Ingredient optimization plays a pivotal role in the copper industry,for which it is closely related to the concentrate utilization rate,stability of furnace conditions,and the quality of copper production.To acquire a...Ingredient optimization plays a pivotal role in the copper industry,for which it is closely related to the concentrate utilization rate,stability of furnace conditions,and the quality of copper production.To acquire a practical ingredient plan,which should exhibit long duration time with sufficient utilization and feeding stability for real applications,an ingredient plan optimization model is proposed in this study to effectively guarantee continuous production and stable furnace conditions.To address the complex challenges posed by this integer programming model,including multiple coupling feeding stages,intricate constraints,and significant non-linearity,a multi-stage differential-multifactorial evolution algorithm is developed.In the proposed algorithm,the differential evolutionary(DE)algorithm is improved in three aspects to efficiently tackle challenges when optimizing the proposed model.First,unlike traditional time-consuming serial approaches,the multifactorial evolutionary algorithm is utilized to optimize multiple complex models contained in the population of evolutionary algorithm caused by the feeding stability in a parallel manner.Second,a repair algorithm is employed to adjust infeasible ingredient lists in a timely manner.In addition,a local search strategy taking feedback from the current optima and considering the different positions of global optimum is developed to avoiding premature convergence of the differential evolutionary algorithm.Finally,the simulation experiments considering different planning horizons using real data from the copper industry in China are conducted,which demonstrates the superiority of the proposed method on feeding duration and stability compared with other commonly deployed approaches.It is practically helpful for reducing material cost as well as increasing production profit for the copper industry.展开更多
To enhance the comprehensive performance of artillery internal ballistics—encompassing power,accuracy,and service life—this study proposed a multi-stage multidisciplinary design optimization(MS-MDO)method.First,the ...To enhance the comprehensive performance of artillery internal ballistics—encompassing power,accuracy,and service life—this study proposed a multi-stage multidisciplinary design optimization(MS-MDO)method.First,the comprehensive artillery internal ballistic dynamics(AIBD)model,based on propellant combustion,rotation band engraving,projectile axial motion,and rifling wear models,was established and validated.This model was systematically decomposed into subsystems from a system engineering perspective.The study then detailed the MS-MDO methodology,which included Stage I(MDO stage)employing an improved collaborative optimization method for consistent design variables,and Stage II(Performance Optimization)focusing on the independent optimization of local design variables and performance metrics.The methodology was applied to the AIBD problem.Results demonstrated that the MS-MDO method in Stage I effectively reduced iteration and evaluation counts,thereby accelerating system-level convergence.Meanwhile,Stage II optimization markedly enhanced overall performance.These comprehensive evaluation results affirmed the effectiveness of the MS-MDO method.展开更多
To address the scheduling problem involving energy storage systems and uncertain energy,we propose a method based on multi-stage robust optimization.This approach aims to regulate the energy storage system by using a ...To address the scheduling problem involving energy storage systems and uncertain energy,we propose a method based on multi-stage robust optimization.This approach aims to regulate the energy storage system by using a multi-stage robust optimal control method,which helps overcome the limitations of traditional methods in terms of time scale.The goal is to effectively utilize the energy storage power station system to address issues caused by unpredictable variations in environmental energy and fluctuating load throughout the day.To achieve this,a mathematical model is constructed to represent uncertain energy sources such as photovoltaic and wind power.The generalized Benders Decomposition method is then employed to solve the multi-stage objective optimization problem.By decomposing the problem into a series of sub-objectives,the system scale is effectively reduced,and the algorithm’s convergence ability is improved.Compared with other algorithms,the multi-stage robust optimization model has better economy and convergence ability and can be used to guide the power dispatching of uncertain energy and energy storage systems.展开更多
Surface watercourses are areas of very high ecological and heritage value. Macroinvertebrates are bioindicators of the health of aquatic ecosystems. The aim of this study was to assess the effects of dewatering and re...Surface watercourses are areas of very high ecological and heritage value. Macroinvertebrates are bioindicators of the health of aquatic ecosystems. The aim of this study was to assess the effects of dewatering and re-watering cycles on benthic macroinvertebrate (BMI) communities. Two data collections were carried out at two stations (Okpara 1 and Okpara 2) on the Okpara river before and after dewatering. Thus, 8 samples of benthic macroinvertebrates and 12 physico-chemical parameters (T°C, pH, Transparency, Depth, Conductivity, Dissolved Oxygen that were measured in situ, and BOD5, COD, NH<sub>4</sub><sup>+</sup>, NO<sub>3</sub><sup>-</sup>, NO<sub>2</sub><sup>-</sup> and PO<sub>4</sub><sup>3-</sup>) were assayed in the laboratory. Canonical Correspondence Analysis (CCA) was used to match physico-chemical data to MIB families. Shannon and Piélou diversity indices were used to determine the effects of dewatering on MIBs. The increase in temperature values of pH, BOD5, COD, NH4</sub>+</sup>, NO3</sub>-</sup>, NO2</sub>-</sup> and PO4</sub>3-</sup>, after re-watering indicates the effect of dewatering on the quality of Okpara aquatic ecosystems. The benthic macrofauna collected consisted of 62.42% insects, 0.65% crustaceans, 6.48% molluscs, 0.72% worms and 0.14% arachnids. Whereas after re-watering, 21.67% insects, 0% crustaceans, 0.22% molluscs, 7.56% worms and 0.29% arachnids were recorded. Insects, crustaceans and molluscs were more abundant before dewatering than after. This was revealed by low abundances and taxonomic richness, as well as low Shannon index values of samples collected after re-watering.展开更多
