For the goals of security and privacy preservation,we propose a blind batch encryption-and public ledger-based data sharing protocol that allows the integrity of sensitive data to be audited by a public ledger and all...For the goals of security and privacy preservation,we propose a blind batch encryption-and public ledger-based data sharing protocol that allows the integrity of sensitive data to be audited by a public ledger and allows privacy information to be preserved.Data owners can tightly manage their data with efficient revocation and only grant one-time adaptive access for the fulfillment of the requester.We prove that our protocol is semanticallly secure,blind,and secure against oblivious requesters and malicious file keepers.We also provide security analysis in the context of four typical attacks.展开更多
Various mobile devices and applications are now used in daily life.These devices require high-speed data processing,low energy consumption,low communication latency,and secure data transmission,especially in 5G and 6G...Various mobile devices and applications are now used in daily life.These devices require high-speed data processing,low energy consumption,low communication latency,and secure data transmission,especially in 5G and 6G mobile networks.High-security cryptography guarantees that essential data can be transmitted securely;however,it increases energy consumption and reduces data processing speed.Therefore,this study proposes a low-energy data encryption(LEDE)algorithm based on the Advanced Encryption Standard(AES)for improving data transmission security and reducing the energy consumption of encryption in Internet-of-Things(IoT)devices.In the proposed LEDE algorithm,the system time parameter is employed to create a dynamic S-Box to replace the static S-Box of AES.Tests indicated that six-round LEDE encryption achieves the same security level as 10-round conventional AES encryption.This reduction in encryption time results in the LEDE algorithm having a 67.4%lower energy consumption and 43.9%shorter encryption time than conventional AES;thus,the proposed LEDE algorithm can improve the performance and the energy consumption of IoT edge devices.展开更多
With the rapid advancement of cloud computing technology,reversible data hiding algorithms in encrypted images(RDH-EI)have developed into an important field of study concentrated on safeguarding privacy in distributed...With the rapid advancement of cloud computing technology,reversible data hiding algorithms in encrypted images(RDH-EI)have developed into an important field of study concentrated on safeguarding privacy in distributed cloud environments.However,existing algorithms often suffer from low embedding capacities and are inadequate for complex data access scenarios.To address these challenges,this paper proposes a novel reversible data hiding algorithm in encrypted images based on adaptive median edge detection(AMED)and ciphertext-policy attributebased encryption(CP-ABE).This proposed algorithm enhances the conventional median edge detection(MED)by incorporating dynamic variables to improve pixel prediction accuracy.The carrier image is subsequently reconstructed using the Huffman coding technique.Encrypted image generation is then achieved by encrypting the image based on system user attributes and data access rights,with the hierarchical embedding of the group’s secret data seamlessly integrated during the encryption process using the CP-ABE scheme.Ultimately,the encrypted image is transmitted to the data hider,enabling independent embedding of the secret data and resulting in the creation of the marked encrypted image.This approach allows only the receiver to extract the authorized group’s secret data,thereby enabling fine-grained,controlled access.Test results indicate that,in contrast to current algorithms,the method introduced here considerably improves the embedding rate while preserving lossless image recovery.Specifically,the average maximum embedding rates for the(3,4)-threshold and(6,6)-threshold schemes reach 5.7853 bits per pixel(bpp)and 7.7781 bpp,respectively,across the BOSSbase,BOW-2,and USD databases.Furthermore,the algorithm facilitates permission-granting and joint-decryption capabilities.Additionally,this paper conducts a comprehensive examination of the algorithm’s robustness using metrics such as image correlation,information entropy,and number of pixel change rate(NPCR),confirming its high level of security.Overall,the algorithm can be applied in a multi-user and multi-level cloud service environment to realize the secure storage of carrier images and secret data.展开更多
A new era of data access and management has begun with the use of cloud computing in the healthcare industry.Despite the efficiency and scalability that the cloud provides, the security of private patient data is stil...A new era of data access and management has begun with the use of cloud computing in the healthcare industry.Despite the efficiency and scalability that the cloud provides, the security of private patient data is still a majorconcern. Encryption, network security, and adherence to data protection laws are key to ensuring the confidentialityand integrity of healthcare data in the cloud. The computational overhead of encryption technologies could leadto delays in data access and processing rates. To address these challenges, we introduced the Enhanced ParallelMulti-Key Encryption Algorithm (EPM-KEA), aiming to bolster healthcare data security and facilitate the securestorage of critical patient records in the cloud. The data was gathered from two categories Authorization forHospital Admission (AIH) and Authorization for High Complexity Operations.We use Z-score normalization forpreprocessing. The primary goal of implementing encryption techniques is to secure and store massive amountsof data on the cloud. It is feasible that cloud storage alternatives for protecting healthcare data will become morewidely available if security issues can be successfully fixed. As a result of our analysis using specific parametersincluding Execution time (42%), Encryption time (45%), Decryption time (40%), Security level (97%), and Energyconsumption (53%), the system demonstrated favorable performance when compared to the traditional method.This suggests that by addressing these security concerns, there is the potential for broader accessibility to cloudstorage solutions for safeguarding healthcare data.展开更多
With the in-depth application of new technologies such as big data in education fields,the storage and sharing model of student education records data still faces many challenges in terms of privacy protection and eff...With the in-depth application of new technologies such as big data in education fields,the storage and sharing model of student education records data still faces many challenges in terms of privacy protection and efficient transmission.In this paper,we propose a data security storage and sharing scheme based on consortium blockchain,which is a credible search scheme without verification.In our scheme,the implementation of data security storage is using the blockchain and storage server together.In detail,the smart contract provides protection for data keywords,the storage server stores data after data masking,and the blockchain ensures the traceability of query transactions.The need for precise privacy data is achieved by constructing a dictionary.Cryptographic techniques such as AES and RSA are used for encrypted storage of data,keywords,and digital signatures.Security analysis and performance evaluation shows that the availability,high efficiency,and privacy-preserving can be achieved.Meanwhile,this scheme has better robustness compared to other educational records data sharing models.展开更多
