Based on analyses of the theories of groundwater unsteady flow in deep well dewatering in the deep foundation pit, Theis equations are chosen to calculate and analyze the relationship between water level drawdown of c...Based on analyses of the theories of groundwater unsteady flow in deep well dewatering in the deep foundation pit, Theis equations are chosen to calculate and analyze the relationship between water level drawdown of confined aquifer and dewatering duration. In order to reduce engineering cost and diminish detrimental effect on ambient surrounding, optimization design target function based on the control of confined water drawdown and four restriction requisitions based on the control of safe water level, resistance to throwing up from the bottom of foundation pit, avoiding excessively great subsidence and unequal surface subsidence are proposed. A deep well dewatering project in the deep foundation pit is optimally designed. The calculated results including confined water level drawdown and surface subsidence are in close agreement with the measured results, and the optimization design can effectively control both surface subsidence outside foundation pit and unequal subsidence as a result of dewatering.展开更多
A deep foundation pit constructed for an underground transportation hub was excavated near the Yangtze River. Among the strata, there are two confined aquifers, between which lies an aquiclude that is partially missin...A deep foundation pit constructed for an underground transportation hub was excavated near the Yangtze River. Among the strata, there are two confined aquifers, between which lies an aquiclude that is partially missing. To guarantee the safety of pit excavation, the piezometric head of the upper confined aquifer, where the pit bottom is located, should be 1 m below the pit bottom, while that of the lower confined aquifer should be dewatered down to a safe water level to avoid uplift problem. The Yangtze River levee is notably close to the pit, and its deformation caused by dewatering should be controlled. A pumping test was performed to obtain the hydraulic conductivity of the upper confined aquifer. The average value of the hydraulic conductivity obtained from analytical calculation is 20.45 m/d, which is larger than the values from numerical simulation(horizontal hydraulic conductivity K_H = 16 m/d and vertical hydraulic conductivity K_V = S m/d). The difference between K_H and K_V indicates the anisotropy of the aquifer. Two dewatering schemes were designed for the construction and simulated by the numerical models for comparison purposes. The results show that though the first scheme could meet the dewatering requirements, the largest accumulated settlement and differential settlement would be94.64 mm and 3.3‰, respectively, greatly exceeding the limited values. Meanwhile, the second scheme,in which the bottoms of the waterproof curtains in ramp B and the river side of ramp A are installed at a deeper elevation of-28 m above sea level, and 27 recharge wells are set along the levee, can control the deformation of the levee significantly.展开更多
In terms of controlling groundwater in deep foundation pit projects, the usual methods include increasing the curtain depth, reducing the amount of pumped groundwater, and implementing integrated control, in order to ...In terms of controlling groundwater in deep foundation pit projects, the usual methods include increasing the curtain depth, reducing the amount of pumped groundwater, and implementing integrated control, in order to reduce the drawdown and land subsidence outside pits. In dewatering design for confined water, factors including drawdown requirements, the thickness of aquifers, the depth of dewatering wells and the depth of cutoff curtains have to be considered comprehensively and numerical simulations are generally conducted for calculation and analysis. Longyang Road Station on Shanghai Metro Line 18 is taken as the case study subject in this paper, a groundwater seepage model is developed according to the on-site engineering geological conditions and hydrogeological conditions, the excavation depth of the foundation pit as well as the design depth of the enclosure, hydrogeological parameters are determined via the pumping test, and the foundation pit dewatering is simulated by means of the three-dimensional finite difference method, which produces numerical results that consistent with real monitoring data as to the groundwater table. Besides, the drawdown and the land subsidence both inside and outside the pit caused by foundation pit dewatering are calculated and analyzed for various curtain depths. This study reveals that the drawdown and the land subsidence change faster near the curtain with the increase in the curtain depth, and the gradient of drawdown and land subsidence changes dwindles beyond certain depths. In this project, the curtain depth of 47/49 m is adopted, and a drawdown-land subsidence verification test is completed given hanging curtains before the excavation. The result turns out that the real measurements basically match the calculation results from the numerical simulation, and by increasing the depth of curtains, the land subsidence resulting from dewatering is effectively controlled.展开更多