Triangular Au-Ag framework nanostructures (TFN) were synthesized via a multi-step galvanic replacement reaction (MGRR) of single-crystalline triangular silver nanoplates in a chlorauric acid (HAuCl4) solution at...Triangular Au-Ag framework nanostructures (TFN) were synthesized via a multi-step galvanic replacement reaction (MGRR) of single-crystalline triangular silver nanoplates in a chlorauric acid (HAuCl4) solution at room temperature. The morphological, compositional, and crystal structural changes involved with reaction steps were analyzed by using transmission electron microscopy(TEM), energy-dispersive X-ray spectrometry (EDX), and X-ray diffraction. TEM combined with EDX and selected area electron diffraction confirmed the replacement of Ag with Au. The in-plane dipolar surface plasmon resonance (SPR) absorption band of the Ag nanoplates locating initially at around 700 nm gradually redshifted to 1 100 nm via a multi-stage replacement manner after 7 stages. The adding amount of HAuCl4 per stage influenced the average redshift value per stage, thus enabled a fine tuning of the in-plane dipolar band. A proposed formation mechanism of the original Ag nanoplates developing pores while growing Au nanoparticles covering this underlying structure at more reaction steps was confirmed by exploiting surface-enhanced Raman scattering (SERS).展开更多
[Objective] The technological parameter suitable for the dewatering of dredged sediment from Dianchi Lake was studied.[Method] By means of the treatment method of sewage sludge in sewage treatment plant,flocculants in...[Objective] The technological parameter suitable for the dewatering of dredged sediment from Dianchi Lake was studied.[Method] By means of the treatment method of sewage sludge in sewage treatment plant,flocculants including FeCl3,Al2(SO4)3 and PAM were taken as dewatering agents which were added in dredged sediment.[Result] The results showed that Al2(SO4)3 had better dewatering effect than FeCl3 and PAM,and the optimum dosing quantity of Al2(SO4)3 in dredged sediment was 170 mg/L,in addition,the water quality of supernatant met the first class B standard of GB18918-2002 and could be directly discharged to nature water without pollution.[Conclusion] The study could provide a simple and feasible way for the rapid dewatering of dredged sediment from Dianchi Lake,which would be convenient for the disposal and resource utilization of dredged sediment.展开更多
Anaerobic ammonia oxidation(Anammox) process is a novel and promising wastewater nitrogen removal process. The feasibility of transition of Anammox from denitrification and the performance of lab-scale Anammox biofi...Anaerobic ammonia oxidation(Anammox) process is a novel and promising wastewater nitrogen removal process. The feasibility of transition of Anammox from denitrification and the performance of lab-scale Anammox biofilm reactor were investigated with sludge dewatering effluent. The results showed that Anammox process could be successfully started up after cultivation of denitrification biofilm and using it as inoculum. The transition of Anammox from denitrification was accomplished within 85 d. Anammox process was found suitable to remove ammonia from sludge dewatering effluent. The effluent ammonia concentration was detected to be 23.11 mgN/L at HRT of 28 h when influent ammonia concentration was fed 245 mgN/L, which was less than that for the national discharge standard Ⅱ (25 rngN/L) of China. Volumetric total nitrogen loading rate was up to 584.99 mg TN/(L. d) at HRT of 17 h, while influent concentrations were kept 243.25 mg NH4* -N/L and 288.31 mg NO2^- -N/L.展开更多
Based on analyses of the theories of groundwater unsteady flow in deep well dewatering in the deep foundation pit, Theis equations are chosen to calculate and analyze the relationship between water level drawdown of c...Based on analyses of the theories of groundwater unsteady flow in deep well dewatering in the deep foundation pit, Theis equations are chosen to calculate and analyze the relationship between water level drawdown of confined aquifer and dewatering duration. In order to reduce engineering cost and diminish detrimental effect on ambient surrounding, optimization design target function based on the control of confined water drawdown and four restriction requisitions based on the control of safe water level, resistance to throwing up from the bottom of foundation pit, avoiding excessively great subsidence and unequal surface subsidence are proposed. A deep well dewatering project in the deep foundation pit is optimally designed. The calculated results including confined water level drawdown and surface subsidence are in close agreement with the measured results, and the optimization design can effectively control both surface subsidence outside foundation pit and unequal subsidence as a result of dewatering.展开更多
A deep foundation pit constructed for an underground transportation hub was excavated near the Yangtze River. Among the strata, there are two confined aquifers, between which lies an aquiclude that is partially missin...A deep foundation pit constructed for an underground transportation hub was excavated near the Yangtze River. Among the strata, there are two confined aquifers, between which lies an aquiclude that is partially missing. To guarantee the safety of pit excavation, the piezometric head of the upper confined aquifer, where the pit bottom is located, should be 1 m below the pit bottom, while that of the lower confined aquifer should be dewatered down to a safe water level to avoid uplift problem. The Yangtze River levee is notably close to the pit, and its deformation caused by dewatering should be controlled. A pumping test was performed to obtain the hydraulic conductivity of the upper confined aquifer. The average value of the hydraulic conductivity obtained from analytical calculation is 20.45 m/d, which is larger than the values from numerical simulation(horizontal hydraulic conductivity K_H = 16 m/d and vertical hydraulic conductivity K_V = S m/d). The difference between K_H and K_V indicates the anisotropy of the aquifer. Two dewatering schemes were designed for the construction and simulated by the numerical models for comparison purposes. The results show that though the first scheme could meet the dewatering requirements, the largest accumulated settlement and differential settlement would be94.64 mm and 3.3‰, respectively, greatly exceeding the limited values. Meanwhile, the second scheme,in which the bottoms of the waterproof curtains in ramp B and the river side of ramp A are installed at a deeper elevation of-28 m above sea level, and 27 recharge wells are set along the levee, can control the deformation of the levee significantly.展开更多
