期刊文献+
共找到2,091篇文章
< 1 2 105 >
每页显示 20 50 100
A LiDAR Point Clouds Dataset of Ships in a Maritime Environment
1
作者 Qiuyu Zhang Lipeng Wang +2 位作者 Hao Meng Wen Zhang Genghua Huang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第7期1681-1694,共14页
For the first time, this article introduces a LiDAR Point Clouds Dataset of Ships composed of both collected and simulated data to address the scarcity of LiDAR data in maritime applications. The collected data are ac... For the first time, this article introduces a LiDAR Point Clouds Dataset of Ships composed of both collected and simulated data to address the scarcity of LiDAR data in maritime applications. The collected data are acquired using specialized maritime LiDAR sensors in both inland waterways and wide-open ocean environments. The simulated data is generated by placing a ship in the LiDAR coordinate system and scanning it with a redeveloped Blensor that emulates the operation of a LiDAR sensor equipped with various laser beams. Furthermore,we also render point clouds for foggy and rainy weather conditions. To describe a realistic shipping environment, a dynamic tail wave is modeled by iterating the wave elevation of each point in a time series. Finally, networks serving small objects are migrated to ship applications by feeding our dataset. The positive effect of simulated data is described in object detection experiments, and the negative impact of tail waves as noise is verified in single-object tracking experiments. The Dataset is available at https://github.com/zqy411470859/ship_dataset. 展开更多
关键词 3D point clouds dataset dynamic tail wave fog simulation rainy simulation simulated data
下载PDF
A Random Fusion of Mix 3D and Polar Mix to Improve Semantic Segmentation Performance in 3D Lidar Point Cloud
2
作者 Bo Liu Li Feng Yufeng Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期845-862,共18页
This paper focuses on the effective utilization of data augmentation techniques for 3Dlidar point clouds to enhance the performance of neural network models.These point clouds,which represent spatial information throu... This paper focuses on the effective utilization of data augmentation techniques for 3Dlidar point clouds to enhance the performance of neural network models.These point clouds,which represent spatial information through a collection of 3D coordinates,have found wide-ranging applications.Data augmentation has emerged as a potent solution to the challenges posed by limited labeled data and the need to enhance model generalization capabilities.Much of the existing research is devoted to crafting novel data augmentation methods specifically for 3D lidar point clouds.However,there has been a lack of focus on making the most of the numerous existing augmentation techniques.Addressing this deficiency,this research investigates the possibility of combining two fundamental data augmentation strategies.The paper introduces PolarMix andMix3D,two commonly employed augmentation techniques,and presents a new approach,named RandomFusion.Instead of using a fixed or predetermined combination of augmentation methods,RandomFusion randomly chooses one method from a pool of options for each instance or sample.This innovative data augmentation technique randomly augments each point in the point cloud with either PolarMix or Mix3D.The crux of this strategy is the random choice between PolarMix and Mix3Dfor the augmentation of each point within the point cloud data set.The results of the experiments conducted validate the efficacy of the RandomFusion strategy in enhancing the performance of neural network models for 3D lidar point cloud semantic segmentation tasks.This is achieved without compromising computational efficiency.By examining the potential of merging different augmentation techniques,the research contributes significantly to a more comprehensive understanding of how to utilize existing augmentation methods for 3D lidar point clouds.RandomFusion data augmentation technique offers a simple yet effective method to leverage the diversity of augmentation techniques and boost the robustness of models.The insights gained from this research can pave the way for future work aimed at developing more advanced and efficient data augmentation strategies for 3D lidar point cloud analysis. 展开更多
关键词 3D lidar point cloud data augmentation RandomFusion semantic segmentation
下载PDF
