Based on the generalized Hamilton's principle,the nonlinear governing equation of an axially functionally graded(AFG)pipe is established.The non-trivial equilibrium configuration is superposed by the modal functio...Based on the generalized Hamilton's principle,the nonlinear governing equation of an axially functionally graded(AFG)pipe is established.The non-trivial equilibrium configuration is superposed by the modal functions of a simply supported beam.Via the direct multi-scale method,the response and stability boundary to the pulsating fluid velocity are solved analytically and verified by the differential quadrature element method(DQEM).The influence of Young's modulus gradient on the parametric resonance is investigated in the subcritical and supercritical regions.In general,the pipe in the supercritical region is more sensitive to the pulsating excitation.The nonlinearity changes from hard to soft,and the non-trivial equilibrium configuration introduces more frequency components to the vibration.Besides,the increasing Young's modulus gradient improves the critical pulsating flow velocity of the parametric resonance,and further enhances the stability of the system.In addition,when the temperature increases along the axial direction,reducing the gradient parameter can enhance the response asymmetry.This work further complements the theoretical analysis of pipes conveying pulsating fluid.展开更多
Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid...Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid-structure interaction(FSI)between the pipe with a curved shape and the time-varying internal fluid flow brings a great challenge to the revelation of the dynamical behaviors of flexible pipes,especially when the pipe is highly flexible and usually undergoes large deformations.In this work,the geometrically exact model(GEM)for a curved cantilevered pipe conveying pulsating fluid is developed based on the extended Hamilton's principle.The stability of the curved pipe with three different subtended angles is examined with the consideration of steady fluid flow.Specific attention is concentrated on the large-deformation resonance of circular pipes conveying pulsating fluid,which is often encountered in practical engineering.By constructing bifurcation diagrams,oscillating shapes,phase portraits,time traces,and Poincarémaps,the dynamic responses of the curved pipe under various system parameters are revealed.The mean flow velocity of the pulsating fluid is chosen to be either subcritical or supercritical.The numerical results show that the curved pipe conveying pulsating fluid can exhibit rich dynamical behaviors,including periodic and quasi-periodic motions.It is also found that the preferred instability type of a cantilevered curved pipe conveying steady fluid is mainly in the flutter of the second mode.For a moderate value of the mass ratio,however,a third-mode flutter may occur,which is quite different from that of a straight pipe system.展开更多
Based on the Euler-Bernoulli beam theory and Kelvin-Voigt model,a nonlinear model for the transverse vibration of a pipe under the combined action of base motion and pulsating internal flow is established.The governin...Based on the Euler-Bernoulli beam theory and Kelvin-Voigt model,a nonlinear model for the transverse vibration of a pipe under the combined action of base motion and pulsating internal flow is established.The governing partial differential equation is transformed into a nonlinear system of fourth-order ordinary differential equations by using the generalized integral transform technique(GITT).The effects of the combined excitation of base motion and pulsating internal flow on the nonlinear dynamic behavior of the pipe are investigated using a bifurcation diagram,phase trajectory diagram,power spectrum diagram,time-domain diagram,and Poincare map.The results show that the base excitation amplitude and frequency significantly affect the dynamic behavior of the pipe system.Some new resonance phenomena can be observed,such as the period-1 motion under the base excitation or the pulsating internal flow alone becomes the multi-periodic motion,quasi-periodic motion or even chaotic motion due to the combined excitation action.展开更多
Experiments of dense-phase pneumatic conveying of pulverized coal using nitrogen are carded out in an experimental test facility with the conveying pressure up to 4. 0 MPa and the gas-solid ratio up to 450 kg/m^3. The...Experiments of dense-phase pneumatic conveying of pulverized coal using nitrogen are carded out in an experimental test facility with the conveying pressure up to 4. 0 MPa and the gas-solid ratio up to 450 kg/m^3. The influences of different conveying differential pressures, coal moisture contents, gas volume flow rates and superficial velocities on the solid-gas ratios are investigated. Shannon entropy analysis of pressure fluctuation time series is developed to reveal the flow characteristics. Through investigation of the distribution of the Shannon entropy under different conditions, the flow stability and the evolutional tendency of the Shannon entropy in different regimes and regime transition processes are discovered, and the relationship between the Shannon entropy and the flow regimes is also established. The results indicate that the solid-gas ratio and the Shannon entropy rise with the increase in conveying differential pressure. The solid-gas ratio and the Shannon entropy reveal preferable regularity with gas volume flow rates. The Shannon entropy is different for different flow regimes, and can be used to identify the flow regimes. Both mass flow rate and the Shannon entropy decrease with the increase in moisture contents. The Shannon entropy analysis is a feasible approach for researching the characteristics of flow regimes, flow stability and flow regime transitions in dense-phase pneumatic conveying under high pressure.展开更多
