A tilt-rotor aircraft has three flight modes: helicopter mode, airplane mode and conversion mode. Unlike the traditional aircraft, the tilt-rotor aircraft, which combines the characteristics of helicopters and fixed-w...A tilt-rotor aircraft has three flight modes: helicopter mode, airplane mode and conversion mode. Unlike the traditional aircraft, the tilt-rotor aircraft, which combines the characteristics of helicopters and fixed-wing aircraft, is a complex multi-body system with the violent variation of the aerodynamic parameters. For these characteristics, a new smooth switching control scheme is provided for the tilt-rotor aircraft. First, the reference commands for airspeed and nacelle angles are calculated by analyzing the conversion corridor and the conversion path. Subsequently, based on the finite-time switching theorem, an average dwell time condition is designed to guarantee the stability in the switching process. Besides, considering the state vibrations and bumps may appear in switching points, the fuzzy weighted logic is employed to improve the system transient performance. For disturbance rejection, three extended state observers are designed separately to estimate the disturbances in the switched systems. Compared with the traditional auto disturbance rejection control and proportion integration differentiation control, this method overcomes the conservatism of wasting the whole model information. The control performances of robustness and smoothness are verified with simulation, which shows that the new smooth switching control scheme is more targeted and superior than the traditional design method.展开更多
Voltage sags in power system may lead to serious problems such as the off-grid of distributed generation and electrical equipment failures.As a novel type of power electronic equipment,a flexible multi-state switch(FM...Voltage sags in power system may lead to serious problems such as the off-grid of distributed generation and electrical equipment failures.As a novel type of power electronic equipment,a flexible multi-state switch(FMSS)is capable to support the voltage during the grid faults.In this paper,a voltage control strategy to support the voltage in a distribution network is proposed by introducing three-port FMSS.The positive-negative-sequence compensation(PNSC)scheme is adopted to control the active and reactive current.This control scheme eliminates active power oscillations at the port of voltage sags and reduces coupling oscillations of other ports.Based on the characteristics of the voltage support under PNSC scheme,two voltage support strategies are proposed.A proportional-integral controller is introduced to provide the reactive power references,which eliminates the errors when estimating the grid voltage and impedance.A current limiting scheme is adopted to keep the port current in a safe range by adjusting the active and reactive power references.The voltage support strategies in two different voltage sags are simulated,and results show the feasibility and effectiveness of the proposed control strategies.展开更多
This paper is concerned with a systematic method of smooth switching linear parameter- varying (LPV) controllers design for a morphing aircraft with a variable wing sweep angle. The morphing aircraft is modeled as a...This paper is concerned with a systematic method of smooth switching linear parameter- varying (LPV) controllers design for a morphing aircraft with a variable wing sweep angle. The morphing aircraft is modeled as an LPV system, whose scheduling parameter is the variation rate of the wing sweep angle. By dividing the scheduling parameter set into subsets with overlaps, output feedback controllers which consider smooth switching are designed and the controllers in over- lapped subsets are interpolated from two adjacent subsets. A switching law without constraint on the average dwell time is obtained which makes the conclusion less conservative. Furthermore, a systematic algorithm is developed to improve the efficiency of the controllers design process. The parameter set is divided into the fewest subsets on the premise that the closed-loop system has a desired performance. Simulation results demonstrate the effectiveness of this approach.展开更多
The sliding mode controller of mobile welding robot is established in this paper through applying the method of variable structure control with sliding mode into the control of the mobile welding robot. The traditiona...The sliding mode controller of mobile welding robot is established in this paper through applying the method of variable structure control with sliding mode into the control of the mobile welding robot. The traditional switching function smooth method is improved by combining the smoothed switching function with the time-varying control gain. It is shown that the proposed sliding mode controller is robust to bounded external disturbances. Experimental results demonstrate that sliding mode controller algorithm can be used into seam tracking and the tracking system is stable with bounded uncertain disturbance. In the seam tracking process, the robot moves steadily without any obvious chattering.展开更多
A model reference adaptive control(MRAC)with smooth switching scheme was proposed for piecewise linear systems,and the method was utilized in turbofan engine control to avoid the discontinuity of control input.In this...A model reference adaptive control(MRAC)with smooth switching scheme was proposed for piecewise linear systems,and the method was utilized in turbofan engine control to avoid the discontinuity of control input.In this scheme,each sub-region of the operating envelope had its own MRAC controller,and smooth indicator function based smooth switching scheme was introduced to switch multiple controllers smoothly at the boundary of adjacent sub-regions.The Lyapunov stability analysis indicated that the proposed smooth switching scheme can guarantee the convergence of the closed-loop system during the controllers switching.The tracking error system was converted into a switched system to analyze the global stability of the closed-loop system.The advantage of the method was that the chattering of system output and instability caused by asynchronous switching can be eliminated.The simulation illustrates the effectiveness of the proposed control scheme in comparison with the existing MRAC controller with gain scheduling for turbofan engine.展开更多