Development of vehicle-recognition method on water surfaces using LiDAR data:SPD^(2)(spherically stratified point projection with diameter and distance)
3
作者 Eon-ho Lee Hyeon Jun Jeon +2 位作者 Jinwoo Choi Hyun-Taek Choi Sejin Lee 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第6期95-104,共10页
Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface ... Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface vehicle,the swarm robot system is more efficient than the operation of a single object as the former can reduce cost and save time.It is necessary to detect adjacent surface obstacles robustly to operate a cluster of unmanned surface vehicles.For this purpose,a LiDAR(light detection and ranging)sensor is used as it can simultaneously obtain 3D information for all directions,relatively robustly and accurately,irrespective of the surrounding environmental conditions.Although the GPS(global-positioning-system)error range exists,obtaining measurements of the surface-vessel position can still ensure stability during platoon maneuvering.In this study,a three-layer convolutional neural network is applied to classify types of surface vehicles.The aim of this approach is to redefine the sparse 3D point cloud data as 2D image data with a connotative meaning and subsequently utilize this transformed data for object classification purposes.Hence,we have proposed a descriptor that converts the 3D point cloud data into 2D image data.To use this descriptor effectively,it is necessary to perform a clustering operation that separates the point clouds for each object.We developed voxel-based clustering for the point cloud clustering.Furthermore,using the descriptor,3D point cloud data can be converted into a 2D feature image,and the converted 2D image is provided as an input value to the network.We intend to verify the validity of the proposed 3D point cloud feature descriptor by using experimental data in the simulator.Furthermore,we explore the feasibility of real-time object classification within this framework. 展开更多
关键词 Object classification Clustering 3D point cloud data LiDAR(light detection and ranging) Surface vehicle
下载PDF
Methodology for Extraction of Tunnel Cross-Sections Using Dense Point Cloud Data 被引量:2
4
作者 Yueqian SHEN Jinguo WANG +2 位作者 Jinhu WANG Wei DUAN Vagner G.FERREIRA 《Journal of Geodesy and Geoinformation Science》 2021年第2期56-71,共16页
Tunnel deformation monitoring is a crucial task to evaluate tunnel stability during the metro operation period.Terrestrial Laser Scanning(TLS)can collect high density and high accuracy point cloud data in a few minute... Tunnel deformation monitoring is a crucial task to evaluate tunnel stability during the metro operation period.Terrestrial Laser Scanning(TLS)can collect high density and high accuracy point cloud data in a few minutes as an innovation technique,which provides promising applications in tunnel deformation monitoring.Here,an efficient method for extracting tunnel cross-sections and convergence analysis using dense TLS point cloud data is proposed.First,the tunnel orientation is determined using principal component analysis(PCA)in the Euclidean plane.Two control points are introduced to detect and remove the unsuitable points by using point cloud division and then the ground points are removed by defining an elevation value width of 0.5 m.Next,a z-score method is introduced to detect and remove the outlies.Because the tunnel cross-section’s standard shape is round,the circle fitting is implemented using the least-squares method.Afterward,the convergence analysis is made at the angles of 0°,30°and 150°.The proposed approach’s feasibility is tested on a TLS point cloud of a Nanjing subway tunnel acquired using a FARO X330 laser scanner.The results indicate that the proposed methodology achieves an overall accuracy of 1.34 mm,which is also in agreement with the measurements acquired by a total station instrument.The proposed methodology provides new insights and references for the applications of TLS in tunnel deformation monitoring,which can also be extended to other engineering applications. 展开更多
关键词 CROSS-SECTION control point convergence analysis z-score method terrestrial laser scanning dense point cloud data
下载PDF
Indoor Space Modeling and Parametric Component Construction Based on 3D Laser Point Cloud Data
5
作者 Ruzhe Wang Xin Li Xin Meng 《Journal of World Architecture》 2023年第5期37-45,共9页