Multi-Source data plays an important role in the evolution of media convergence.Its fusion processing enables the further mining of data and utilization of data value and broadens the path for the sharing and dissemin...Multi-Source data plays an important role in the evolution of media convergence.Its fusion processing enables the further mining of data and utilization of data value and broadens the path for the sharing and dissemination of media data.However,it also faces serious problems in terms of protecting user and data privacy.Many privacy protectionmethods have been proposed to solve the problemof privacy leakage during the process of data sharing,but they suffer fromtwo flaws:1)the lack of algorithmic frameworks for specific scenarios such as dynamic datasets in the media domain;2)the inability to solve the problem of the high computational complexity of ciphertext in multi-source data privacy protection,resulting in long encryption and decryption times.In this paper,we propose a multi-source data privacy protection method based on homomorphic encryption and blockchain technology,which solves the privacy protection problem ofmulti-source heterogeneous data in the dissemination ofmedia and reduces ciphertext processing time.We deployed the proposedmethod on theHyperledger platformfor testing and compared it with the privacy protection schemes based on k-anonymity and differential privacy.The experimental results showthat the key generation,encryption,and decryption times of the proposedmethod are lower than those in data privacy protection methods based on k-anonymity technology and differential privacy technology.This significantly reduces the processing time ofmulti-source data,which gives it potential for use in many applications.展开更多
Rapid advancements of the Industrial Internet of Things(IIoT)and artificial intelligence(AI)pose serious security issues by revealing secret data.Therefore,security data becomes a crucial issue in IIoT communication w...Rapid advancements of the Industrial Internet of Things(IIoT)and artificial intelligence(AI)pose serious security issues by revealing secret data.Therefore,security data becomes a crucial issue in IIoT communication where secrecy needs to be guaranteed in real time.Practically,AI techniques can be utilized to design image steganographic techniques in IIoT.In addition,encryption techniques act as an important role to save the actual information generated from the IIoT devices to avoid unauthorized access.In order to accomplish secure data transmission in IIoT environment,this study presents novel encryption with image steganography based data hiding technique(EISDHT)for IIoT environment.The proposed EIS-DHT technique involves a new quantum black widow optimization(QBWO)to competently choose the pixel values for hiding secrete data in the cover image.In addition,the multi-level discrete wavelet transform(DWT)based transformation process takes place.Besides,the secret image is divided into three R,G,and B bands which are then individually encrypted using Blowfish,Twofish,and Lorenz Hyperchaotic System.At last,the stego image gets generated by placing the encrypted images into the optimum pixel locations of the cover image.In order to validate the enhanced data hiding performance of the EIS-DHT technique,a set of simulation analyses take place and the results are inspected interms of different measures.The experimental outcomes stated the supremacy of the EIS-DHT technique over the other existing techniques and ensure maximum security.展开更多
To enhance the security of user data in the clouds,we present an adaptive and dynamic data encryption method to encrypt user data in the mobile phone before it is uploaded.Firstly,the adopted data encryption algorithm...To enhance the security of user data in the clouds,we present an adaptive and dynamic data encryption method to encrypt user data in the mobile phone before it is uploaded.Firstly,the adopted data encryption algorithm is not static and uniform.For each encryption,this algorithm is adaptively and dynamically selected from the algorithm set in the mobile phone encryption system.From the mobile phone's character,the detail encryption algorithm selection strategy is confirmed based on the user's mobile phone hardware information,personalization information and a pseudo-random number.Secondly,the data is rearranged with a randomly selected start position in the data before being encrypted.The start position's randomness makes the mobile phone data encryption safer.Thirdly,the rearranged data is encrypted by the selected algorithm and generated key.Finally,the analysis shows this method possesses the higher security because the more dynamics and randomness are adaptively added into the encryption process.展开更多
We focus on security and privacy problems within a cloud database framework,exploiting the DataBase as a Service(DBaaS).In this framework,an information proprietor drives out its information to a cloud database profes...We focus on security and privacy problems within a cloud database framework,exploiting the DataBase as a Service(DBaaS).In this framework,an information proprietor drives out its information to a cloud database professional company.The Data-Owner(DO)encrypts the delicate information before transmission at the cloud database professional company end to offer information security.Current encryption ideas,nonetheless,are just halfway homomorphic as all of them intend to enable an explicit kind of calculation,which is accomplished on scrambled information.These current plans can't be coordinated to solve genuine functional queries that include activities of various types.We propose and evaluate a Verifiable Reliable Secure-DataBase(VRS-DB)framework on shared tables along with many primary operations on scrambled information,which enables information interoperability,and permits an extensive possibility of Structured Query Language(SQL)queries to be prepared by the service provider on the encoded data.We show that our security and privacy idea is protected from two forms of threats and are fundamentally proficient.展开更多
In this paper,we provide a new approach to data encryption using generalized inverses.Encryption is based on the implementation of weighted Moore–Penrose inverse A y MNenxmT over the nx8 constant matrix.The square He...In this paper,we provide a new approach to data encryption using generalized inverses.Encryption is based on the implementation of weighted Moore–Penrose inverse A y MNenxmT over the nx8 constant matrix.The square Hermitian positive definite matrix N8x8 p is the key.The proposed solution represents a very strong key since the number of different variants of positive definite matrices of order 8 is huge.We have provided NIST(National Institute of Standards and Technology)quality assurance tests for a random generated Hermitian matrix(a total of 10 different tests and additional analysis with approximate entropy and random digression).In the additional testing of the quality of the random matrix generated,we can conclude that the results of our analysis satisfy the defined strict requirements.This proposed MP encryption method can be applied effectively in the encryption and decryption of images in multi-party communications.In the experimental part of this paper,we give a comparison of encryption methods between machine learning methods.Machine learning algorithms could be compared by achieved results of classification concentrating on classes.In a comparative analysis,we give results of classifying of advanced encryption standard(AES)algorithm and proposed encryption method based on Moore–Penrose inverse.展开更多
