According to the innate characteristic of four types of furnace, the copper flash continuous smelting (CFCS) furnace can be considered a synthetic reactor of two relatively independent processes: flash matte smelti...According to the innate characteristic of four types of furnace, the copper flash continuous smelting (CFCS) furnace can be considered a synthetic reactor of two relatively independent processes: flash matte smelting process (FMSP) and copper continuous converting process (CCCP). Then, the CFCS thermodynamic model was proposed by establishing the multi-phase equilibrium model of FMSP and the local-equilibrium model of CCCP, respectively, and by combining them through the smelting intermediates. Subsequently, the influences of the furnace structures were investigated using the model on the formation of blister copper, the Fe3O4 behavior, the copper loss in slag and the copper recovery rate. The results show that the type D furnace, with double flues and a slag partition wall, is an ideal CFCS reactor compared with the other three types furnaces. For CFCS, it is effective to design a partition wall in the furnace to make FMSP and CCCP perform in two relatively independent zones, respectively, and to make smelting gas and converting gas discharge from respective flues.展开更多
Proposed herein is a novel non planar cell structure for flash memory which has been fabricated to achieve high programming speed with low operating voltage.This memory cell preserves a simple stacked gate structure ...Proposed herein is a novel non planar cell structure for flash memory which has been fabricated to achieve high programming speed with low operating voltage.This memory cell preserves a simple stacked gate structure which only requires an additional masking step to form the novel structure in the channel.For the cell of the 1 2μm gate length,the programming speed of 43μs under the measuring condition of V g=15V, V d=5V,and the erasing time of 24ms under V g=-5V, V s=8V are obtained.The programming speed is faster than that of the conventional planar cell structure.This superior programming speed makes it suitable for high speed application.展开更多
Many structure-property/activity studies use graph theoretical indices, which are based on the topological properties of a molecule viewed as a graph. Since topological indices can be derived directly from the molecul...Many structure-property/activity studies use graph theoretical indices, which are based on the topological properties of a molecule viewed as a graph. Since topological indices can be derived directly from the molecular structure without any experimental effort, they provide a simple and straightforward method for property prediction. In this work the flash point of alkanes was modeled by a set of molecular connectivity indices (Х), modified molecular connectivity indices ( ^mХ^v ) and valance molecular connectivity indices ( ^mХ^v ), with ^mХ^v calculated using the hydrogen perturbation. A stepwise Multiple Linear Regression (MLR) method was used to select the best indices. The predicted flash points are in good agreement with the experimental data, with the average absolute deviation 4.3 K.展开更多
Oblique ocean wave damping by a vertical porous structure placed on a multi-step bottom topography is studied with the help of linear water wave theory. Some portion of the oblique wave, incident on the porous structu...Oblique ocean wave damping by a vertical porous structure placed on a multi-step bottom topography is studied with the help of linear water wave theory. Some portion of the oblique wave, incident on the porous structure, gets reflected by the multi-step bottom and the porous structure, and the rest propagates into the water medium following the porous structure. Two cases are considered: first a solid vertical wall placed at a finite distance from the porous structure in the water medium following the porous structure and then a special case of an unbounded water medium following the porous structure. In both cases, boundary value problems are set up in three different media, the first medium being water, the second medium being the porous structure consisting ofp vertical regions-one above each step and the third medium being water again. By using the matching conditions along the virtualvertical boundaries, a system of linear equations is deduced. The behavior of the reflection coefficient and the dimensionless amplitude of the transmitted progressive wave due to different relevant parameters are studied. Energy loss due to the propagation of oblique water wave through the porous structure is also carried out. The effects of various parameters, such as number of evanescent modes, porosity, friction factor, structure width, number of steps and angle of incidence, on the reflection coefficient and the dimensionless amplitude of the transmitted wave are studied graphically for both cases. Number of evanescent modes merely affects the scattering phenomenon. But higher values of porosity show relatively lower reflection than that for lower porosity. Oscillation in the reflection coefficient is observed for lower values of friction factor but it disappears with an increase in the value of friction factor. Amplitude of the transmitted progressive wave is independent of the porosity of the structure. But lower value of friction factor causes higher transmission. The investigation is then carried out for the second case, i.e., when the wall is absent. The significant difference between the two cases considered here is that the reflection due to a thin porous structure is very high when the solid wall exists as compared to the case when no wall is present. Energy loss due to different porosity, friction factor, structure width and angle of incidence is also examined. Validity of our model is ascertained by matching it with an available one.展开更多