The slope instability and uneven settlement caused by the foundation pit dewatering pose a great threat to the project and surrounding environment.Thus,it is necessary to carry out optimization design of the foundatio...The slope instability and uneven settlement caused by the foundation pit dewatering pose a great threat to the project and surrounding environment.Thus,it is necessary to carry out optimization design of the foundation pit dewatering project.To solve this problem,this paper introduces the simulation-optimization method and establishes the groundwater model based on MODFLOW-2005.The local grid refinement(LGR)technique is employed to achieve the refinement of dewatering area.Under the premise of construction safety,the minimum cost of the project is set as the objective function to solve the optimization problem of foundation pit engineering with GWM-2005.The results show that the optimization with GWM-2005 will be more accurate combined with the LGR model,but the improvement of the optimization is not obvious.It is necessary to choose a suitable local refinement model considering the engineering requirement.展开更多
For deep foundation pit dewatering in the Yangtze River Delta, it is easy to make a dramatic decrease of the underground water level surrounding the dewatering area and cause land subsidence and geologic disasters. In...For deep foundation pit dewatering in the Yangtze River Delta, it is easy to make a dramatic decrease of the underground water level surrounding the dewatering area and cause land subsidence and geologic disasters. In this work, a three-dimensional finite element simulation method was applied in the forth subway of Dongjiadu tunnel repair foundation pit dewatering in Shanghai. In order to control the decrease of the underground water level around the foundation pit, the foundation pit dewatering method was used to design the optimization project of dewatering ,which was simulated under these conditions that the aquifers deposited layer by layer, the bottom of the aquifers went deep to 144.45 m, the retaining wall of foundation pit shield went deep to 65 m, the filters of the extraction wells were located between 44 m to 59 m, the water level in the deep foundation pit was decreased by 34 m, and the maximum decrease of water level outside the foundation pit was 3 m. It is shown that the optimization project and the practical case are consistent with each other. Accordingly, the three-dimensional finite element numerical simulation is the basic theory of optimization design of engineering structures of dewatering in deep foundation pit in such areas.展开更多
基金This paper is supported by the Hubei Construct Science Foundation of China (G200013).
文摘Based on analyses of the theories of groundwater unsteady flow in deep well dewatering in the deep foundation pit, Theis equations are chosen to calculate and analyze the relationship between water level drawdown of confined aquifer and dewatering duration. In order to reduce engineering cost and diminish detrimental effect on ambient surrounding, optimization design target function based on the control of confined water drawdown and four restriction requisitions based on the control of safe water level, resistance to throwing up from the bottom of foundation pit, avoiding excessively great subsidence and unequal surface subsidence are proposed. A deep well dewatering project in the deep foundation pit is optimally designed. The calculated results including confined water level drawdown and surface subsidence are in close agreement with the measured results, and the optimization design can effectively control both surface subsidence outside foundation pit and unequal subsidence as a result of dewatering.
基金financially supported by the doctoral fund of the Ministry of Education of Chinathe Nature Science Foundation of Jiangsu Province, China (Grant Nos. 20130091110020 and BE2015675)
文摘A deep foundation pit constructed for an underground transportation hub was excavated near the Yangtze River. Among the strata, there are two confined aquifers, between which lies an aquiclude that is partially missing. To guarantee the safety of pit excavation, the piezometric head of the upper confined aquifer, where the pit bottom is located, should be 1 m below the pit bottom, while that of the lower confined aquifer should be dewatered down to a safe water level to avoid uplift problem. The Yangtze River levee is notably close to the pit, and its deformation caused by dewatering should be controlled. A pumping test was performed to obtain the hydraulic conductivity of the upper confined aquifer. The average value of the hydraulic conductivity obtained from analytical calculation is 20.45 m/d, which is larger than the values from numerical simulation(horizontal hydraulic conductivity K_H = 16 m/d and vertical hydraulic conductivity K_V = S m/d). The difference between K_H and K_V indicates the anisotropy of the aquifer. Two dewatering schemes were designed for the construction and simulated by the numerical models for comparison purposes. The results show that though the first scheme could meet the dewatering requirements, the largest accumulated settlement and differential settlement would be94.64 mm and 3.3‰, respectively, greatly exceeding the limited values. Meanwhile, the second scheme,in which the bottoms of the waterproof curtains in ramp B and the river side of ramp A are installed at a deeper elevation of-28 m above sea level, and 27 recharge wells are set along the levee, can control the deformation of the levee significantly.