With the development of smart grid, operation and control of a power system can be realized through the power communication network, especially the power production and enterprise management business involve a large a...With the development of smart grid, operation and control of a power system can be realized through the power communication network, especially the power production and enterprise management business involve a large amount of sensitive information, and the requirements for data security and real-time transmission are gradually improved. In this paper, a new 9-dimensional(9D) complex chaotic system with quaternion is proposed for the encryption of smart grid data. Firstly, we present the mathematical model of the system, and analyze its attractors, bifurcation diagram, complexity,and 0–1 test. Secondly, the pseudo-random sequences are generated by the new chaotic system to encrypt power data.Finally, the proposed encryption algorithm is verified with power data and images in the smart grid, which can ensure the encryption security and real time. The verification results show that the proposed encryption scheme is technically feasible and available for power data and image encryption in smart grid.展开更多
With the rapid development of the genomic sequencing technology,the cost of obtaining personal genomic data and effectively analyzing it has been gradually reduced.The analysis and utilization of genomic dam gradually...With the rapid development of the genomic sequencing technology,the cost of obtaining personal genomic data and effectively analyzing it has been gradually reduced.The analysis and utilization of genomic dam gradually entered the public view,and the leakage of genomic dam privacy has attracted the attention of researchers.The security of genomic data is not only related to the protection of personal privacy,but also related to the biological information security of the country.However,there is still no.effective genomic dam privacy protection scheme using Shangyong Mima(SM)algorithms.In this paper,we analyze the widely used genomic dam file formats and design a large genomic dam files encryption scheme based on the SM algorithms.Firstly,we design a key agreement protocol based on the SM2 asymmetric cryptography and use the SM3 hash function to guarantee the correctness of the key.Secondly,we used the SM4 symmetric cryptography to encrypt the genomic data by optimizing the packet processing of files,and improve the usability by assisting the computing platform with key management.Software implementation demonstrates that the scheme can be applied to securely transmit the genomic data in the network environment and provide an encryption method based on SM algorithms for protecting the privacy of genomic data.展开更多
Due to the development of technology in medicine,millions of health-related data such as scanning the images are generated.It is a great challenge to store the data and handle a massive volume of data.Healthcare data ...Due to the development of technology in medicine,millions of health-related data such as scanning the images are generated.It is a great challenge to store the data and handle a massive volume of data.Healthcare data is stored in the cloud-fog storage environments.This cloud-Fog based health model allows the users to get health-related data from different sources,and duplicated informa-tion is also available in the background.Therefore,it requires an additional sto-rage area,increase in data acquisition time,and insecure data replication in the environment.This paper is proposed to eliminate the de-duplication data using a window size chunking algorithm with a biased sampling-based bloomfilter and provide the health data security using the Advanced Signature-Based Encryp-tion(ASE)algorithm in the Fog-Cloud Environment(WCA-BF+ASE).This WCA-BF+ASE eliminates the duplicate copy of the data and minimizes its sto-rage space and maintenance cost.The data is also stored in an efficient and in a highly secured manner.The security level in the cloud storage environment Win-dows Chunking Algorithm(WSCA)has got 86.5%,two thresholds two divisors(TTTD)80%,Ordinal in Python(ORD)84.4%,Boom Filter(BF)82%,and the proposed work has got better security storage of 97%.And also,after applying the de-duplication process,the proposed method WCA-BF+ASE has required only less storage space for variousfile sizes of 10 KB for 200,400 MB has taken only 22 KB,and 600 MB has required 35 KB,800 MB has consumed only 38 KB,1000 MB has taken 40 KB of storage spaces.展开更多
In the context of the information age,on the basis of the convenience of computer networks,security issues have gradually emerged.The data encryption technology is reasonably applied in the process of computer network...In the context of the information age,on the basis of the convenience of computer networks,security issues have gradually emerged.The data encryption technology is reasonably applied in the process of computer network security practice,which promotes the safe and reliable operation of the computer network to a certain extent.Based on this,our article regards data encryption technology as the main research object,focusing on its specific application in computer network security.展开更多
In the big data protecting technologies, most of the existing data protections adopt entire encryption that leads to the researches of lightweight encryption algorithms, without considering from the protected data its...In the big data protecting technologies, most of the existing data protections adopt entire encryption that leads to the researches of lightweight encryption algorithms, without considering from the protected data itself. In our previous paper (FGEM), it finds that not all the parts of a data need protections,the entire data protection can be supplanted as long as the critical parts of the structured data are protected. Reducing unnecessary encryption makes great sense for raising efficiency in big data processing. In this paper, the improvement of FGEM makes it suitable to protect semi-structured and unstructured data efficiently. By storing semi-structured and unstructured datum in an improved tree structure, the improved FGEM for the datum is achieved by getting congener nodes. The experiments show the improved FGEM has short operating time and low memory consumption.展开更多
To solve the problems of data sharing in social network,such as management of private data is too loose,access permissions are not clear,mode of data sharing is too single and soon on,we design a hierarchical access c...To solve the problems of data sharing in social network,such as management of private data is too loose,access permissions are not clear,mode of data sharing is too single and soon on,we design a hierarchical access control scheme of private data based on attribute encryption.First,we construct a new algorithm based on attribute encryption,which divides encryption into two phases,and we can design two types of attributes encryption strategy to make sure that different users could get their own decryption keys corresponding to their permissions.We encrypt the private data hierarchically with our algorithm to realize“precise”,“more accurate”,“fuzzy”and“private”four management modes,then users with higher permissions can access the private data inferior to their permissions.And we outsource some complex operations of decryption to DSP to ensure high efficiency on the premise of privacy protection.Finally,we analyze the efficiency and the security of our scheme.展开更多