A technology of ultrasonic-electric united desalting and dewatering of crude oil is studied. The ultrasonic setup is designed to form a standing-wave field, which is more efficient for agglomeration of water particles...A technology of ultrasonic-electric united desalting and dewatering of crude oil is studied. The ultrasonic setup is designed to form a standing-wave field, which is more efficient for agglomeration of water particles. The desalting and dewatering results of the ultrasonic-electric united process are compared with those of the electric process. For high salt-contenting crude oil (40-70 mg·L ^-1), the salt content is still above 10.0 mg·L^-1 after crude oil has been treated by two-stage electric desalting process in refinery, which cannot meet the need of refinery. Ultrasonic-electric united process is a novel technology for treating the high salt-contenting oil. On the optimal operating conditions of the ultrasonic-electric united process, the salt content of crude oil can be reduced from 67 5 mg·L^-1 to 3.97 mg·L ^-1 by one-stage ultrasonic-electric united process, and the water content falls below 0.3% (by volume). The results show that the ultrasonic-electric united process is more effective than the electric process in high salt-contenting oil desalting. This technology should be useful in the refinery process.展开更多
The filtration and dewatering of fine clean coal not only ensure industrial water recycle in coal washing plant,but also reduce the moisture of coal product in order to meet the requirements of combustion or coking in...The filtration and dewatering of fine clean coal not only ensure industrial water recycle in coal washing plant,but also reduce the moisture of coal product in order to meet the requirements of combustion or coking industry.Fine clean coal is mainly composed by organic matter,and the property difference of different organic matter determines the filtration and dewatering behavior.In this investigation,vitrinite and inertinite were separated from a clean bituminous coal,and the comparative filtration and dewatering behavior of vitrinite and inertinite were conducted.The results showed that inertinite has lower dewatering rate and higher filter cake moisture than vitrinite.The analysis of filter cake structure showed that inertinite particle is easier to be broken into small particles due to the difference of mechanical properties,thus forming more compact filter cake than vitrinite.The analysis of particle surface properties showed that vitrinite is more hydrophobic than inertinite,which makes water easier drained from filter cake.The simulation study showed that the structure of inertinite is more porous than that of vitrinite,and the interaction between inertinite and water is stronger than that between vitrinite and water.This study provides a theoretical basis for improving coal dewatering by selectively improving coal maceral hydrophobicity.展开更多
To further clarify the dewatering performance and torque evolution during the tailings thickening process,a self-made rake was connected to a rheometer to monitor the shear stress and torque.The dewatering performance...To further clarify the dewatering performance and torque evolution during the tailings thickening process,a self-made rake was connected to a rheometer to monitor the shear stress and torque.The dewatering performance of the total tailings was greatly improved to a solid mass fraction of 75.33%in 240 min.The dewatering process could be divided into three stages:the rapid torque growth period,damping torque growth period,and constant torque thickening zone.The machine restart was found to have a significant effect on the rake torque;it could result in rake blockage.Furthermore,the simultaneous evolution of the torque and solid mass fraction of thickened tailings was analyzed.A relationship between the torque and the solid mass fraction was established,which followed a power function.Both the experimental and theoretical results provide a reference for the deep cone thickener design and operation to enhance the dewatering performance.展开更多
When pumping is conducted in confined aquifer inside excavation pit(waterproof curtain),the direction of the groundwater seepage outside the excavation changes from horizontal to vertical owing to the existence of the...When pumping is conducted in confined aquifer inside excavation pit(waterproof curtain),the direction of the groundwater seepage outside the excavation changes from horizontal to vertical owing to the existence of the curtain barrier.There is no analytical calculation method for the groundwater head distribution induced by dewatering inside excavation.This paper first analyses the mechanism of the blocking effects from a close barrier in confined aquifer.Then,a simple equation based on analytical solution is proposed to calculate groundwater heads inside and outside of the excavation pit with waterproof curtain(hereafter refer to close barrier)in a confined aquifer.The distribution of groundwater head is derived according to two conditions:(i)pumping with a constant water head,and(ii)pumping with a constant flow rate.The proposed calculation equation is verified by both numerical simulation and experimental results.The comparisons demonstrate that the proposed model can be applied in engineering practice of excavation.展开更多