This paper investigates the state-tracking control problem in conversion mode of a tilt-rotor aircraft with a switching modeling method and a smooth interpolation technique.Based on the nonlinear model of the conversi...This paper investigates the state-tracking control problem in conversion mode of a tilt-rotor aircraft with a switching modeling method and a smooth interpolation technique.Based on the nonlinear model of the conversion mode,a switched linear model is developed by using the Jacobian linearization method and designing the switching signal based on the mast angle.Furthermore,an ℋ_(∞) state-tracking control scheme is designed to deal with the conversion mode control issue.Moreover,instead of limiting the amplitude of control inputs,a smooth interpolation method is developed to create bumpless performance.Finally,the XV-15 tilt-rotor aircraft is chosen as a prototype to illustrate the effectiveness of this developed control method.展开更多
大规模分布式电源的存在允许配电网通过网络重构改变供电方式,实现部分区域在必要时刻以异步孤岛形式运行。但配电网运行方式的改变必然伴随着关键换流器控制模式的切换和参数的调整,如何平稳地实现配电分区在并网和孤岛之间的转换是实...大规模分布式电源的存在允许配电网通过网络重构改变供电方式,实现部分区域在必要时刻以异步孤岛形式运行。但配电网运行方式的改变必然伴随着关键换流器控制模式的切换和参数的调整,如何平稳地实现配电分区在并网和孤岛之间的转换是实现有源配电网安全可靠运行的重要内容。针对通过软开关(soft open point,SOP)实现柔性互联的配电分区,分析了该系统由并网转为异步孤岛运行的暂态特性,提出了基于参考功率自适应的改进下垂控制策略,并采用状态跟踪方法降低了配电网运行状态切换时刻的暂态波动,实现了配电网运行方式的平滑切换。在PSCAD/EMTDC环境下搭建了仿真模型进行验证,结果表明,所提控制方法可有效提升分区互联有源配电网运行的灵活性。展开更多
The aircraft engine multi-loop control system is described and the switching control theory is introduced to solve the regulating and protecting control problems in this paper. The aircraft engine multi-loop control s...The aircraft engine multi-loop control system is described and the switching control theory is introduced to solve the regulating and protecting control problems in this paper. The aircraft engine multi-loop control system is firstly described and the control problems are formulated. Secondly, the theory of the smooth switching control is devoted and a new extended scheme for the smooth switching of a switched control system is introduced. Then, for the key technologies of aero-engines switching control, a design algorithm is presented which can determine which candidate controller should be put in feedback with the plant to achieve a desired performance and the procedure to design the aircraft engine multi-loop control system is detailed. The switching performance objectives and the switching scheme are given and a family of PID controllers and compensators is designed. The simulation shows that using the switching control design method can not only improve the dynamic performance of the aircraft engine control system and reduce the switching times, but also guarantee the stability in some peculiar occasions.展开更多
基金supported by the Aeronautical Science Foundation of China(20175752045)。
文摘A tilt-rotor aircraft has three flight modes: helicopter mode, airplane mode and conversion mode. Unlike the traditional aircraft, the tilt-rotor aircraft, which combines the characteristics of helicopters and fixed-wing aircraft, is a complex multi-body system with the violent variation of the aerodynamic parameters. For these characteristics, a new smooth switching control scheme is provided for the tilt-rotor aircraft. First, the reference commands for airspeed and nacelle angles are calculated by analyzing the conversion corridor and the conversion path. Subsequently, based on the finite-time switching theorem, an average dwell time condition is designed to guarantee the stability in the switching process. Besides, considering the state vibrations and bumps may appear in switching points, the fuzzy weighted logic is employed to improve the system transient performance. For disturbance rejection, three extended state observers are designed separately to estimate the disturbances in the switched systems. Compared with the traditional auto disturbance rejection control and proportion integration differentiation control, this method overcomes the conservatism of wasting the whole model information. The control performances of robustness and smoothness are verified with simulation, which shows that the new smooth switching control scheme is more targeted and superior than the traditional design method.
基金This work was supported by the National Key R&D Program of China(No.2017YFB0903100)Science and Technology Projects of State Grid Corporation of China(No.521104170043).
文摘Voltage sags in power system may lead to serious problems such as the off-grid of distributed generation and electrical equipment failures.As a novel type of power electronic equipment,a flexible multi-state switch(FMSS)is capable to support the voltage during the grid faults.In this paper,a voltage control strategy to support the voltage in a distribution network is proposed by introducing three-port FMSS.The positive-negative-sequence compensation(PNSC)scheme is adopted to control the active and reactive current.This control scheme eliminates active power oscillations at the port of voltage sags and reduces coupling oscillations of other ports.Based on the characteristics of the voltage support under PNSC scheme,two voltage support strategies are proposed.A proportional-integral controller is introduced to provide the reactive power references,which eliminates the errors when estimating the grid voltage and impedance.A current limiting scheme is adopted to keep the port current in a safe range by adjusting the active and reactive power references.The voltage support strategies in two different voltage sags are simulated,and results show the feasibility and effectiveness of the proposed control strategies.