基金Project (50904027) supported by the National Natural Science Foundation of ChinaProject (2013BAB03B05) supported by the National Key Technology R&D Program of China+1 种基金Project (20133BCB23018) supported by the Foundation for Young Scientist(Jinggang Star)of Jiangxi Province,ChinaProject (2012ZBAB206002) supported by the Natural Science Foundation of Jiangxi Province,China
文摘According to the innate characteristic of four types of furnace, the copper flash continuous smelting (CFCS) furnace can be considered a synthetic reactor of two relatively independent processes: flash matte smelting process (FMSP) and copper continuous converting process (CCCP). Then, the CFCS thermodynamic model was proposed by establishing the multi-phase equilibrium model of FMSP and the local-equilibrium model of CCCP, respectively, and by combining them through the smelting intermediates. Subsequently, the influences of the furnace structures were investigated using the model on the formation of blister copper, the Fe3O4 behavior, the copper loss in slag and the copper recovery rate. The results show that the type D furnace, with double flues and a slag partition wall, is an ideal CFCS reactor compared with the other three types furnaces. For CFCS, it is effective to design a partition wall in the furnace to make FMSP and CCCP perform in two relatively independent zones, respectively, and to make smelting gas and converting gas discharge from respective flues.
文摘Proposed herein is a novel non planar cell structure for flash memory which has been fabricated to achieve high programming speed with low operating voltage.This memory cell preserves a simple stacked gate structure which only requires an additional masking step to form the novel structure in the channel.For the cell of the 1 2μm gate length,the programming speed of 43μs under the measuring condition of V g=15V, V d=5V,and the erasing time of 24ms under V g=-5V, V s=8V are obtained.The programming speed is faster than that of the conventional planar cell structure.This superior programming speed makes it suitable for high speed application.
文摘Many structure-property/activity studies use graph theoretical indices, which are based on the topological properties of a molecule viewed as a graph. Since topological indices can be derived directly from the molecular structure without any experimental effort, they provide a simple and straightforward method for property prediction. In this work the flash point of alkanes was modeled by a set of molecular connectivity indices (Х), modified molecular connectivity indices ( ^mХ^v ) and valance molecular connectivity indices ( ^mХ^v ), with ^mХ^v calculated using the hydrogen perturbation. A stepwise Multiple Linear Regression (MLR) method was used to select the best indices. The predicted flash points are in good agreement with the experimental data, with the average absolute deviation 4.3 K.
文摘Oblique ocean wave damping by a vertical porous structure placed on a multi-step bottom topography is studied with the help of linear water wave theory. Some portion of the oblique wave, incident on the porous structure, gets reflected by the multi-step bottom and the porous structure, and the rest propagates into the water medium following the porous structure. Two cases are considered: first a solid vertical wall placed at a finite distance from the porous structure in the water medium following the porous structure and then a special case of an unbounded water medium following the porous structure. In both cases, boundary value problems are set up in three different media, the first medium being water, the second medium being the porous structure consisting ofp vertical regions-one above each step and the third medium being water again. By using the matching conditions along the virtualvertical boundaries, a system of linear equations is deduced. The behavior of the reflection coefficient and the dimensionless amplitude of the transmitted progressive wave due to different relevant parameters are studied. Energy loss due to the propagation of oblique water wave through the porous structure is also carried out. The effects of various parameters, such as number of evanescent modes, porosity, friction factor, structure width, number of steps and angle of incidence, on the reflection coefficient and the dimensionless amplitude of the transmitted wave are studied graphically for both cases. Number of evanescent modes merely affects the scattering phenomenon. But higher values of porosity show relatively lower reflection than that for lower porosity. Oscillation in the reflection coefficient is observed for lower values of friction factor but it disappears with an increase in the value of friction factor. Amplitude of the transmitted progressive wave is independent of the porosity of the structure. But lower value of friction factor causes higher transmission. The investigation is then carried out for the second case, i.e., when the wall is absent. The significant difference between the two cases considered here is that the reflection due to a thin porous structure is very high when the solid wall exists as compared to the case when no wall is present. Energy loss due to different porosity, friction factor, structure width and angle of incidence is also examined. Validity of our model is ascertained by matching it with an available one.