The concept of sharing of personal health data over cloud storage in a healthcare-cyber physical system has become popular in recent times as it improves access quality.The privacy of health data can only be preserved...The concept of sharing of personal health data over cloud storage in a healthcare-cyber physical system has become popular in recent times as it improves access quality.The privacy of health data can only be preserved by keeping it in an encrypted form,but it affects usability and flexibility in terms of effective search.Attribute-based searchable encryption(ABSE)has proven its worth by providing fine-grained searching capabilities in the shared cloud storage.However,it is not practical to apply this scheme to the devices with limited resources and storage capacity because a typical ABSE involves serious computations.In a healthcare cloud-based cyber-physical system(CCPS),the data is often collected by resource-constraint devices;therefore,here also,we cannot directly apply ABSE schemes.In the proposed work,the inherent computational cost of the ABSE scheme is managed by executing the computationally intensive tasks of a typical ABSE scheme on the blockchain network.Thus,it makes the proposed scheme suitable for online storage and retrieval of personal health data in a typical CCPS.With the assistance of blockchain technology,the proposed scheme offers two main benefits.First,it is free from a trusted authority,which makes it genuinely decentralized and free from a single point of failure.Second,it is computationally efficient because the computational load is now distributed among the consensus nodes in the blockchain network.Specifically,the task of initializing the system,which is considered the most computationally intensive,and the task of partial search token generation,which is considered as the most frequent operation,is now the responsibility of the consensus nodes.This eliminates the need of the trusted authority and reduces the burden of data users,respectively.Further,in comparison to existing decentralized fine-grained searchable encryption schemes,the proposed scheme has achieved a significant reduction in storage and computational cost for the secret key associated with users.It has been verified both theoretically and practically in the performance analysis section.展开更多
Due to the ubiquitous open air links and complex electromagnetic environment in the satellite communications,how to ensure the security and reliability of the information through the satellite communications is an urg...Due to the ubiquitous open air links and complex electromagnetic environment in the satellite communications,how to ensure the security and reliability of the information through the satellite communications is an urgent problem.This paper combines the AES(Advanced Encryption Standard) with LDPC(Low Density Parity Check Code) to design a secure and reliable error correction method — SEEC(Satellite Encryption and Error Correction).This method selects the LDPC codes,which is suitable for satellite communications,and uses the AES round key to control the encoding process,at the same time,proposes a new algorithm of round key generation.Based on a fairly good property in error correction in satellite communications,the method improves the security of the system,achieves a shorter key size,and then makes the key management easier.Eventually,the method shows a great error correction capability and encryption effect by the MATLAB simulation.展开更多
Recently,reversible data hiding in encrypted image(RDHEI)has attracted extensive attention,which can be used in secure cloud computing and privacy protection effectively.In this paper,a novel RDHEI scheme based on blo...Recently,reversible data hiding in encrypted image(RDHEI)has attracted extensive attention,which can be used in secure cloud computing and privacy protection effectively.In this paper,a novel RDHEI scheme based on block classification and permutation is proposed.Content owner first divides original image into non-overlapping blocks and then set a threshold to classify these blocks into smooth and non-smooth blocks respectively.After block classification,content owner utilizes a specific encryption method,including stream cipher encryption and block permutation to protect image content securely.For the encrypted image,data hider embeds additional secret information in the most significant bits(MSB)of the encrypted pixels in smooth blocks and the final marked image can be obtained.At the receiver side,secret data will be extracted correctly with data-hiding key.When receiver only has encryption key,after stream cipher decryption,block scrambling decryption and MSB error prediction with threshold,decrypted image will be achieved.When data hiding key and encryption key are both obtained,receiver can find the smooth and non-smooth blocks correctly and MSB in smooth blocks will be predicted correctly,hence,receiver can recover marked image losslessly.Experimental results demonstrate that our scheme can achieve better rate-distortion performance than some of state-of-the-art schemes.展开更多
The dissociation between data management and data ownership makes it difficult to protect data security and privacy in cloud storage systems.Traditional encryption technologies are not suitable for data protection in ...The dissociation between data management and data ownership makes it difficult to protect data security and privacy in cloud storage systems.Traditional encryption technologies are not suitable for data protection in cloud storage systems.A novel multi-authority proxy re-encryption mechanism based on ciphertext-policy attribute-based encryption(MPRE-CPABE) is proposed for cloud storage systems.MPRE-CPABE requires data owner to split each file into two blocks,one big block and one small block.The small block is used to encrypt the big one as the private key,and then the encrypted big block will be uploaded to the cloud storage system.Even if the uploaded big block of file is stolen,illegal users cannot get the complete information of the file easily.Ciphertext-policy attribute-based encryption(CPABE)is always criticized for its heavy overload and insecure issues when distributing keys or revoking user's access right.MPRE-CPABE applies CPABE to the multi-authority cloud storage system,and solves the above issues.The weighted access structure(WAS) is proposed to support a variety of fine-grained threshold access control policy in multi-authority environments,and reduce the computational cost of key distribution.Meanwhile,MPRE-CPABE uses proxy re-encryption to reduce the computational cost of access revocation.Experiments are implemented on platforms of Ubuntu and CloudSim.Experimental results show that MPRE-CPABE can greatly reduce the computational cost of the generation of key components and the revocation of user's access right.MPRE-CPABE is also proved secure under the security model of decisional bilinear Diffie-Hellman(DBDH).展开更多
基金partially supported by the National Natural Science Foundation of China under grant no.62372245the Foundation of Yunnan Key Laboratory of Blockchain Application Technology under Grant 202105AG070005+1 种基金in part by the Foundation of State Key Laboratory of Public Big Datain part by the Foundation of Key Laboratory of Computational Science and Application of Hainan Province under Grant JSKX202202。
文摘For the goals of security and privacy preservation,we propose a blind batch encryption-and public ledger-based data sharing protocol that allows the integrity of sensitive data to be audited by a public ledger and allows privacy information to be preserved.Data owners can tightly manage their data with efficient revocation and only grant one-time adaptive access for the fulfillment of the requester.We prove that our protocol is semanticallly secure,blind,and secure against oblivious requesters and malicious file keepers.We also provide security analysis in the context of four typical attacks.