The sampling auger used in lunar sampling and return mission is to transmit power and convey soil, and its performance is the key factor of the whole mission. However, there is currently a lack of the optimization res...The sampling auger used in lunar sampling and return mission is to transmit power and convey soil, and its performance is the key factor of the whole mission. However, there is currently a lack of the optimization research on soil conveying volume and power consumption models in auger structure design. To provide the drilled object, the simulation lunar soil, whose physical and mechanical property is the same as the real soil, is made by reducing soil void ratio. The models are formulated to analyze the influence of auger structure parameters on power consumption and soil conveying volume. To obtain the optimized structure parameters of auger, the multi-objective optimization functions of the maximum soil conveying volume and minimum power consumption are developed. To verify the correctness of the models, the performances of different augers drilling simulation soil are tested. The test results demonstrate that the power consumption of optimized auger is the lowest both in theory and test, and the experimental results of soil conveying volume are in agreement with theoretical analysis. Consequently, a new method for designing a lunar sampling auger is proposed which includes the models of soil conveying volume and transportation power consumption, the optimization of structure parameters and the comparison tests. This method provides a reference for sampling auger designing of the Chinese Lunar Sample Mission.展开更多
The lateral vibration differential equation for a marine riser conveying fluid is derived by use of the small deflection theory, and the effect of internal flow velocity and top tension on the natural frequency of the...The lateral vibration differential equation for a marine riser conveying fluid is derived by use of the small deflection theory, and the effect of internal flow velocity and top tension on the natural frequency of the riser is studied by use of FEM. At the same time, the preliminary relationship between the natural Frequency and riser span under different internal flow velocities is obtained, the effect of riser supports on the vibration frequency is computed. It is found that the natural frequency of the marine riser increases with the increase of top tension, however decreases with the increase of internal flow velocity. In addition, the Frequency decreases drastically with the increase of riser span.展开更多
It is a new attempt to extend the differential quadrature method(DQM) to stability analysis of the straight and curved centerlinepipes conveying fluid. Emphasis is placed on the study of theinfluences of several param...It is a new attempt to extend the differential quadrature method(DQM) to stability analysis of the straight and curved centerlinepipes conveying fluid. Emphasis is placed on the study of theinfluences of several parameters on the critical flow velocity.Compared to other methods, this method can more easily deal with thepipe with spring support at its boundaries and asks for much lesscomputing effort while giving ac- ceptable precision in the numericalresults.展开更多
This paper deals with the three-dimensional dynamics and postbuckling behavior of flexible supported pipes conveying fluid, considering flow velocities lower and higher than the critical value at which the buckling in...This paper deals with the three-dimensional dynamics and postbuckling behavior of flexible supported pipes conveying fluid, considering flow velocities lower and higher than the critical value at which the buckling instability occurs. In the case of low flow velocity, the pipe is stable with a straight equilibrium position and the dynamics of the system can be examined using linear theory. When the flow velocity is beyond the critical value, any motions of the pipe could be around the postbuckling configuration(non-zero equilibrium position) rather than the straight equilibrium position, so nonlinear theory is required. The nonlinear equations of perturbed motions around the postbuckling configuration are derived and solved with the aid of Galerkin discretization. It is found, for a given flow velocity,that the first-mode frequency for in-plane motions is quite different from that for out-of-plane motions. However, the second-or third-mode frequencies for in-plane motions are approximately equal to their counterparts for out-of-plane motions, keeping almost constant values with increasing flow velocity. Moreover, the orientation angle of the postbuckling configuration plane for a buckled pipe can be significantly affected by initial conditions, displaying new features which have not been observed in the same pipe system factitiously supposed to deform in a single plane.展开更多
Based on the differential constitutive relationship of linearviscoelastic material, a solid-liquid coupling vibration equation forviscoelastic pipe conveying fluid is derived by the D'Alembert'sprinciple. The ...Based on the differential constitutive relationship of linearviscoelastic material, a solid-liquid coupling vibration equation forviscoelastic pipe conveying fluid is derived by the D'Alembert'sprinciple. The critical flow velocities and natural frequencies ofthe cantilever pipe conveying fluid with the Kelvin model (flutterinstability) are calculated with the modified finite differencemethod in the form of the recurrence for- mula. The curves betweenthe complex frequencies of the first, second and third mode and flowvelocity of the pipe are plotted. On the basis of the numericalcalculation results, the dynamic behaviors and stability of the pipeare discussed. It should be pointed out that the delay time ofviscoelastic material with the Kelvin model has a remarkable effecton the dynamic characteristics and stability behaviors of thecantilevered pipe conveying fluid, which is a gyroscopicnon-conservative system.展开更多