In order to enhance modeling efficiency and accuracy,we utilized 3D laser point cloud data for indoor space modeling.Point cloud data was obtained with a 3D laser scanner and optimized with Autodesk Recap and Revit so... In order to enhance modeling efficiency and accuracy,we utilized 3D laser point cloud data for indoor space modeling.Point cloud data was obtained with a 3D laser scanner and optimized with Autodesk Recap and Revit software to extract geometric information about the indoor environment.Furthermore,we proposed a method for constructing indoor elements based on parametric components.The research outcomes of this paper will offer new methods and tools for indoor space modeling and design.The approach of indoor space modeling based on 3D laser point cloud data and parametric component construction can enhance modeling efficiency and accuracy,providing architects,interior designers,and decorators with a better working platform and design reference. 展开更多
关键词 3D laser scanning technology Indoor space point cloud data Building information modeling(BIM)
下载PDF
ALGORITHM OF PRETREATMENT ON AUTOMOBILE BODY POINT CLOUD 被引量:2
6
作者 GAO Feng ZHOU Yu DU Farong QU Weiwei XIONG Yonghua 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第4期71-74,共4页
As point cloud of one whole vehicle body has the traits of large geometric dimension, huge data and rigorous reverse precision, one pretreatment algorithm on automobile body point cloud is put forward. The basic idea ... As point cloud of one whole vehicle body has the traits of large geometric dimension, huge data and rigorous reverse precision, one pretreatment algorithm on automobile body point cloud is put forward. The basic idea of the registration algorithm based on the skeleton points is to construct the skeleton points of the whole vehicle model and the mark points of the separate point cloud, to search the mapped relationship between skeleton points and mark points using congruence triangle method and to match the whole vehicle point cloud using the improved iterative closed point (ICP) algorithm. The data reduction algorithm, based on average square root of distance, condenses data by three steps, computing datasets' average square root of distance in sampling cube grid, sorting order according to the value computed from the first step, choosing sampling percentage. The accuracy of the two algorithms above is proved by a registration and reduction example of whole vehicle point cloud of a certain light truck. 展开更多
关键词 Reverse engineering point cloud registration Skeleton point Iterative closed point(ICP) data reduction
下载PDF
基于改进PointNet++的输电线路关键部位点云语义分割研究
7
作者 杨文杰 裴少通 +3 位作者 刘云鹏 胡晨龙 杨瑞 张行远 《高电压技术》 EI CAS CSCD 北大核心 2024年第5期1943-1953,I0009,共12页
输电线路的关键部位包括塔身、导线、绝缘子、避雷线以及引流线,无人机精细化导航的首要任务是构造输电线路的点云地图并从中分割出上述部位。为解决现有算法在输电线路的绝缘子、引流线等精细结构分割时精度低的问题,通过改进PointNet+... 输电线路的关键部位包括塔身、导线、绝缘子、避雷线以及引流线,无人机精细化导航的首要任务是构造输电线路的点云地图并从中分割出上述部位。为解决现有算法在输电线路的绝缘子、引流线等精细结构分割时精度低的问题,通过改进PointNet++算法,提出了一种面向输电线路精细结构的点云分割方法。首先,基于无人机机载激光雷达在现场采集的点云数据,构造了输电线路点云分割数据集;其次,通过对比实验,筛选出在本输电线路场景下合理的数据增强方法,并对数据集进行了数据增强;最后,将自注意力机制以及倒置残差结构和PointNet++相结合,设计了输电线路关键部位点云语义分割算法。实验结果表明:该改进PointNet++算法在全场景输电线路现场点云数据作为输入的前提下,首次实现了对引流线、绝缘子等输电线路中精细结构和导线、杆塔塔身以及输电线路无关背景点的同时分割,平均交并比(mean intersection over union,mIoU)达80.79%,所有类别分割的平均F_(1)值(F1 score)达88.99%。 展开更多
关键词 点云深度学习 点云语义分割 数据增强 自注意力 倒置残差
下载PDF
Accuracy of common stem volume formulae using terrestrial photogrammetric point clouds:a case study with savanna trees in Benin
8
作者 Hospice A.Akpo Gilbert Atindogbe +3 位作者 Maxwell C.Obiakara Arios B.Adjinanoukon Madai Gbedolo Noel H.Fonton 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第6期2415-2422,共8页
Recent applications of digital photogrammetry in forestry have highlighted its utility as a viable mensuration technique.However,in tropical regions little research has been done on the accuracy of this approach for s... Recent applications of digital photogrammetry in forestry have highlighted its utility as a viable mensuration technique.However,in tropical regions little research has been done on the accuracy of this approach for stem volume calculation.In this study,the performance of Structure from Motion photogrammetry for estimating individual tree stem volume in relation to traditional approaches was evaluated.We selected 30 trees from five savanna species growing at the periphery of the W National Park in northern Benin and measured their circumferences at different heights using traditional tape and clinometer.Stem volumes of sample trees were estimated