canal) of Kandahar province, Afghanistan that has more than 30 bridges over it. Yet they are not enough, and the demand for construction of new bridges is gradually arising because of the vast urbanization in the surrounding of the canal. Most of the bridges on this canal are Reinforced Concrete Slab (RCS) bridges;?these type bridges are limited by capacity and are generally found only in smaller spans. Since they can only span short distances and are often constructed as multiple-span?bridges with vertical supports between the abutments to allow a longer length.?All constructed slab bridges over Zahirshahi canal are four-span bridges. Constructing multi-span bridges on the canal decreases waterway due to the existence of many piers and footings that could increase the water level during the peak flow, even, sometimes can cause over flow. Taking into consideration these deficiencies of the present (RCS) bridges, two-span RCC T-beam Bridge is one of the best alternatives to be constructed over the canal. In addition, canal cross-sectional dimensions are almost constant along its length, though the construction of two-span RCC T-beam bridge is applicable at any point of the canal. The design is selected based on exclusive survey of the area during all seasons including the peak flowing of the canal.