The dynamic stability in transverse vibration of a viscoelastic pipe for conveying puisative fluid is investigated for the simply-supported case. The material property of the beammodel pipe is described by the Kelvin-...The dynamic stability in transverse vibration of a viscoelastic pipe for conveying puisative fluid is investigated for the simply-supported case. The material property of the beammodel pipe is described by the Kelvin-type viscoelastic constitutive relation. The axial fluid speed is characterized as simple harmonic variation about a constant mean speed. The method of multiple scales is applied directly to the governing partial differential equation without discretization when the viscoelastic damping and the periodical excitation are considered small. The stability conditions are presented in the case of subharmonic and combination resonance. Numerical results show the effect of viscosity and mass ratio on instability regions.展开更多
This paper proposes a new method for investigating the Hopf bifurcation of a curved pipe conveying fluid with nonlinear spring support.The nonlinear equation of motion is derived by forces equilibrium on microelement ...This paper proposes a new method for investigating the Hopf bifurcation of a curved pipe conveying fluid with nonlinear spring support.The nonlinear equation of motion is derived by forces equilibrium on microelement of the system under consideration.The spatial coordinate of the system is discretized by the differential quadrature method and then the dynamic equation is solved by the Newton-Raphson method.The numerical solutions show that the inner fluid velocity of the Hopf bifurcation point of the curved pipe varies with different values of the parameter, nonlinear spring stiffness.Based on this,the cycle and divergent motions are both found to exist at specific fluid flow velocities with a given value of the nonlinear spring stiffness.The results are useful for further study of the nonlinear dynamic mechanism of the curved fluid conveying pipe.展开更多
The Newtonian method is employed to obtain nonlinear mathematical model of motion of a horizontally cantilevered and inflexible pipe conveying fluid. The order magnitudes of relevant physical parameters are analyzed q...The Newtonian method is employed to obtain nonlinear mathematical model of motion of a horizontally cantilevered and inflexible pipe conveying fluid. The order magnitudes of relevant physical parameters are analyzed qualitatively to establish a foundation on the further study of the model. The method of multiple scales is used to obtain eigenfunctions of the linear free-vibration modes of the pipe. The boundary conditions yield the characteristic equations from which eigenvalues can be derived. It is found that flow velocity in the pipe may induced the 3:1, 2:1 and 1:1 internal resonances between the first and second modes such that the mechanism of flow-induced internal resonances in the pipe under consideration is explained theoretically. The 3:1 internal resonance first occurs in the system and is, thus, the most important since it corresponds to the minimum critical velocity.展开更多
The Ordovician karst groundwater in the Qiligou basin is an important water supply source. This groundwater has been seriously contaminated in recent years by Cfl4 from a pesticide plant located in the recharge area. ...The Ordovician karst groundwater in the Qiligou basin is an important water supply source. This groundwater has been seriously contaminated in recent years by Cfl4 from a pesticide plant located in the recharge area. The highest concentration of CCl4 in the groundwater is 3909.2μg/L. Large scale tracer experiments were carried out to study the conveying conduits for Cfl4 in the basin on May 1-6, 2005. Nontoxic, edible glucose was used as a tracer and it was detected by spectrophotometric techniques. Well area of the basin, was employed for injecting the tracer X-61, located near the pesticide plant in the southern recharge Ten wells widely located in the groundwater runoff area were used as observing and sampling wells. The results show that the migration of the pollutants is controlled by the water hydrodynamic field and by the development of karst conduits. The tracer did not enter the up-drainage wells, X-49 and X-47, near the injection point because the water levels at these wells are higher than at the injection point. The adjacent well X-62 is close to the injection site, but the tracer reached the well after eleven hours. Wells X-43, X-59, X-58, YY-1 and X-57, located in the syncline axis runoff area, are respectively 2.5, 3.5, 4.33, 4.38 and 5.44 kilometers from the in- jection site. The time for initial appearance of tracer was 4, 4, 2, 6 and 4 hours, respectively. The maximum runoff velocity (well X-58) is over two kilometers per hour, indicating that the karst conduits are well developed along the syncline basin axis. These conduits are the main conveying conduits for groundwater and Cfl4. Closer wells were not necessarily the first to receive tracer. This shows the inhomogeneity in karst development which causes complex runoff, and pollutant migration, patterns.展开更多
The Green function method (GFM) is utilized to analyze the in-plane forced vibration of curved pipe conveying fluid, where the randomicity and distribution of the external excitation and the added mass and damping r...The Green function method (GFM) is utilized to analyze the in-plane forced vibration of curved pipe conveying fluid, where the randomicity and distribution of the external excitation and the added mass and damping ratio are considered. The Laplace transform is used, and the Green functions with various boundary conditions are obtained subsequently. Numerical calculations are performed to validate the present solutions, and the effects of some key parameters on both tangential and radial displacements are further investigated. The forced vibration problems with linear and nonlinear motion constraints are also discussed briefly. The method can be radiated to study other forms of forced vibration problems related with pipes or more extensive issues.展开更多