基金supported by the Researches on the Control of Confined Water Drawdown and Subsidence in Foundation Pit Projects (Project No. JS-KY16R009-1)this project is funded by Shanghai Metro Line 18 Development Co., Ltd.
文摘In terms of controlling groundwater in deep foundation pit projects, the usual methods include increasing the curtain depth, reducing the amount of pumped groundwater, and implementing integrated control, in order to reduce the drawdown and land subsidence outside pits. In dewatering design for confined water, factors including drawdown requirements, the thickness of aquifers, the depth of dewatering wells and the depth of cutoff curtains have to be considered comprehensively and numerical simulations are generally conducted for calculation and analysis. Longyang Road Station on Shanghai Metro Line 18 is taken as the case study subject in this paper, a groundwater seepage model is developed according to the on-site engineering geological conditions and hydrogeological conditions, the excavation depth of the foundation pit as well as the design depth of the enclosure, hydrogeological parameters are determined via the pumping test, and the foundation pit dewatering is simulated by means of the three-dimensional finite difference method, which produces numerical results that consistent with real monitoring data as to the groundwater table. Besides, the drawdown and the land subsidence both inside and outside the pit caused by foundation pit dewatering are calculated and analyzed for various curtain depths. This study reveals that the drawdown and the land subsidence change faster near the curtain with the increase in the curtain depth, and the gradient of drawdown and land subsidence changes dwindles beyond certain depths. In this project, the curtain depth of 47/49 m is adopted, and a drawdown-land subsidence verification test is completed given hanging curtains before the excavation. The result turns out that the real measurements basically match the calculation results from the numerical simulation, and by increasing the depth of curtains, the land subsidence resulting from dewatering is effectively controlled.
基金funded by Nanning Rail Transit Co., Ltd.the joint Foundation of Key Laboratory of Institute of Hydrogeology and Environmental Geology CAGS grant number (KF201611)
文摘The slope instability and uneven settlement caused by the foundation pit dewatering pose a great threat to the project and surrounding environment.Thus,it is necessary to carry out optimization design of the foundation pit dewatering project.To solve this problem,this paper introduces the simulation-optimization method and establishes the groundwater model based on MODFLOW-2005.The local grid refinement(LGR)technique is employed to achieve the refinement of dewatering area.Under the premise of construction safety,the minimum cost of the project is set as the objective function to solve the optimization problem of foundation pit engineering with GWM-2005.The results show that the optimization with GWM-2005 will be more accurate combined with the LGR model,but the improvement of the optimization is not obvious.It is necessary to choose a suitable local refinement model considering the engineering requirement.
基金the Major Scientific Research Project Foundation of Shanghai (Grant No. 04dz12003)
文摘For deep foundation pit dewatering in the Yangtze River Delta, it is easy to make a dramatic decrease of the underground water level surrounding the dewatering area and cause land subsidence and geologic disasters. In this work, a three-dimensional finite element simulation method was applied in the forth subway of Dongjiadu tunnel repair foundation pit dewatering in Shanghai. In order to control the decrease of the underground water level around the foundation pit, the foundation pit dewatering method was used to design the optimization project of dewatering ,which was simulated under these conditions that the aquifers deposited layer by layer, the bottom of the aquifers went deep to 144.45 m, the retaining wall of foundation pit shield went deep to 65 m, the filters of the extraction wells were located between 44 m to 59 m, the water level in the deep foundation pit was decreased by 34 m, and the maximum decrease of water level outside the foundation pit was 3 m. It is shown that the optimization project and the practical case are consistent with each other. Accordingly, the three-dimensional finite element numerical simulation is the basic theory of optimization design of engineering structures of dewatering in deep foundation pit in such areas.