基金This work was supported by the National Science and Technology Council,Taiwan,under Project NSTC 112-2221-E-029-015.
文摘Various mobile devices and applications are now used in daily life.These devices require high-speed data processing,low energy consumption,low communication latency,and secure data transmission,especially in 5G and 6G mobile networks.High-security cryptography guarantees that essential data can be transmitted securely;however,it increases energy consumption and reduces data processing speed.Therefore,this study proposes a low-energy data encryption(LEDE)algorithm based on the Advanced Encryption Standard(AES)for improving data transmission security and reducing the energy consumption of encryption in Internet-of-Things(IoT)devices.In the proposed LEDE algorithm,the system time parameter is employed to create a dynamic S-Box to replace the static S-Box of AES.Tests indicated that six-round LEDE encryption achieves the same security level as 10-round conventional AES encryption.This reduction in encryption time results in the LEDE algorithm having a 67.4%lower energy consumption and 43.9%shorter encryption time than conventional AES;thus,the proposed LEDE algorithm can improve the performance and the energy consumption of IoT edge devices.
基金the National Natural Science Foundation of China(Grant Numbers 622724786210245062102451).
文摘With the rapid advancement of cloud computing technology,reversible data hiding algorithms in encrypted images(RDH-EI)have developed into an important field of study concentrated on safeguarding privacy in distributed cloud environments.However,existing algorithms often suffer from low embedding capacities and are inadequate for complex data access scenarios.To address these challenges,this paper proposes a novel reversible data hiding algorithm in encrypted images based on adaptive median edge detection(AMED)and ciphertext-policy attributebased encryption(CP-ABE).This proposed algorithm enhances the conventional median edge detection(MED)by incorporating dynamic variables to improve pixel prediction accuracy.The carrier image is subsequently reconstructed using the Huffman coding technique.Encrypted image generation is then achieved by encrypting the image based on system user attributes and data access rights,with the hierarchical embedding of the group’s secret data seamlessly integrated during the encryption process using the CP-ABE scheme.Ultimately,the encrypted image is transmitted to the data hider,enabling independent embedding of the secret data and resulting in the creation of the marked encrypted image.This approach allows only the receiver to extract the authorized group’s secret data,thereby enabling fine-grained,controlled access.Test results indicate that,in contrast to current algorithms,the method introduced here considerably improves the embedding rate while preserving lossless image recovery.Specifically,the average maximum embedding rates for the(3,4)-threshold and(6,6)-threshold schemes reach 5.7853 bits per pixel(bpp)and 7.7781 bpp,respectively,across the BOSSbase,BOW-2,and USD databases.Furthermore,the algorithm facilitates permission-granting and joint-decryption capabilities.Additionally,this paper conducts a comprehensive examination of the algorithm’s robustness using metrics such as image correlation,information entropy,and number of pixel change rate(NPCR),confirming its high level of security.Overall,the algorithm can be applied in a multi-user and multi-level cloud service environment to realize the secure storage of carrier images and secret data.
文摘A new era of data access and management has begun with the use of cloud computing in the healthcare industry.Despite the efficiency and scalability that the cloud provides, the security of private patient data is still a majorconcern. Encryption, network security, and adherence to data protection laws are key to ensuring the confidentialityand integrity of healthcare data in the cloud. The computational overhead of encryption technologies could leadto delays in data access and processing rates. To address these challenges, we introduced the Enhanced ParallelMulti-Key Encryption Algorithm (EPM-KEA), aiming to bolster healthcare data security and facilitate the securestorage of critical patient records in the cloud. The data was gathered from two categories Authorization forHospital Admission (AIH) and Authorization for High Complexity Operations.We use Z-score normalization forpreprocessing. The primary goal of implementing encryption techniques is to secure and store massive amountsof data on the cloud. It is feasible that cloud storage alternatives for protecting healthcare data will become morewidely available if security issues can be successfully fixed. As a result of our analysis using specific parametersincluding Execution time (42%), Encryption time (45%), Decryption time (40%), Security level (97%), and Energyconsumption (53%), the system demonstrated favorable performance when compared to the traditional method.This suggests that by addressing these security concerns, there is the potential for broader accessibility to cloudstorage solutions for safeguarding healthcare data.
基金The research work was supported by the National Key Research and Development Plan in China(Grant No.2020YFB1005500)Key Project Plan of Blockchain in Ministry of Education of the People’s Republic of China(Grant No.2020KJ010802)Natural Science Foundation of Beijing Municipality(Grant No.M21034).