The mechanical dewatering of activated sludge is troublesome due to its high compressibility of solids. The dewatering can be enhanced dramatically by the use of electroosmosis,in which an electric field is applied to...The mechanical dewatering of activated sludge is troublesome due to its high compressibility of solids. The dewatering can be enhanced dramatically by the use of electroosmosis,in which an electric field is applied to the sludge cake.In this study,the influence of filter cloth on the cathode on the dewatering of activated sludge was investigated.It was found that thicker filter cloth led to lower water removal from the sludge cake,so a stainless steel cathode net with small pore size instead of filter cloth was applied,which improves the dewatering efficiency and reduces the electric power consumption.Moreover,water absorbent materials were helpful to remove the water from the sludge cake.For the electroosmotic dewatering at 7 kPa and 24 V·cm-1,the water content in the sludge cake decreased to 60%(by mass) with the average 0.075 kW·h·kg-1of water removed by using the cathode net.展开更多
The mechanical behavior and microstructures of an Al-Zn-Mg-Cu-Cr aluminum alloy during multi-stage hot deformation were investigated by thermal stimulation test, optical microscopy, and transmission electron microscop...The mechanical behavior and microstructures of an Al-Zn-Mg-Cu-Cr aluminum alloy during multi-stage hot deformation were investigated by thermal stimulation test, optical microscopy, and transmission electron microscopy. The true stress vs true strain curves and the microstructure evolution of two hot deformation procedures were gained. The flow stress of the alloy studied decreases with increasing the deforming passes and declining the temperature, and the larger the temperature decline between adjacent stages, the larger the peak stress fall is. The stress-strain behavior mainly result from the dynamic recovery during deformation, the static recovery and recrystallization in the delay time, and the second phases precipitated from the matrix at high temperature.展开更多
Springback of a SUS321 complex geometry part formed by the multi-stage rigid-flexible compound process was studied through numerical simulations and laboratory experiments in this work.The sensitivity analysis was pro...Springback of a SUS321 complex geometry part formed by the multi-stage rigid-flexible compound process was studied through numerical simulations and laboratory experiments in this work.The sensitivity analysis was provided to have an insight in the effect of the evaluated process parameters.Furthermore,in order to minimize the springback problem,an accurate springback simulation model of the part was established and validated.The effects of the element size and timesteps on springback model were further investigated.Results indicate that the custom mesh size is beneficial for the springback simulation,and the four timesteps are found suited for the springback analysis for the complex geometry part.Finally,a strategy for reducing the springback by changing the geometry of the blank is proposed.The optimal blank geometry is obtained and used for manufacturing the part.展开更多
The dewatering of fine, flotation cleaned coals from Huaibei and Xuzhou (bituminous) and Yongcheng (anthracite) were studied. The supernatant and filter cake were examined to determine the rate and extent of flocculat...The dewatering of fine, flotation cleaned coals from Huaibei and Xuzhou (bituminous) and Yongcheng (anthracite) were studied. The supernatant and filter cake were examined to determine the rate and extent of flocculation and dewatering. A starch-based filter aid was used to increase flocculation and dewatering rates. The filtration constant, K, and compression index, s, of the Yongcheng slurry were measured under various conditions. A designed experiment was performed to determine optimum conditions for dewatering. The results showed that the filter aid enhanced flocculation and coagulation of the fine cleaned coal slurry, enhanced the structure of the filter cake and promoted dewatering of the cake. Moisture content in the cake was reduced to 17% after vacuum filtration.展开更多
A multi-stage influence diagram is used to model the pilot's sequential decision making in one on one air combat. The model based on the multi-stage influence diagram graphically describes the elements of decision pr...A multi-stage influence diagram is used to model the pilot's sequential decision making in one on one air combat. The model based on the multi-stage influence diagram graphically describes the elements of decision process, and contains a point-mass model for the dynamics of an aircraft and takes into account the decision maker's preferences under uncertain conditions. Considering an active opponent, the opponent's maneuvers can be modeled stochastically. The solution of multistage influence diagram can be obtained by converting the multistage influence diagram into a two-level optimization problem. The simulation results show the model is effective.展开更多
The performance of the Dongying multi-stage ponds-wetlands ecosystem was investigated in this work. Study of the removal of different pollutants (BOD5, COD, SS, TP, TN, NH3-N, etc.) in different temperature seasons an...The performance of the Dongying multi-stage ponds-wetlands ecosystem was investigated in this work. Study of the removal of different pollutants (BOD5, COD, SS, TP, TN, NH3-N, etc.) in different temperature seasons and different units in this system indicated that effluent BOD5 and SS were constant to less than 11 mg/L and 14 mg/L throughout the experimental proc- esses; but that the removal efficiencies of pollutants such as TP, TN, NH3-N, COD varied greatly with season. The higher the temperature was, the higher was the observed removal in this system. Additionally, each unit of the system functioned differently in removing pollutants. BOD5 and SS were mainly removed in the first three units (hybrid facultative ponds, aeration ponds and aerated fish ponds), whereas nitrogen and phosphates were mainly removed in hydrophyte ponds and constructed reed wetlands. The multi-stage ponds-wetlands ecosystem exhibits good potential of removing different pollutants, and the effluent quality meet several standards for wastewater reuse.展开更多
基金supported by the National Natural Science Foundation(61833003,62125302,U1908218).