from the measured circumferences using nine volumetric formulae for solids of revolution,including cylinder,cone,paraboloid,neiloid and their respective fustrums.Each tree was photographed and stem volume determined using a taper function derived from tri-dimensional stem models.This reference volume was compared with the results of formulaic estimations.Tree stem profiles were further decomposed into different portions,approximately corresponding to the stump,butt logs and logs,and the suitability of each solid of revolution was assessed for simulating the resulting shapes.Stem volumes calculated using the fustrums of paraboloid and neiloid formulae were the closest to reference volumes with a bias and root mean square error of 8.0%and 24.4%,respectively.Stems closely resembled fustrums of a paraboloid and a neiloid.Individual stem portions assumed different solids as follows:fustrums of paraboloid and neiloid were more prevalent from the stump to breast height,while a paraboloid closely matched stem shapes beyond this point.Therefore,a more accurate stem volumetric estimate was attained when stems were considered as a composite of at least three geometric solids. 展开更多
关键词 Structure from motion photogrammetry point cloud data Stem volume Savanna species BENIN
下载PDF
三维激光扫描点云数据在CloudWorx for MicroStation下的处理 被引量:2
9
作者 徐克红 王赫 《北京测绘》 2015年第3期72-74,102,共4页
三维激光扫描技术作为一种先进的测量手段应用前景十分广阔,但是,在应用其扫描所得的点云数据进行内处理上又遇到了许多技术性的问题。CAD系统处理大量点云数据过程中存在局限性,一旦用CAD系统处理点云时,CAD程序就会出现错误操作提示,... 三维激光扫描技术作为一种先进的测量手段应用前景十分广阔,但是,在应用其扫描所得的点云数据进行内处理上又遇到了许多技术性的问题。CAD系统处理大量点云数据过程中存在局限性,一旦用CAD系统处理点云时,CAD程序就会出现错误操作提示,甚至完全停止进程。CloudWorx克服了这些局限性,它避免了直接输入数据,而是利用Cyclone技术作为MicroStation环境下有效管理和解决点云的工具,使MicroStation内点云操作与CAD程序执行再无冲突。本文主要介绍了并且还介绍了CloudWorx模块的功能,并举例就点云数据在CloudWorx for MicroStation软件环境下的处理工作进行了详细的介绍。 展开更多
关键词 三维激光扫描 点云数据 MICROSTATION
下载PDF
PointNet的点云数据集的破损测试与深度解读 被引量:3
10
作者 王胜文 张彬 孙菁聪 《中国传媒大学学报(自然科学版)》 2019年第3期51-57,共7页
目前人们对二维图像的研究已经取得了非常好的结果,然而随着深度学习的发展,研究正在逐步由二维向三维数据发展,并且应用领域越来越广泛,比如自动驾驶领域的三维场景建模,VR虚拟环境等。对三维数据的研究也逐渐实现了由有序输入到无序... 目前人们对二维图像的研究已经取得了非常好的结果,然而随着深度学习的发展,研究正在逐步由二维向三维数据发展,并且应用领域越来越广泛,比如自动驾驶领域的三维场景建模,VR虚拟环境等。对三维数据的研究也逐渐实现了由有序输入到无序输入的过度并且取得了很高的成绩。Point Net则是第一个突破点云数据无序性输入的深度神经网络,值得人们深入的研究和借鉴。但是目前对破损和遮挡的点云数据问题还有待研究。本文着重对Point Net进行了深入研究并对点云数据进行了攻击和测试。测试发现当点云数据dropout约75%以后物体识别准确率显著下降,overlap12. 5%以后准确率也下降了近4个点,值得后续深入的研究和攻克。 展开更多
关键词 深度神经网络 三维点云 点云分类 语义分割 数据破损
下载PDF
基于Point-to-Plane ICP的点云与影像数据自动配准 被引量:4
11
作者 张星 张双星 《计算机与数字工程》 2017年第12期2510-2514,2546,共6页
针对三维激光点云与二维影像数据的融合问题,采用了一种基于Point-to-Plane ICP的配准方法;该方法仅采用一块普通的平面黑白棋盘格作为标定板,能同时完成单目相机的标定与三维激光扫描仪和相机的联合标定,进而实现三维点云数据与二维影... 针对三维激光点云与二维影像数据的融合问题,采用了一种基于Point-to-Plane ICP的配准方法;该方法仅采用一块普通的平面黑白棋盘格作为标定板,能同时完成单目相机的标定与三维激光扫描仪和相机的联合标定,进而实现三维点云数据与二维影像数据的配准;与以往基于控制点或者边缘对应的配准方法不同,该方法使用RANSAC算法自动提取场景中的标定平面,通过优化点到平面的距离来求取两组数据的变换。实验结果表明,该配准方法减少了人工的干预,并获得了很高的精度。 展开更多
关键词 三维点云 二维影像 自动配准 point-to-PlaneICP
下载PDF
Multi-view ladar data registration in obscure environment
12
作者 Mingbo Zhao Jun He +1 位作者 Wei Qiu Qiang Fu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第4期606-616,共11页
Multi-view laser radar (ladar) data registration in obscure environments is an important research field of obscured target detection from air to ground. There are few overlap regions of the observational data in dif... Multi-view laser radar (ladar) data registration in obscure environments is an important research field of obscured target detection from air to ground. There are few overlap regions of the observational data in different views because of the occluder, so the multi-view data registration is rather difficult. Through indepth analyses of the typical methods and problems, it is obtained that the sequence registration is more appropriate, but needs to improve the registration accuracy. On this basis, a multi-view data registration algorithm based on aggregating the adjacent frames, which are already registered, is proposed. It increases the overlap region between the pending registration frames by aggregation and further improves the registration accuracy. The experiment results show that the proposed algorithm can effectively register the multi-view ladar data in the obscure environment, and it also has a greater robustness and a higher registration accuracy compared with the sequence registration under the condition of equivalent operating efficiency. 展开更多
关键词 laser radar (ladar) multi-view data registration iterative closest point obscured target point cloud data.