The chaotic transients of a curved fluid conveying tube subjected to a nonlinear foundation are investigated. The assumption of the inextensibility of the tube is applied to derive the nonlinear differential equation ...The chaotic transients of a curved fluid conveying tube subjected to a nonlinear foundation are investigated. The assumption of the inextensibility of the tube is applied to derive the nonlinear differential equation of motion via the Newtonian approach, with the differential quadrature method used to discretize the curved tube model in the spatial domain. And the nonlinear dynamic motion equation is obtained. The numerical analysis shows that, the final steady states are sensitive to the initial system conditions in a large parameter region of the fluid speed. This phenomenon of chaotic transients is infrequent for fluid conveying tubes.展开更多
A theoretical model is developed for the vibration and stability of a vertical pipe subjected concurrently to two dependent axial flows. The external fluid, after exiting the outer annular region between the pipe and ...A theoretical model is developed for the vibration and stability of a vertical pipe subjected concurrently to two dependent axial flows. The external fluid, after exiting the outer annular region between the pipe and a rigid cylindrical channel, is conveyed upwards inside the pipe. This configuration thus resembles of a pipe that aspirating fluid. The equation of planar mo- tion is solved by means of the differential quadrature method (DQM). Calculations are conducted for a slender drill-string-like and a bench-top-size system, for different confinement conditions of the outer annular channel. It is shown that the vibrations of these two systems are closely related to the degree of confinement of the outer annular channel. For a drill-string-like system with narrow annuli, buckling instability may occur in the second and third modes. For a bench-top-size system, however, both buckling and flutter may occur in the lowest three modes. The form of instability depends on the annuli size.展开更多
The stability and chaotic vibrations of a pipe conveying fluid with both ends fixed, excited by the harmonic motion of its supporting base in a direction normal to the pipe span, were investigated with the aid of mode...The stability and chaotic vibrations of a pipe conveying fluid with both ends fixed, excited by the harmonic motion of its supporting base in a direction normal to the pipe span, were investigated with the aid of modern numerical techniques,involving the phase portrait,Lyapunov exponent and Poincare map tc. The nonlinear differential equations of motion of the system were derived by considering the additional axial force due to the lateral motion of the pipe. Attention was concentrated on the effect of forcing frequency and flow velocity on the dynamics of the system. It is shown that chaotic motions can occur in this system in a certain region of parameter space,and it is also found that three types of routes to chaos exist in the system:(i)period doubling bifurcations;(ii)quasi periodic motions;and (iii)intermittent chaos.展开更多
In this work,the nonlinear behaviors of soft cantilevered pipes containing internal fluid flow are studied based on a geometrically exact model,with particular focus on the mechanism of large-amplitude oscillations of...In this work,the nonlinear behaviors of soft cantilevered pipes containing internal fluid flow are studied based on a geometrically exact model,with particular focus on the mechanism of large-amplitude oscillations of the pipe under gravity.Four key parameters,including the flow velocity,the mass ratio,the gravity parameter,and the inclination angle between the pipe length and the gravity direction,are considered to affect the static and dynamic behaviors of the soft pipe.The stability analyses show that,provided that the inclination angle is not equal to π,the soft pipe is stable at a low flow velocity and becomes unstable via flutter once the flow velocity is beyond a critical value.As the inclination angle is equal to π,the pipe experiences,in turn,buckling instability,regaining stability,and flutter instability with the increase in the flow velocity.Interestingly,the stability of the pipe can be either enhanced or weakened by varying the gravity parameter,mainly dependent on the value of the inclination angle.In the nonlinear dynamic analysis,it is demonstrated that the post-flutter amplitude of the soft pipe can be extremely large in the form of limit-cycle oscillations.Besides,the oscillating shapes for various inclination angles are provided to display interesting dynamical behaviors of the inclined soft pipe conveying fluid.展开更多
A novel particle-size conveying model was established to examine the effects of the dimension relationships of the groove depth and particle size on the solids conveying mechanism of the helically grooved feed section...A novel particle-size conveying model was established to examine the effects of the dimension relationships of the groove depth and particle size on the solids conveying mechanism of the helically grooved feed section. In the model, one or two shear interfaces were proposed based on the dimension relationships of the groove depth and particle size, and the solid-plug embedded in the groove and screw channel were divided into two or three layers by the shear interfaces to consider the solids conveying mechanism of each layer by the boundary condition equation for positive conveying. By the particle-size model, the effects of different dimension relationships on the transformation of solids conveying mechanisms between the friction-drag conveying and the positive conveying were discussed and compared with the on-line measuring experimental data. The results showed that the shear interfaces among the solids existed indeed and the dimension relationships determined the conveying mechanism and the throughput of helically grooved extruders, which was well confirmed by the excellent consistence between the predicted and measured data.展开更多