文摘With the in-depth application of new technologies such as big data in education fields,the storage and sharing model of student education records data still faces many challenges in terms of privacy protection and efficient transmission.In this paper,we propose a data security storage and sharing scheme based on consortium blockchain,which is a credible search scheme without verification.In our scheme,the implementation of data security storage is using the blockchain and storage server together.In detail,the smart contract provides protection for data keywords,the storage server stores data after data masking,and the blockchain ensures the traceability of query transactions.The need for precise privacy data is achieved by constructing a dictionary.Cryptographic techniques such as AES and RSA are used for encrypted storage of data,keywords,and digital signatures.Security analysis and performance evaluation shows that the availability,high efficiency,and privacy-preserving can be achieved.Meanwhile,this scheme has better robustness compared to other educational records data sharing models.
基金funded by the High-Quality and Cutting-Edge Discipline Construction Project for Universities in Beijing (Internet Information,Communication University of China).
文摘Multi-Source data plays an important role in the evolution of media convergence.Its fusion processing enables the further mining of data and utilization of data value and broadens the path for the sharing and dissemination of media data.However,it also faces serious problems in terms of protecting user and data privacy.Many privacy protectionmethods have been proposed to solve the problemof privacy leakage during the process of data sharing,but they suffer fromtwo flaws:1)the lack of algorithmic frameworks for specific scenarios such as dynamic datasets in the media domain;2)the inability to solve the problem of the high computational complexity of ciphertext in multi-source data privacy protection,resulting in long encryption and decryption times.In this paper,we propose a multi-source data privacy protection method based on homomorphic encryption and blockchain technology,which solves the privacy protection problem ofmulti-source heterogeneous data in the dissemination ofmedia and reduces ciphertext processing time.We deployed the proposedmethod on theHyperledger platformfor testing and compared it with the privacy protection schemes based on k-anonymity and differential privacy.The experimental results showthat the key generation,encryption,and decryption times of the proposedmethod are lower than those in data privacy protection methods based on k-anonymity technology and differential privacy technology.This significantly reduces the processing time ofmulti-source data,which gives it potential for use in many applications.
基金This research work was funded by Institution Fund projects under Grant No.(IFPRC-215-249-2020)Therefore,authors gratefully acknowledge technical and financial support from the Ministry of Education and King Abdulaziz University,DSR,Jeddah,Saudi Arabia.
文摘Rapid advancements of the Industrial Internet of Things(IIoT)and artificial intelligence(AI)pose serious security issues by revealing secret data.Therefore,security data becomes a crucial issue in IIoT communication where secrecy needs to be guaranteed in real time.Practically,AI techniques can be utilized to design image steganographic techniques in IIoT.In addition,encryption techniques act as an important role to save the actual information generated from the IIoT devices to avoid unauthorized access.In order to accomplish secure data transmission in IIoT environment,this study presents novel encryption with image steganography based data hiding technique(EISDHT)for IIoT environment.The proposed EIS-DHT technique involves a new quantum black widow optimization(QBWO)to competently choose the pixel values for hiding secrete data in the cover image.In addition,the multi-level discrete wavelet transform(DWT)based transformation process takes place.Besides,the secret image is divided into three R,G,and B bands which are then individually encrypted using Blowfish,Twofish,and Lorenz Hyperchaotic System.At last,the stego image gets generated by placing the encrypted images into the optimum pixel locations of the cover image.In order to validate the enhanced data hiding performance of the EIS-DHT technique,a set of simulation analyses take place and the results are inspected interms of different measures.The experimental outcomes stated the supremacy of the EIS-DHT technique over the other existing techniques and ensure maximum security.
文摘To enhance the security of user data in the clouds,we present an adaptive and dynamic data encryption method to encrypt user data in the mobile phone before it is uploaded.Firstly,the adopted data encryption algorithm is not static and uniform.For each encryption,this algorithm is adaptively and dynamically selected from the algorithm set in the mobile phone encryption system.From the mobile phone's character,the detail encryption algorithm selection strategy is confirmed based on the user's mobile phone hardware information,personalization information and a pseudo-random number.Secondly,the data is rearranged with a randomly selected start position in the data before being encrypted.The start position's randomness makes the mobile phone data encryption safer.Thirdly,the rearranged data is encrypted by the selected algorithm and generated key.Finally,the analysis shows this method possesses the higher security because the more dynamics and randomness are adaptively added into the encryption process.
文摘We focus on security and privacy problems within a cloud database framework,exploiting the DataBase as a Service(DBaaS).In this framework,an information proprietor drives out its information to a cloud database professional company.The Data-Owner(DO)encrypts the delicate information before transmission at the cloud database professional company end to offer information security.Current encryption ideas,nonetheless,are just halfway homomorphic as all of them intend to enable an explicit kind of calculation,which is accomplished on scrambled information.These current plans can't be coordinated to solve genuine functional queries that include activities of various types.We propose and evaluate a Verifiable Reliable Secure-DataBase(VRS-DB)framework on shared tables along with many primary operations on scrambled information,which enables information interoperability,and permits an extensive possibility of Structured Query Language(SQL)queries to be prepared by the service provider on the encoded data.We show that our security and privacy idea is protected from two forms of threats and are fundamentally proficient.
基金the support of Network Communication Technology(NCT)Research Groups,FTSM,UKM in providing facilities for this research.This paper is supported under the Dana Impak Perdana UKM DIP-2018-040 and Fundamental Research Grant Scheme FRGS/1/2018/TK04/UKM/02/7.