下载PDF
基于PointNet的点云数据处理及识别技术应用研究 被引量:2
13
作者 付洪波 李德元 +1 位作者 张志强 赵栋梁 《测绘与空间地理信息》 2021年第12期194-195,201,共3页
主要基于PointNet模型对点云数据进行特征分类处理,直接对无序化的三维点云数据进行无规则输入处理,通过对无序化的点云数据中的每一个点进行单独的处理,来实现点云数据的输入,与点的输入顺序没有关系,在PointNet中最重要的方法是对称... 主要基于PointNet模型对点云数据进行特征分类处理,直接对无序化的三维点云数据进行无规则输入处理,通过对无序化的点云数据中的每一个点进行单独的处理,来实现点云数据的输入,与点的输入顺序没有关系,在PointNet中最重要的方法是对称函数最大池化来合并点云数据中每一个点的信息,输出分类特征集合或分割结果,然后结合计算机视觉的神经网络和深度学习等方法,来理解和分析点云数据对物体和环境的智能化识别的应用研究。 展开更多
关键词 三维点云数据 分类特征集合 深度学习
下载PDF
Status of UnDifferenced and Uncombined GNSS Data Processing Activities in China
14
作者 Pengyu HOU Delu CHE +3 位作者 Teng LIU Jiuping ZHA Yunbin YUAN Baocheng ZHANG 《Journal of Geodesy and Geoinformation Science》 CSCD 2023年第3期135-144,共10页
With the continued development of multiple Global Navigation Satellite Systems(GNSS)and the emergence of various frequencies,UnDifferenced and UnCombined(UDUC)data processing has become an increasingly attractive opti... With the continued development of multiple Global Navigation Satellite Systems(GNSS)and the emergence of various frequencies,UnDifferenced and UnCombined(UDUC)data processing has become an increasingly attractive option.In this contribution,we provide an overview of the current status of UDUC GNSS data processing activities in China.These activities encompass the formulation of Precise Point Positioning(PPP)models and PPP-Real-Time Kinematic(PPP-RTK)models for processing single-station and multi-station GNSS data,respectively.Regarding single-station data processing,we discuss the advancements in PPP models,particularly the extension from a single system to multiple systems,and from dual frequencies to single and multiple frequencies.Additionally,we introduce the modified PPP model,which accounts for the time variation of receiver code biases,a departure from the conventional PPP model that typically assumes these biases to be time-constant.In the realm of multi-station PPP-RTK data processing,we introduce the ionosphere-weighted PPP-RTK model,which enhances the model strength by considering the spatial correlation of ionospheric delays.We also review the phase-only PPP-RTK model,designed to mitigate the impact of unmodelled code-related errors.Furthermore,we