文摘Ingredient optimization plays a pivotal role in the copper industry,for which it is closely related to the concentrate utilization rate,stability of furnace conditions,and the quality of copper production.To acquire a practical ingredient plan,which should exhibit long duration time with sufficient utilization and feeding stability for real applications,an ingredient plan optimization model is proposed in this study to effectively guarantee continuous production and stable furnace conditions.To address the complex challenges posed by this integer programming model,including multiple coupling feeding stages,intricate constraints,and significant non-linearity,a multi-stage differential-multifactorial evolution algorithm is developed.In the proposed algorithm,the differential evolutionary(DE)algorithm is improved in three aspects to efficiently tackle challenges when optimizing the proposed model.First,unlike traditional time-consuming serial approaches,the multifactorial evolutionary algorithm is utilized to optimize multiple complex models contained in the population of evolutionary algorithm caused by the feeding stability in a parallel manner.Second,a repair algorithm is employed to adjust infeasible ingredient lists in a timely manner.In addition,a local search strategy taking feedback from the current optima and considering the different positions of global optimum is developed to avoiding premature convergence of the differential evolutionary algorithm.Finally,the simulation experiments considering different planning horizons using real data from the copper industry in China are conducted,which demonstrates the superiority of the proposed method on feeding duration and stability compared with other commonly deployed approaches.It is practically helpful for reducing material cost as well as increasing production profit for the copper industry.
基金supported by the“National Natural Science Foundation of China”(Grant Nos.52105106,52305155)the“Jiangsu Province Natural Science Foundation”(Grant Nos.BK20210342,BK20230904)the“Young Elite Scientists Sponsorship Programby CAST”(Grant No.2023JCJQQT061).
文摘To enhance the comprehensive performance of artillery internal ballistics—encompassing power,accuracy,and service life—this study proposed a multi-stage multidisciplinary design optimization(MS-MDO)method.First,the comprehensive artillery internal ballistic dynamics(AIBD)model,based on propellant combustion,rotation band engraving,projectile axial motion,and rifling wear models,was established and validated.This model was systematically decomposed into subsystems from a system engineering perspective.The study then detailed the MS-MDO methodology,which included Stage I(MDO stage)employing an improved collaborative optimization method for consistent design variables,and Stage II(Performance Optimization)focusing on the independent optimization of local design variables and performance metrics.The methodology was applied to the AIBD problem.Results demonstrated that the MS-MDO method in Stage I effectively reduced iteration and evaluation counts,thereby accelerating system-level convergence.Meanwhile,Stage II optimization markedly enhanced overall performance.These comprehensive evaluation results affirmed the effectiveness of the MS-MDO method.
文摘To address the scheduling problem involving energy storage systems and uncertain energy,we propose a method based on multi-stage robust optimization.This approach aims to regulate the energy storage system by using a multi-stage robust optimal control method,which helps overcome the limitations of traditional methods in terms of time scale.The goal is to effectively utilize the energy storage power station system to address issues caused by unpredictable variations in environmental energy and fluctuating load throughout the day.To achieve this,a mathematical model is constructed to represent uncertain energy sources such as photovoltaic and wind power.The generalized Benders Decomposition method is then employed to solve the multi-stage objective optimization problem.By decomposing the problem into a series of sub-objectives,the system scale is effectively reduced,and the algorithm’s convergence ability is improved.Compared with other algorithms,the multi-stage robust optimization model has better economy and convergence ability and can be used to guide the power dispatching of uncertain energy and energy storage systems.