文摘In this paper,we provide a new approach to data encryption using generalized inverses.Encryption is based on the implementation of weighted Moore–Penrose inverse A y MNenxmT over the nx8 constant matrix.The square Hermitian positive definite matrix N8x8 p is the key.The proposed solution represents a very strong key since the number of different variants of positive definite matrices of order 8 is huge.We have provided NIST(National Institute of Standards and Technology)quality assurance tests for a random generated Hermitian matrix(a total of 10 different tests and additional analysis with approximate entropy and random digression).In the additional testing of the quality of the random matrix generated,we can conclude that the results of our analysis satisfy the defined strict requirements.This proposed MP encryption method can be applied effectively in the encryption and decryption of images in multi-party communications.In the experimental part of this paper,we give a comparison of encryption methods between machine learning methods.Machine learning algorithms could be compared by achieved results of classification concentrating on classes.In a comparative analysis,we give results of classifying of advanced encryption standard(AES)algorithm and proposed encryption method based on Moore–Penrose inverse.
基金Project supported by the International Collaborative Research Project of Qilu University of Technology (Grant No.QLUTGJHZ2018020)the Project of Youth Innovation and Technology Support Plan for Colleges and Universities in Shandong Province,China (Grant No.2021KJ025)the Major Scientific and Technological Innovation Projects of Shandong Province,China (Grant Nos.2019JZZY010731 and 2020CXGC010901)。
文摘With the development of smart grid, operation and control of a power system can be realized through the power communication network, especially the power production and enterprise management business involve a large amount of sensitive information, and the requirements for data security and real-time transmission are gradually improved. In this paper, a new 9-dimensional(9D) complex chaotic system with quaternion is proposed for the encryption of smart grid data. Firstly, we present the mathematical model of the system, and analyze its attractors, bifurcation diagram, complexity,and 0–1 test. Secondly, the pseudo-random sequences are generated by the new chaotic system to encrypt power data.Finally, the proposed encryption algorithm is verified with power data and images in the smart grid, which can ensure the encryption security and real time. The verification results show that the proposed encryption scheme is technically feasible and available for power data and image encryption in smart grid.
基金supported by the National Key Research and Development Program of China(No.2016YFC1000307)the National Natural Science Foundation of China(No.61571024,No.61971021).
文摘With the rapid development of the genomic sequencing technology,the cost of obtaining personal genomic data and effectively analyzing it has been gradually reduced.The analysis and utilization of genomic dam gradually entered the public view,and the leakage of genomic dam privacy has attracted the attention of researchers.The security of genomic data is not only related to the protection of personal privacy,but also related to the biological information security of the country.However,there is still no.effective genomic dam privacy protection scheme using Shangyong Mima(SM)algorithms.In this paper,we analyze the widely used genomic dam file formats and design a large genomic dam files encryption scheme based on the SM algorithms.Firstly,we design a key agreement protocol based on the SM2 asymmetric cryptography and use the SM3 hash function to guarantee the correctness of the key.Secondly,we used the SM4 symmetric cryptography to encrypt the genomic data by optimizing the packet processing of files,and improve the usability by assisting the computing platform with key management.Software implementation demonstrates that the scheme can be applied to securely transmit the genomic data in the network environment and provide an encryption method based on SM algorithms for protecting the privacy of genomic data.
文摘Due to the development of technology in medicine,millions of health-related data such as scanning the images are generated.It is a great challenge to store the data and handle a massive volume of data.Healthcare data is stored in the cloud-fog storage environments.This cloud-Fog based health model allows the users to get health-related data from different sources,and duplicated informa-tion is also available in the background.Therefore,it requires an additional sto-rage area,increase in data acquisition time,and insecure data replication in the environment.This paper is proposed to eliminate the de-duplication data using a window size chunking algorithm with a biased sampling-based bloomfilter and provide the health data security using the Advanced Signature-Based Encryp-tion(ASE)algorithm in the Fog-Cloud Environment(WCA-BF+ASE).This WCA-BF+ASE eliminates the duplicate copy of the data and minimizes its sto-rage space and maintenance cost.The data is also stored in an efficient and in a highly secured manner.The security level in the cloud storage environment Win-dows Chunking Algorithm(WSCA)has got 86.5%,two thresholds two divisors(TTTD)80%,Ordinal in Python(ORD)84.4%,Boom Filter(BF)82%,and the proposed work has got better security storage of 97%.And also,after applying the de-duplication process,the proposed method WCA-BF+ASE has required only less storage space for variousfile sizes of 10 KB for 200,400 MB has taken only 22 KB,and 600 MB has required 35 KB,800 MB has consumed only 38 KB,1000 MB has taken 40 KB of storage spaces.
文摘In the context of the information age,on the basis of the convenience of computer networks,security issues have gradually emerged.The data encryption technology is reasonably applied in the process of computer network security practice,which promotes the safe and reliable operation of the computer network to a certain extent.Based on this,our article regards data encryption technology as the main research object,focusing on its specific application in computer network security.
基金This research is supported by a grant from National Natural Science Foundation of China (No. 61170241, 61472097), Specialized Research Fund for the Doctoral Program of Higher Education (No.20132304110017), This paper is funded by the International Exchange Program of Harbin Engineering University for Innovation-oriented Talents Cultivation.
文摘In the big data protecting technologies, most of the existing data protections adopt entire encryption that leads to the researches of lightweight encryption algorithms, without considering from the protected data itself. In our previous paper (FGEM), it finds that not all the parts of a data need protections,the entire data protection can be supplanted as long as the critical parts of the structured data are protected. Reducing unnecessary encryption makes great sense for raising efficiency in big data processing. In this paper, the improvement of FGEM makes it suitable to protect semi-structured and unstructured data efficiently. By storing semi-structured and unstructured datum in an improved tree structure, the improved FGEM for the datum is achieved by getting congener nodes. The experiments show the improved FGEM has short operating time and low memory consumption.