The effects of the supported angle on the stability and dynamical bifurcations of an inclined cantilevered pipe conveying fluid are investigated. First, a theoretical model of the pipe is developed through the force b...The effects of the supported angle on the stability and dynamical bifurcations of an inclined cantilevered pipe conveying fluid are investigated. First, a theoretical model of the pipe is developed through the force balance and stress-strain relationship. Second, the response surfaces, stability, and critical lines of the typical hanging system (H-S) and standing system (S-S) are discussed based on the modal analysis. Last, the bifurcation diagrams of the pipe are presented for different supported angles. It is shown that pipes will undergo a series of bifurcation processes and show rich dynamic phenomena such as buckling, Hopf bifurcation, period-doubling bifurcation, chaotic motion, and divergence motion.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos.12002195 and 12372015)the National Science Fund for Distinguished Young Scholars of China (No.12025204)the Program of Shanghai Municipal Education Commission of China (No.2019-01-07-00-09-E00018)。
文摘Based on the generalized Hamilton's principle,the nonlinear governing equation of an axially functionally graded(AFG)pipe is established.The non-trivial equilibrium configuration is superposed by the modal functions of a simply supported beam.Via the direct multi-scale method,the response and stability boundary to the pulsating fluid velocity are solved analytically and verified by the differential quadrature element method(DQEM).The influence of Young's modulus gradient on the parametric resonance is investigated in the subcritical and supercritical regions.In general,the pipe in the supercritical region is more sensitive to the pulsating excitation.The nonlinearity changes from hard to soft,and the non-trivial equilibrium configuration introduces more frequency components to the vibration.Besides,the increasing Young's modulus gradient improves the critical pulsating flow velocity of the parametric resonance,and further enhances the stability of the system.In addition,when the temperature increases along the axial direction,reducing the gradient parameter can enhance the response asymmetry.This work further complements the theoretical analysis of pipes conveying pulsating fluid.
基金Project supported by the National Natural Science Foundation of China (Nos.12072119,12325201,and 52205594)the China National Postdoctoral Program for Innovative Talents (No.BX20220118)。
文摘Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid-structure interaction(FSI)between the pipe with a curved shape and the time-varying internal fluid flow brings a great challenge to the revelation of the dynamical behaviors of flexible pipes,especially when the pipe is highly flexible and usually undergoes large deformations.In this work,the geometrically exact model(GEM)for a curved cantilevered pipe conveying pulsating fluid is developed based on the extended Hamilton's principle.The stability of the curved pipe with three different subtended angles is examined with the consideration of steady fluid flow.Specific attention is concentrated on the large-deformation resonance of circular pipes conveying pulsating fluid,which is often encountered in practical engineering.By constructing bifurcation diagrams,oscillating shapes,phase portraits,time traces,and Poincarémaps,the dynamic responses of the curved pipe under various system parameters are revealed.The mean flow velocity of the pulsating fluid is chosen to be either subcritical or supercritical.The numerical results show that the curved pipe conveying pulsating fluid can exhibit rich dynamical behaviors,including periodic and quasi-periodic motions.It is also found that the preferred instability type of a cantilevered curved pipe conveying steady fluid is mainly in the flutter of the second mode.For a moderate value of the mass ratio,however,a third-mode flutter may occur,which is quite different from that of a straight pipe system.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52171288,51890914)the Key Research and Development Program of Shandong Province(Major Innovation Project)(Grant No.2022CXGC020405)+1 种基金the National Ministry of Industry and Information Technology Innovation Special Project-Engineering Demonstration Application of Subsea Oil and Gas Production SystemSubject 4:Research on Subsea Christmas Tree and Wellhead Offshore Testing Technology(Grant No.MC-201901-S01-04)CNPq,CAPES and FAPERJ of Brazil。
文摘Based on the Euler-Bernoulli beam theory and Kelvin-Voigt model,a nonlinear model for the transverse vibration of a pipe under the combined action of base motion and pulsating internal flow is established.The governing partial differential equation is transformed into a nonlinear system of fourth-order ordinary differential equations by using the generalized integral transform technique(GITT).The effects of the combined excitation of base motion and pulsating internal flow on the nonlinear dynamic behavior of the pipe are investigated using a bifurcation diagram,phase trajectory diagram,power spectrum diagram,time-domain diagram,and Poincare map.The results show that the base excitation amplitude and frequency significantly affect the dynamic behavior of the pipe system.Some new resonance phenomena can be observed,such as the period-1 motion under the base excitation or the pulsating internal flow alone becomes the multi-periodic motion,quasi-periodic motion or even chaotic motion due to the combined excitation action.