文摘Surface watercourses are areas of very high ecological and heritage value. Macroinvertebrates are bioindicators of the health of aquatic ecosystems. The aim of this study was to assess the effects of dewatering and re-watering cycles on benthic macroinvertebrate (BMI) communities. Two data collections were carried out at two stations (Okpara 1 and Okpara 2) on the Okpara river before and after dewatering. Thus, 8 samples of benthic macroinvertebrates and 12 physico-chemical parameters (T°C, pH, Transparency, Depth, Conductivity, Dissolved Oxygen that were measured in situ, and BOD5, COD, NH<sub>4</sub><sup>+</sup>, NO<sub>3</sub><sup>-</sup>, NO<sub>2</sub><sup>-</sup> and PO<sub>4</sub><sup>3-</sup>) were assayed in the laboratory. Canonical Correspondence Analysis (CCA) was used to match physico-chemical data to MIB families. Shannon and Piélou diversity indices were used to determine the effects of dewatering on MIBs. The increase in temperature values of pH, BOD5, COD, NH4</sub>+</sup>, NO3</sub>-</sup>, NO2</sub>-</sup> and PO4</sub>3-</sup>, after re-watering indicates the effect of dewatering on the quality of Okpara aquatic ecosystems. The benthic macrofauna collected consisted of 62.42% insects, 0.65% crustaceans, 6.48% molluscs, 0.72% worms and 0.14% arachnids. Whereas after re-watering, 21.67% insects, 0% crustaceans, 0.22% molluscs, 7.56% worms and 0.29% arachnids were recorded. Insects, crustaceans and molluscs were more abundant before dewatering than after. This was revealed by low abundances and taxonomic richness, as well as low Shannon index values of samples collected after re-watering.
基金Project(10804101)supported by the National Natural Science Foundation of ChinaProject(2007CB815102)supported by the National Basic Research Program of ChinaProject(2007B08007)supported by the Science and Technology Development Foundation of Chinese Academy of Engineering Physics,China
文摘Triangular Au-Ag framework nanostructures (TFN) were synthesized via a multi-step galvanic replacement reaction (MGRR) of single-crystalline triangular silver nanoplates in a chlorauric acid (HAuCl4) solution at room temperature. The morphological, compositional, and crystal structural changes involved with reaction steps were analyzed by using transmission electron microscopy(TEM), energy-dispersive X-ray spectrometry (EDX), and X-ray diffraction. TEM combined with EDX and selected area electron diffraction confirmed the replacement of Ag with Au. The in-plane dipolar surface plasmon resonance (SPR) absorption band of the Ag nanoplates locating initially at around 700 nm gradually redshifted to 1 100 nm via a multi-stage replacement manner after 7 stages. The adding amount of HAuCl4 per stage influenced the average redshift value per stage, thus enabled a fine tuning of the in-plane dipolar band. A proposed formation mechanism of the original Ag nanoplates developing pores while growing Au nanoparticles covering this underlying structure at more reaction steps was confirmed by exploiting surface-enhanced Raman scattering (SERS).
基金Supported by Scientific Research Foundation of Yunnan Provincial Education Department(09Y0292)~~
文摘[Objective] The technological parameter suitable for the dewatering of dredged sediment from Dianchi Lake was studied.[Method] By means of the treatment method of sewage sludge in sewage treatment plant,flocculants including FeCl3,Al2(SO4)3 and PAM were taken as dewatering agents which were added in dredged sediment.[Result] The results showed that Al2(SO4)3 had better dewatering effect than FeCl3 and PAM,and the optimum dosing quantity of Al2(SO4)3 in dredged sediment was 170 mg/L,in addition,the water quality of supernatant met the first class B standard of GB18918-2002 and could be directly discharged to nature water without pollution.[Conclusion] The study could provide a simple and feasible way for the rapid dewatering of dredged sediment from Dianchi Lake,which would be convenient for the disposal and resource utilization of dredged sediment.
文摘Anaerobic ammonia oxidation(Anammox) process is a novel and promising wastewater nitrogen removal process. The feasibility of transition of Anammox from denitrification and the performance of lab-scale Anammox biofilm reactor were investigated with sludge dewatering effluent. The results showed that Anammox process could be successfully started up after cultivation of denitrification biofilm and using it as inoculum. The transition of Anammox from denitrification was accomplished within 85 d. Anammox process was found suitable to remove ammonia from sludge dewatering effluent. The effluent ammonia concentration was detected to be 23.11 mgN/L at HRT of 28 h when influent ammonia concentration was fed 245 mgN/L, which was less than that for the national discharge standard Ⅱ (25 rngN/L) of China. Volumetric total nitrogen loading rate was up to 584.99 mg TN/(L. d) at HRT of 17 h, while influent concentrations were kept 243.25 mg NH4* -N/L and 288.31 mg NO2^- -N/L.
基金This paper is supported by the Hubei Construct Science Foundation of China (G200013).
文摘Based on analyses of the theories of groundwater unsteady flow in deep well dewatering in the deep foundation pit, Theis equations are chosen to calculate and analyze the relationship between water level drawdown of confined aquifer and dewatering duration. In order to reduce engineering cost and diminish detrimental effect on ambient surrounding, optimization design target function based on the control of confined water drawdown and four restriction requisitions based on the control of safe water level, resistance to throwing up from the bottom of foundation pit, avoiding excessively great subsidence and unequal surface subsidence are proposed. A deep well dewatering project in the deep foundation pit is optimally designed. The calculated results including confined water level drawdown and surface subsidence are in close agreement with the measured results, and the optimization design can effectively control both surface subsidence outside foundation pit and unequal subsidence as a result of dewatering.