基金supported by the National Natural Science Foundation of China(Nos.61273083 and 61374012)
文摘This paper is concerned with a systematic method of smooth switching linear parameter- varying (LPV) controllers design for a morphing aircraft with a variable wing sweep angle. The morphing aircraft is modeled as an LPV system, whose scheduling parameter is the variation rate of the wing sweep angle. By dividing the scheduling parameter set into subsets with overlaps, output feedback controllers which consider smooth switching are designed and the controllers in over- lapped subsets are interpolated from two adjacent subsets. A switching law without constraint on the average dwell time is obtained which makes the conclusion less conservative. Furthermore, a systematic algorithm is developed to improve the efficiency of the controllers design process. The parameter set is divided into the fewest subsets on the premise that the closed-loop system has a desired performance. Simulation results demonstrate the effectiveness of this approach.
文摘The sliding mode controller of mobile welding robot is established in this paper through applying the method of variable structure control with sliding mode into the control of the mobile welding robot. The traditional switching function smooth method is improved by combining the smoothed switching function with the time-varying control gain. It is shown that the proposed sliding mode controller is robust to bounded external disturbances. Experimental results demonstrate that sliding mode controller algorithm can be used into seam tracking and the tracking system is stable with bounded uncertain disturbance. In the seam tracking process, the robot moves steadily without any obvious chattering.
文摘A model reference adaptive control(MRAC)with smooth switching scheme was proposed for piecewise linear systems,and the method was utilized in turbofan engine control to avoid the discontinuity of control input.In this scheme,each sub-region of the operating envelope had its own MRAC controller,and smooth indicator function based smooth switching scheme was introduced to switch multiple controllers smoothly at the boundary of adjacent sub-regions.The Lyapunov stability analysis indicated that the proposed smooth switching scheme can guarantee the convergence of the closed-loop system during the controllers switching.The tracking error system was converted into a switched system to analyze the global stability of the closed-loop system.The advantage of the method was that the chattering of system output and instability caused by asynchronous switching can be eliminated.The simulation illustrates the effectiveness of the proposed control scheme in comparison with the existing MRAC controller with gain scheduling for turbofan engine.
基金Project supported by the National Natural Science Foundation of China (Nos.62103186 and 62122038)the Natural Science Foundation of Jiangsu Province,China (Nos.BK20210285 and BK20211565)the China Postdoctoral Science Foundation (Nos.2021TQ0151 and 2021M691571)。
文摘This paper investigates the state-tracking control problem in conversion mode of a tilt-rotor aircraft with a switching modeling method and a smooth interpolation technique.Based on the nonlinear model of the conversion mode,a switched linear model is developed by using the Jacobian linearization method and designing the switching signal based on the mast angle.Furthermore,an ℋ_(∞) state-tracking control scheme is designed to deal with the conversion mode control issue.Moreover,instead of limiting the amplitude of control inputs,a smooth interpolation method is developed to create bumpless performance.Finally,the XV-15 tilt-rotor aircraft is chosen as a prototype to illustrate the effectiveness of this developed control method.
文摘大规模分布式电源的存在允许配电网通过网络重构改变供电方式,实现部分区域在必要时刻以异步孤岛形式运行。但配电网运行方式的改变必然伴随着关键换流器控制模式的切换和参数的调整,如何平稳地实现配电分区在并网和孤岛之间的转换是实现有源配电网安全可靠运行的重要内容。针对通过软开关(soft open point,SOP)实现柔性互联的配电分区,分析了该系统由并网转为异步孤岛运行的暂态特性,提出了基于参考功率自适应的改进下垂控制策略,并采用状态跟踪方法降低了配电网运行状态切换时刻的暂态波动,实现了配电网运行方式的平滑切换。在PSCAD/EMTDC环境下搭建了仿真模型进行验证,结果表明,所提控制方法可有效提升分区互联有源配电网运行的灵活性。
基金supported by the National Natural Science Foundation of China (Grant No. 61104146/F030203)Innovation Plan of Aero Engine Complex System Safety by the Ministry of Education Chang Jiang Scholars of China (Grant No. IRT0905)
文摘The aircraft engine multi-loop control system is described and the switching control theory is introduced to solve the regulating and protecting control problems in this paper. The aircraft engine multi-loop control system is firstly described and the control problems are formulated. Secondly, the theory of the smooth switching control is devoted and a new extended scheme for the smooth switching of a switched control system is introduced. Then, for the key technologies of aero-engines switching control, a design algorithm is presented which can determine which candidate controller should be put in feedback with the plant to achieve a desired performance and the procedure to design the aircraft engine multi-loop control system is detailed. The switching performance objectives and the switching scheme are given and a family of PID controllers and compensators is designed. The simulation shows that using the switching control design method can not only improve the dynamic performance of the aircraft engine control system and reduce the switching times, but also guarantee the stability in some peculiar occasions.