explore GLONASS PPP-RTK,achieved through the application of the integer-estimable model.For large-scale network data processing,we introduce the all-in-view PPP-RTK model,which alleviates the strict common-view requirement at all receivers.Moreover,we present the decentralized PPP-RTK data processing strategy,designed to improve computational efficiency.Overall,this work highlights the various advancements in UDUC GNSS data processing,providing insights into the state-of-the-art techniques employed in China to achieve precise GNSS applications. 展开更多
关键词 Global Navigation Satellite Systems(GNSS) UnDifferenced and UnCombined(UDUC) Precise point Positioning(PPP) PPP-Real-Time Kinematic(PPP-RTK) single-station data processing multi-station data processing
下载PDF
基于深度学习的移动机器人语义SLAM方法研究 被引量:3
15
作者 王立鹏 张佳鹏 +2 位作者 张智 王学武 齐尧 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第2期306-313,共8页
为了给移动机器人提供细节丰富的三维语义地图,支撑机器人的精准定位,本文提出一种结合RGB-D信息与深度学习结果的机器人语义同步定位与建图方法。改进了ORB-SLAM2算法的框架,提出一种可以构建稠密点云地图的视觉同步定位与建图系统;将... 为了给移动机器人提供细节丰富的三维语义地图,支撑机器人的精准定位,本文提出一种结合RGB-D信息与深度学习结果的机器人语义同步定位与建图方法。改进了ORB-SLAM2算法的框架,提出一种可以构建稠密点云地图的视觉同步定位与建图系统;将深度学习的目标检测算法YOLO v5与视觉同步定位与建图系统融合,反映射为三维点云语义标签,结合点云分割完成数据关联和物体模型更新,并用八叉树的地图形式存储地图信息;基于移动机器人平台,在实验室环境下开展移动机器人三维语义同步定位与建图实验,实验结果验证了本文语义同步定位与建图算法的语义信息映射、点云分割与语义信息匹配以及三维语义地图构建的有效性。 展开更多
关键词 移动机器人 深度学习 视觉同步定位与建图 目标识别 点云分割 数据关联 八叉树 语义地图
下载PDF
改进的3D-BoNet算法应用于点云实例分割与三维重建 被引量:1
16
作者 郭宝云 姚玉凯 +3 位作者 李彩林 王悦 孙娜 鲁一慧 《测绘通报》 CSCD 北大核心 2024年第6期30-35,共6页
为了更好地利用点云数据重建室内三维模型,本文提出了一种基于3D-BoNet-IAM算法的室内场景三维重建方法。该方法通过改进3D-BoNet算法提高点云数据的实例分割精度。针对点云数据缺失问题,提出了基于平面基元合并优化的拟合平面方法,利... 为了更好地利用点云数据重建室内三维模型,本文提出了一种基于3D-BoNet-IAM算法的室内场景三维重建方法。该方法通过改进3D-BoNet算法提高点云数据的实例分割精度。针对点云数据缺失问题,提出了基于平面基元合并优化的拟合平面方法,利用拟合得到的新平面重建建筑表面模型。在S3DIS和ScanNet V2数据集上验证3D-BoNet算法的改进效果。试验结果表明,本文提出的3D-BoNet-IAM算法比原始算法分割精度提高了3.3%;对比本文建模效果与其他建模效果发现,本文方法的建模效果更准确。本文方法能够提高室内点云数据的实例分割精度,同时得到高质量的室内三维模型。 展开更多
关键词 点云数据 3D-BoNet-IAM 三维重建 实例分割 平面基元
下载PDF
K-means聚类精简点云驱动PointNet++的行星齿轮故障诊断
17
作者 万卓 孙显彬 +1 位作者 申玉杰 董美琪 《组合机床与自动化加工技术》 北大核心 2023年第11期84-88,共5页