基金financially supported by the doctoral fund of the Ministry of Education of Chinathe Nature Science Foundation of Jiangsu Province, China (Grant Nos. 20130091110020 and BE2015675)
文摘A deep foundation pit constructed for an underground transportation hub was excavated near the Yangtze River. Among the strata, there are two confined aquifers, between which lies an aquiclude that is partially missing. To guarantee the safety of pit excavation, the piezometric head of the upper confined aquifer, where the pit bottom is located, should be 1 m below the pit bottom, while that of the lower confined aquifer should be dewatered down to a safe water level to avoid uplift problem. The Yangtze River levee is notably close to the pit, and its deformation caused by dewatering should be controlled. A pumping test was performed to obtain the hydraulic conductivity of the upper confined aquifer. The average value of the hydraulic conductivity obtained from analytical calculation is 20.45 m/d, which is larger than the values from numerical simulation(horizontal hydraulic conductivity K_H = 16 m/d and vertical hydraulic conductivity K_V = S m/d). The difference between K_H and K_V indicates the anisotropy of the aquifer. Two dewatering schemes were designed for the construction and simulated by the numerical models for comparison purposes. The results show that though the first scheme could meet the dewatering requirements, the largest accumulated settlement and differential settlement would be94.64 mm and 3.3‰, respectively, greatly exceeding the limited values. Meanwhile, the second scheme,in which the bottoms of the waterproof curtains in ramp B and the river side of ramp A are installed at a deeper elevation of-28 m above sea level, and 27 recharge wells are set along the levee, can control the deformation of the levee significantly.
文摘A technology of ultrasonic-electric united desalting and dewatering of crude oil is studied. The ultrasonic setup is designed to form a standing-wave field, which is more efficient for agglomeration of water particles. The desalting and dewatering results of the ultrasonic-electric united process are compared with those of the electric process. For high salt-contenting crude oil (40-70 mg·L ^-1), the salt content is still above 10.0 mg·L^-1 after crude oil has been treated by two-stage electric desalting process in refinery, which cannot meet the need of refinery. Ultrasonic-electric united process is a novel technology for treating the high salt-contenting oil. On the optimal operating conditions of the ultrasonic-electric united process, the salt content of crude oil can be reduced from 67 5 mg·L^-1 to 3.97 mg·L ^-1 by one-stage ultrasonic-electric united process, and the water content falls below 0.3% (by volume). The results show that the ultrasonic-electric united process is more effective than the electric process in high salt-contenting oil desalting. This technology should be useful in the refinery process.
基金supported by the National Natural Science Foundation of China(U2003125)。
文摘The filtration and dewatering of fine clean coal not only ensure industrial water recycle in coal washing plant,but also reduce the moisture of coal product in order to meet the requirements of combustion or coking industry.Fine clean coal is mainly composed by organic matter,and the property difference of different organic matter determines the filtration and dewatering behavior.In this investigation,vitrinite and inertinite were separated from a clean bituminous coal,and the comparative filtration and dewatering behavior of vitrinite and inertinite were conducted.The results showed that inertinite has lower dewatering rate and higher filter cake moisture than vitrinite.The analysis of filter cake structure showed that inertinite particle is easier to be broken into small particles due to the difference of mechanical properties,thus forming more compact filter cake than vitrinite.The analysis of particle surface properties showed that vitrinite is more hydrophobic than inertinite,which makes water easier drained from filter cake.The simulation study showed that the structure of inertinite is more porous than that of vitrinite,and the interaction between inertinite and water is stronger than that between vitrinite and water.This study provides a theoretical basis for improving coal dewatering by selectively improving coal maceral hydrophobicity.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.51804015 and 51834001)the Fundamental Research Funds for the Central Universities(No.FRF-TP-17-024A1).
文摘To further clarify the dewatering performance and torque evolution during the tailings thickening process,a self-made rake was connected to a rheometer to monitor the shear stress and torque.The dewatering performance of the total tailings was greatly improved to a solid mass fraction of 75.33%in 240 min.The dewatering process could be divided into three stages:the rapid torque growth period,damping torque growth period,and constant torque thickening zone.The machine restart was found to have a significant effect on the rake torque;it could result in rake blockage.Furthermore,the simultaneous evolution of the torque and solid mass fraction of thickened tailings was analyzed.A relationship between the torque and the solid mass fraction was established,which followed a power function.Both the experimental and theoretical results provide a reference for the deep cone thickener design and operation to enhance the dewatering performance.
基金“The Pearl River Talent Recruitment Program”in 2019(Grant No.2019CX01G338)Guangdong Province and the Research Funding of Shantou University for New Faculty Member(Grant No.NTF19024-2019)the National Natural Science Foundation of China(NSFC)(Grant No.41807235).
文摘When pumping is conducted in confined aquifer inside excavation pit(waterproof curtain),the direction of the groundwater seepage outside the excavation changes from horizontal to vertical owing to the existence of the curtain barrier.There is no analytical calculation method for the groundwater head distribution induced by dewatering inside excavation.This paper first analyses the mechanism of the blocking effects from a close barrier in confined aquifer.Then,a simple equation based on analytical solution is proposed to calculate groundwater heads inside and outside of the excavation pit with waterproof curtain(hereafter refer to close barrier)in a confined aquifer.The distribution of groundwater head is derived according to two conditions:(i)pumping with a constant water head,and(ii)pumping with a constant flow rate.The proposed calculation equation is verified by both numerical simulation and experimental results.The comparisons demonstrate that the proposed model can be applied in engineering practice of excavation.