文摘To solve the problems of data sharing in social network,such as management of private data is too loose,access permissions are not clear,mode of data sharing is too single and soon on,we design a hierarchical access control scheme of private data based on attribute encryption.First,we construct a new algorithm based on attribute encryption,which divides encryption into two phases,and we can design two types of attributes encryption strategy to make sure that different users could get their own decryption keys corresponding to their permissions.We encrypt the private data hierarchically with our algorithm to realize“precise”,“more accurate”,“fuzzy”and“private”four management modes,then users with higher permissions can access the private data inferior to their permissions.And we outsource some complex operations of decryption to DSP to ensure high efficiency on the premise of privacy protection.Finally,we analyze the efficiency and the security of our scheme.
文摘The concept of sharing of personal health data over cloud storage in a healthcare-cyber physical system has become popular in recent times as it improves access quality.The privacy of health data can only be preserved by keeping it in an encrypted form,but it affects usability and flexibility in terms of effective search.Attribute-based searchable encryption(ABSE)has proven its worth by providing fine-grained searching capabilities in the shared cloud storage.However,it is not practical to apply this scheme to the devices with limited resources and storage capacity because a typical ABSE involves serious computations.In a healthcare cloud-based cyber-physical system(CCPS),the data is often collected by resource-constraint devices;therefore,here also,we cannot directly apply ABSE schemes.In the proposed work,the inherent computational cost of the ABSE scheme is managed by executing the computationally intensive tasks of a typical ABSE scheme on the blockchain network.Thus,it makes the proposed scheme suitable for online storage and retrieval of personal health data in a typical CCPS.With the assistance of blockchain technology,the proposed scheme offers two main benefits.First,it is free from a trusted authority,which makes it genuinely decentralized and free from a single point of failure.Second,it is computationally efficient because the computational load is now distributed among the consensus nodes in the blockchain network.Specifically,the task of initializing the system,which is considered the most computationally intensive,and the task of partial search token generation,which is considered as the most frequent operation,is now the responsibility of the consensus nodes.This eliminates the need of the trusted authority and reduces the burden of data users,respectively.Further,in comparison to existing decentralized fine-grained searchable encryption schemes,the proposed scheme has achieved a significant reduction in storage and computational cost for the secret key associated with users.It has been verified both theoretically and practically in the performance analysis section.
基金supported by the National 863 Project of China under Grant No.2012AA01A509,No.2012AA120800
文摘Due to the ubiquitous open air links and complex electromagnetic environment in the satellite communications,how to ensure the security and reliability of the information through the satellite communications is an urgent problem.This paper combines the AES(Advanced Encryption Standard) with LDPC(Low Density Parity Check Code) to design a secure and reliable error correction method — SEEC(Satellite Encryption and Error Correction).This method selects the LDPC codes,which is suitable for satellite communications,and uses the AES round key to control the encoding process,at the same time,proposes a new algorithm of round key generation.Based on a fairly good property in error correction in satellite communications,the method improves the security of the system,achieves a shorter key size,and then makes the key management easier.Eventually,the method shows a great error correction capability and encryption effect by the MATLAB simulation.
基金This work was supported by the National Natural Science Foundation of China(61672354,61702332).
文摘Recently,reversible data hiding in encrypted image(RDHEI)has attracted extensive attention,which can be used in secure cloud computing and privacy protection effectively.In this paper,a novel RDHEI scheme based on block classification and permutation is proposed.Content owner first divides original image into non-overlapping blocks and then set a threshold to classify these blocks into smooth and non-smooth blocks respectively.After block classification,content owner utilizes a specific encryption method,including stream cipher encryption and block permutation to protect image content securely.For the encrypted image,data hider embeds additional secret information in the most significant bits(MSB)of the encrypted pixels in smooth blocks and the final marked image can be obtained.At the receiver side,secret data will be extracted correctly with data-hiding key.When receiver only has encryption key,after stream cipher decryption,block scrambling decryption and MSB error prediction with threshold,decrypted image will be achieved.When data hiding key and encryption key are both obtained,receiver can find the smooth and non-smooth blocks correctly and MSB in smooth blocks will be predicted correctly,hence,receiver can recover marked image losslessly.Experimental results demonstrate that our scheme can achieve better rate-distortion performance than some of state-of-the-art schemes.
基金supported by the National Natural Science Foundation of China(6120200461472192)+1 种基金the Special Fund for Fast Sharing of Science Paper in Net Era by CSTD(2013116)the Natural Science Fund of Higher Education of Jiangsu Province(14KJB520014)
文摘The dissociation between data management and data ownership makes it difficult to protect data security and privacy in cloud storage systems.Traditional encryption technologies are not suitable for data protection in cloud storage systems.A novel multi-authority proxy re-encryption mechanism based on ciphertext-policy attribute-based encryption(MPRE-CPABE) is proposed for cloud storage systems.MPRE-CPABE requires data owner to split each file into two blocks,one big block and one small block.The small block is used to encrypt the big one as the private key,and then the encrypted big block will be uploaded to the cloud storage system.Even if the uploaded big block of file is stolen,illegal users cannot get the complete information of the file easily.Ciphertext-policy attribute-based encryption(CPABE)is always criticized for its heavy overload and insecure issues when distributing keys or revoking user's access right.MPRE-CPABE applies CPABE to the multi-authority cloud storage system,and solves the above issues.The weighted access structure(WAS) is proposed to support a variety of fine-grained threshold access control policy in multi-authority environments,and reduce the computational cost of key distribution.Meanwhile,MPRE-CPABE uses proxy re-encryption to reduce the computational cost of access revocation.Experiments are implemented on platforms of Ubuntu and CloudSim.Experimental results show that MPRE-CPABE can greatly reduce the computational cost of the generation of key components and the revocation of user's access right.MPRE-CPABE is also proved secure under the security model of decisional bilinear Diffie-Hellman(DBDH).