复杂装备的三维模型点云数据具有非结构化、无序性、离散性的特点,数据精简策略和深度神经网络模型构建被视为点云数据驱动的机械设备故障诊断关键技术难点。提出了一种K-means聚类(K均值聚类算法)精简点云驱动PointNet++的行星齿轮故... 复杂装备的三维模型点云数据具有非结构化、无序性、离散性的特点,数据精简策略和深度神经网络模型构建被视为点云数据驱动的机械设备故障诊断关键技术难点。提出了一种K-means聚类(K均值聚类算法)精简点云驱动PointNet++的行星齿轮故障诊断方法。首先,提出了基于K-means的点云数据精简策略实现了在充分保留细节特征的前提下,精简84%的冗余数据;其次,构建了简度、速度、精度的精简效果三维评价指标体系并对精简算法进行评价;最后,构建了能够提取局部特征的PointNet++故障诊断模型。实验结果表明,相比于点云数据直接驱动PointNet++,K-means聚类精简点云驱动PointNet++的行星齿轮故障诊断的准确率提升了6.9%,表明了所提方法的有效性。 展开更多
关键词 行星齿轮 点云数据 故障诊断 二分K-means聚类 pointNet++
下载PDF
复杂场景下多模态点云数据配准技术
18
作者 付超 夏佳毅 +2 位作者 解琨 吴大鹏 付沁珵 《测绘通报》 CSCD 北大核心 2024年第6期146-150,共5页
针对复杂环境下多模态点云数据获取难,以及对点云数据配准、三维模型构建精度的要求越来越高的情况。本文以南通大剧院实景三维建模为例,当初始点云和校准点云两组多模态融合点云位置差较大时,采用ICP算法进行点云配准易导致局部最优问... 针对复杂环境下多模态点云数据获取难,以及对点云数据配准、三维模型构建精度的要求越来越高的情况。本文以南通大剧院实景三维建模为例,当初始点云和校准点云两组多模态融合点云位置差较大时,采用ICP算法进行点云配准易导致局部最优问题,利用所提出的基于控制点辅助约束的最近点迭代(CPA-ICP)算法通过对点云数据进行配准,并与其他3种点云配准算法的试验进行对比,可知该方法的配准精度和配准效率较高,对复杂场景下的多模态点云数据融合有较好的参考意义。 展开更多
关键词 复杂场景 多模态点云 联合定向匹配 CPA-ICP算法 数据融合
下载PDF
基于车载点云的道路三维实景建模方法研究 被引量:1
19
作者 徐辛超 丁雪 《测绘与空间地理信息》 2024年第2期17-20,共4页
传统的基础测绘存在组织管理固化、服务模式落后、产品形式单一等问题,在新型基础测绘体系下形成了全要素三维实景模型这一成果。本文探讨基于车载点云进行城市道路三维实景建模方法研究,并以某城市主干路为试验对象,对道路及道路两侧... 传统的基础测绘存在组织管理固化、服务模式落后、产品形式单一等问题,在新型基础测绘体系下形成了全要素三维实景模型这一成果。本文探讨基于车载点云进行城市道路三维实景建模方法研究,并以某城市主干路为试验对象,对道路及道路两侧部件点云数据进行矢量化得到道路全要素地形数据,以部件点云数据为参考结合外业调绘尺寸用3ds Max软件制作道路部件模板库,并结合点云数据和矢量数据对各类要素进行单体化,最后将道路模型和部件模型融合。结果表明,基于车载点云数据构建的城市道路全要素实景模型不仅可以保证场景的完整性和真实性,还减少了作业时间和成本,实现了各类模型之间的无缝结合,制作完成的模型精度也能满足项目精度要求。 展开更多
关键词 车载点云 矢量提取 3ds Max 道路建模 部件建模
下载PDF
基于“十字”标志物的红外图像与三维点云融合方法
20
作者 郑叶龙 李长勇 +3 位作者 夏宁宁 李玲一 张国民 赵美蓉 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2024年第10期1090-1099,共10页
红外热成像技术广泛应用于多个领域,建立含有空间和温度信息的三维温度场模型具有十分重要的意义,可以将该技术扩展到更多应用领域.为此,本文提出一种异源空间数据融合方法,融合红外图像和三维点云,得到三维温度场模型.针对红外相机与... 红外热成像技术广泛应用于多个领域,建立含有空间和温度信息的三维温度场模型具有十分重要的意义,可以将该技术扩展到更多应用领域.为此,本文提出一种异源空间数据融合方法,融合红外图像和三维点云,得到三维温度场模型.针对红外相机与可见光相机成像原理存在差异,难以通过常用标定板进行内参标定的问题,基于红外相机成像特性设计并制作镂空圆孔标定板用于内参标定,所得内参平均重投影误差为0.03像素.针对红外相机与结构光相机的成像原理不同,现有标志物制作复杂、外参精度低的问题,基于不同材料的辐射度差异,设计制作“十字”标志物并将其用于联合标定.为解决同名特征点难以识别的问题,针对红外图像和三维点云分别设计了同名特征点提取方法,配合“十字”标志物进行同名特征点提取.红外图像和三维点云特征点提取方法的检测重复率分别为75%和92%,与传统方法相比两者的检测重复率均有所提升.利用该方法建立纸杯、工件和人脸的三维温度场模型.实验结果表明,使用镂空圆孔标定板能实现红外相机的内参标定,对“十字”标志物采用同名特征点提取方法能完成红外相机与结构光相机的联合标定.最终所得三维温度场模型的平均重投影误差为1.70像素,与现有方法相比模型精度有所提升. 展开更多
关键词 红外图像 三维点云 标志物 同名特征点 系统标定 异源空间数据融合
下载PDF
上一页 1 2 105 下一页 到第
使用帮助 返回顶部