基金Supported by Tianjin Application Basis and Advanced Technology Studied Plans(09JCYBJC08200)
文摘The mechanical dewatering of activated sludge is troublesome due to its high compressibility of solids. The dewatering can be enhanced dramatically by the use of electroosmosis,in which an electric field is applied to the sludge cake.In this study,the influence of filter cloth on the cathode on the dewatering of activated sludge was investigated.It was found that thicker filter cloth led to lower water removal from the sludge cake,so a stainless steel cathode net with small pore size instead of filter cloth was applied,which improves the dewatering efficiency and reduces the electric power consumption.Moreover,water absorbent materials were helpful to remove the water from the sludge cake.For the electroosmotic dewatering at 7 kPa and 24 V·cm-1,the water content in the sludge cake decreased to 60%(by mass) with the average 0.075 kW·h·kg-1of water removed by using the cathode net.
基金supported by the National Key Basic Research and Development Program of China(No.G1999064908)
文摘The mechanical behavior and microstructures of an Al-Zn-Mg-Cu-Cr aluminum alloy during multi-stage hot deformation were investigated by thermal stimulation test, optical microscopy, and transmission electron microscopy. The true stress vs true strain curves and the microstructure evolution of two hot deformation procedures were gained. The flow stress of the alloy studied decreases with increasing the deforming passes and declining the temperature, and the larger the temperature decline between adjacent stages, the larger the peak stress fall is. The stress-strain behavior mainly result from the dynamic recovery during deformation, the static recovery and recrystallization in the delay time, and the second phases precipitated from the matrix at high temperature.
基金Project(2014ZX04002041)supported by the National Science and Technology Major Project,ChinaProject(51175024)supported by the National Natural Science Foundation of China
文摘Springback of a SUS321 complex geometry part formed by the multi-stage rigid-flexible compound process was studied through numerical simulations and laboratory experiments in this work.The sensitivity analysis was provided to have an insight in the effect of the evaluated process parameters.Furthermore,in order to minimize the springback problem,an accurate springback simulation model of the part was established and validated.The effects of the element size and timesteps on springback model were further investigated.Results indicate that the custom mesh size is beneficial for the springback simulation,and the four timesteps are found suited for the springback analysis for the complex geometry part.Finally,a strategy for reducing the springback by changing the geometry of the blank is proposed.The optimal blank geometry is obtained and used for manufacturing the part.
基金the financial support for this work provided by the Doctoral Fund of Ministry of Education of China (No.200802900503) the Science and Technology Foundation of China University of Mining & Technology (No.2008A027)
文摘The dewatering of fine, flotation cleaned coals from Huaibei and Xuzhou (bituminous) and Yongcheng (anthracite) were studied. The supernatant and filter cake were examined to determine the rate and extent of flocculation and dewatering. A starch-based filter aid was used to increase flocculation and dewatering rates. The filtration constant, K, and compression index, s, of the Yongcheng slurry were measured under various conditions. A designed experiment was performed to determine optimum conditions for dewatering. The results showed that the filter aid enhanced flocculation and coagulation of the fine cleaned coal slurry, enhanced the structure of the filter cake and promoted dewatering of the cake. Moisture content in the cake was reduced to 17% after vacuum filtration.
文摘A multi-stage influence diagram is used to model the pilot's sequential decision making in one on one air combat. The model based on the multi-stage influence diagram graphically describes the elements of decision process, and contains a point-mass model for the dynamics of an aircraft and takes into account the decision maker's preferences under uncertain conditions. Considering an active opponent, the opponent's maneuvers can be modeled stochastically. The solution of multistage influence diagram can be obtained by converting the multistage influence diagram into a two-level optimization problem. The simulation results show the model is effective.
基金Project (No. GA02C201) supported by the Key Project of Scienceand Technology Commission of Heilongjiang Province China
文摘The performance of the Dongying multi-stage ponds-wetlands ecosystem was investigated in this work. Study of the removal of different pollutants (BOD5, COD, SS, TP, TN, NH3-N, etc.) in different temperature seasons and different units in this system indicated that effluent BOD5 and SS were constant to less than 11 mg/L and 14 mg/L throughout the experimental proc- esses; but that the removal efficiencies of pollutants such as TP, TN, NH3-N, COD varied greatly with season. The higher the temperature was, the higher was the observed removal in this system. Additionally, each unit of the system functioned differently in removing pollutants. BOD5 and SS were mainly removed in the first three units (hybrid facultative ponds, aeration ponds and aerated fish ponds), whereas nitrogen and phosphates were mainly removed in hydrophyte ponds and constructed reed wetlands. The multi-stage ponds-wetlands ecosystem exhibits good potential of removing different pollutants, and the effluent quality meet several standards for wastewater reuse.