基金The National Basic Research Program of China(973 Program) (No2004CB217702-01)the Foundation of ExcellentPhDThesis of Southeast University
文摘Experiments of dense-phase pneumatic conveying of pulverized coal using nitrogen are carded out in an experimental test facility with the conveying pressure up to 4. 0 MPa and the gas-solid ratio up to 450 kg/m^3. The influences of different conveying differential pressures, coal moisture contents, gas volume flow rates and superficial velocities on the solid-gas ratios are investigated. Shannon entropy analysis of pressure fluctuation time series is developed to reveal the flow characteristics. Through investigation of the distribution of the Shannon entropy under different conditions, the flow stability and the evolutional tendency of the Shannon entropy in different regimes and regime transition processes are discovered, and the relationship between the Shannon entropy and the flow regimes is also established. The results indicate that the solid-gas ratio and the Shannon entropy rise with the increase in conveying differential pressure. The solid-gas ratio and the Shannon entropy reveal preferable regularity with gas volume flow rates. The Shannon entropy is different for different flow regimes, and can be used to identify the flow regimes. Both mass flow rate and the Shannon entropy decrease with the increase in moisture contents. The Shannon entropy analysis is a feasible approach for researching the characteristics of flow regimes, flow stability and flow regime transitions in dense-phase pneumatic conveying under high pressure.
基金Supported by National Defense Science and Technology Major Project(Grant Nos.TY3Q20110001,TY3Q20110005)College Discipline Innovation Wisdom Plan of China(111 Project,Grant No.B07018)National Natural Science Foundation of China(Grant No.51105092)
文摘The sampling auger used in lunar sampling and return mission is to transmit power and convey soil, and its performance is the key factor of the whole mission. However, there is currently a lack of the optimization research on soil conveying volume and power consumption models in auger structure design. To provide the drilled object, the simulation lunar soil, whose physical and mechanical property is the same as the real soil, is made by reducing soil void ratio. The models are formulated to analyze the influence of auger structure parameters on power consumption and soil conveying volume. To obtain the optimized structure parameters of auger, the multi-objective optimization functions of the maximum soil conveying volume and minimum power consumption are developed. To verify the correctness of the models, the performances of different augers drilling simulation soil are tested. The test results demonstrate that the power consumption of optimized auger is the lowest both in theory and test, and the experimental results of soil conveying volume are in agreement with theoretical analysis. Consequently, a new method for designing a lunar sampling auger is proposed which includes the models of soil conveying volume and transportation power consumption, the optimization of structure parameters and the comparison tests. This method provides a reference for sampling auger designing of the Chinese Lunar Sample Mission.
基金National 95 Science an Technology Project(96-922-03-03)
文摘The lateral vibration differential equation for a marine riser conveying fluid is derived by use of the small deflection theory, and the effect of internal flow velocity and top tension on the natural frequency of the riser is studied by use of FEM. At the same time, the preliminary relationship between the natural Frequency and riser span under different internal flow velocities is obtained, the effect of riser supports on the vibration frequency is computed. It is found that the natural frequency of the marine riser increases with the increase of top tension, however decreases with the increase of internal flow velocity. In addition, the Frequency decreases drastically with the increase of riser span.
基金National Key Project of China (No.PD9521907)the National Science Foundation of China (No.19872025).
文摘It is a new attempt to extend the differential quadrature method(DQM) to stability analysis of the straight and curved centerlinepipes conveying fluid. Emphasis is placed on the study of theinfluences of several parameters on the critical flow velocity.Compared to other methods, this method can more easily deal with thepipe with spring support at its boundaries and asks for much lesscomputing effort while giving ac- ceptable precision in the numericalresults.
基金supported by the National Natural Science Foundation of China (Grants 11602090, 11622216, and 11672115)
文摘This paper deals with the three-dimensional dynamics and postbuckling behavior of flexible supported pipes conveying fluid, considering flow velocities lower and higher than the critical value at which the buckling instability occurs. In the case of low flow velocity, the pipe is stable with a straight equilibrium position and the dynamics of the system can be examined using linear theory. When the flow velocity is beyond the critical value, any motions of the pipe could be around the postbuckling configuration(non-zero equilibrium position) rather than the straight equilibrium position, so nonlinear theory is required. The nonlinear equations of perturbed motions around the postbuckling configuration are derived and solved with the aid of Galerkin discretization. It is found, for a given flow velocity,that the first-mode frequency for in-plane motions is quite different from that for out-of-plane motions. However, the second-or third-mode frequencies for in-plane motions are approximately equal to their counterparts for out-of-plane motions, keeping almost constant values with increasing flow velocity. Moreover, the orientation angle of the postbuckling configuration plane for a buckled pipe can be significantly affected by initial conditions, displaying new features which have not been observed in the same pipe system factitiously supposed to deform in a single plane.
文摘Based on the differential constitutive relationship of linearviscoelastic material, a solid-liquid coupling vibration equation forviscoelastic pipe conveying fluid is derived by the D'Alembert'sprinciple. The critical flow velocities and natural frequencies ofthe cantilever pipe conveying fluid with the Kelvin model (flutterinstability) are calculated with the modified finite differencemethod in the form of the recurrence for- mula. The curves betweenthe complex frequencies of the first, second and third mode and flowvelocity of the pipe are plotted. On the basis of the numericalcalculation results, the dynamic behaviors and stability of the pipeare discussed. It should be pointed out that the delay time ofviscoelastic material with the Kelvin model has a remarkable effecton the dynamic characteristics and stability behaviors of thecantilevered pipe conveying fluid, which is a gyroscopicnon-conservative system.
基金Project supported by the National Natural Science Foundation of China (No.10372063).
文摘The dynamic stability in transverse vibration of a viscoelastic pipe for conveying puisative fluid is investigated for the simply-supported case. The material property of the beammodel pipe is described by the Kelvin-type viscoelastic constitutive relation. The axial fluid speed is characterized as simple harmonic variation about a constant mean speed. The method of multiple scales is applied directly to the governing partial differential equation without discretization when the viscoelastic damping and the periodical excitation are considered small. The stability conditions are presented in the case of subharmonic and combination resonance. Numerical results show the effect of viscosity and mass ratio on instability regions.
基金Project supported by the National Natural Science Foundation of China(No.10272051).
文摘This paper proposes a new method for investigating the Hopf bifurcation of a curved pipe conveying fluid with nonlinear spring support.The nonlinear equation of motion is derived by forces equilibrium on microelement of the system under consideration.The spatial coordinate of the system is discretized by the differential quadrature method and then the dynamic equation is solved by the Newton-Raphson method.The numerical solutions show that the inner fluid velocity of the Hopf bifurcation point of the curved pipe varies with different values of the parameter, nonlinear spring stiffness.Based on this,the cycle and divergent motions are both found to exist at specific fluid flow velocities with a given value of the nonlinear spring stiffness.The results are useful for further study of the nonlinear dynamic mechanism of the curved fluid conveying pipe.
基金Project supported by the National Natural Science Foundation of China (No.10472083) and the National Natural Science Key Foundation of China (No.10532050)
文摘The Newtonian method is employed to obtain nonlinear mathematical model of motion of a horizontally cantilevered and inflexible pipe conveying fluid. The order magnitudes of relevant physical parameters are analyzed qualitatively to establish a foundation on the further study of the model. The method of multiple scales is used to obtain eigenfunctions of the linear free-vibration modes of the pipe. The boundary conditions yield the characteristic equations from which eigenvalues can be derived. It is found that flow velocity in the pipe may induced the 3:1, 2:1 and 1:1 internal resonances between the first and second modes such that the mechanism of flow-induced internal resonances in the pipe under consideration is explained theoretically. The 3:1 internal resonance first occurs in the system and is, thus, the most important since it corresponds to the minimum critical velocity.
基金Project 40373044 supported by the National Natural Science Foundation of China
文摘The Ordovician karst groundwater in the Qiligou basin is an important water supply source. This groundwater has been seriously contaminated in recent years by Cfl4 from a pesticide plant located in the recharge area. The highest concentration of CCl4 in the groundwater is 3909.2μg/L. Large scale tracer experiments were carried out to study the conveying conduits for Cfl4 in the basin on May 1-6, 2005. Nontoxic, edible glucose was used as a tracer and it was detected by spectrophotometric techniques. Well area of the basin, was employed for injecting the tracer X-61, located near the pesticide plant in the southern recharge Ten wells widely located in the groundwater runoff area were used as observing and sampling wells. The results show that the migration of the pollutants is controlled by the water hydrodynamic field and by the development of karst conduits. The tracer did not enter the up-drainage wells, X-49 and X-47, near the injection point because the water levels at these wells are higher than at the injection point. The adjacent well X-62 is close to the injection site, but the tracer reached the well after eleven hours. Wells X-43, X-59, X-58, YY-1 and X-57, located in the syncline axis runoff area, are respectively 2.5, 3.5, 4.33, 4.38 and 5.44 kilometers from the in- jection site. The time for initial appearance of tracer was 4, 4, 2, 6 and 4 hours, respectively. The maximum runoff velocity (well X-58) is over two kilometers per hour, indicating that the karst conduits are well developed along the syncline basin axis. These conduits are the main conveying conduits for groundwater and Cfl4. Closer wells were not necessarily the first to receive tracer. This shows the inhomogeneity in karst development which causes complex runoff, and pollutant migration, patterns.
基金Project supported by the National Science and Technology Major Project(NMP)of China(No.2013ZX04011-011)
文摘The Green function method (GFM) is utilized to analyze the in-plane forced vibration of curved pipe conveying fluid, where the randomicity and distribution of the external excitation and the added mass and damping ratio are considered. The Laplace transform is used, and the Green functions with various boundary conditions are obtained subsequently. Numerical calculations are performed to validate the present solutions, and the effects of some key parameters on both tangential and radial displacements are further investigated. The forced vibration problems with linear and nonlinear motion constraints are also discussed briefly. The method can be radiated to study other forms of forced vibration problems related with pipes or more extensive issues.
基金Project supported by the National Natural Science Foundation of China (No. 10272051).
文摘The chaotic transients of a curved fluid conveying tube subjected to a nonlinear foundation are investigated. The assumption of the inextensibility of the tube is applied to derive the nonlinear differential equation of motion via the Newtonian approach, with the differential quadrature method used to discretize the curved tube model in the spatial domain. And the nonlinear dynamic motion equation is obtained. The numerical analysis shows that, the final steady states are sensitive to the initial system conditions in a large parameter region of the fluid speed. This phenomenon of chaotic transients is infrequent for fluid conveying tubes.
基金supported by the National Natural Science Foundation of China (Nos. 10772071 and 10802031)theScientific Research Foundation of HUST (No. 2006Q003B).
文摘A theoretical model is developed for the vibration and stability of a vertical pipe subjected concurrently to two dependent axial flows. The external fluid, after exiting the outer annular region between the pipe and a rigid cylindrical channel, is conveyed upwards inside the pipe. This configuration thus resembles of a pipe that aspirating fluid. The equation of planar mo- tion is solved by means of the differential quadrature method (DQM). Calculations are conducted for a slender drill-string-like and a bench-top-size system, for different confinement conditions of the outer annular channel. It is shown that the vibrations of these two systems are closely related to the degree of confinement of the outer annular channel. For a drill-string-like system with narrow annuli, buckling instability may occur in the second and third modes. For a bench-top-size system, however, both buckling and flutter may occur in the lowest three modes. The form of instability depends on the annuli size.
基金Supported by the Science Foundation of Liaoning Province Government!( 96 2 1 2 9)
文摘The stability and chaotic vibrations of a pipe conveying fluid with both ends fixed, excited by the harmonic motion of its supporting base in a direction normal to the pipe span, were investigated with the aid of modern numerical techniques,involving the phase portrait,Lyapunov exponent and Poincare map tc. The nonlinear differential equations of motion of the system were derived by considering the additional axial force due to the lateral motion of the pipe. Attention was concentrated on the effect of forcing frequency and flow velocity on the dynamics of the system. It is shown that chaotic motions can occur in this system in a certain region of parameter space,and it is also found that three types of routes to chaos exist in the system:(i)period doubling bifurcations;(ii)quasi periodic motions;and (iii)intermittent chaos.
基金Project supported by the National Natural Science Foundation of China(Nos.11672115,11622216,and 11972167)。
文摘In this work,the nonlinear behaviors of soft cantilevered pipes containing internal fluid flow are studied based on a geometrically exact model,with particular focus on the mechanism of large-amplitude oscillations of the pipe under gravity.Four key parameters,including the flow velocity,the mass ratio,the gravity parameter,and the inclination angle between the pipe length and the gravity direction,are considered to affect the static and dynamic behaviors of the soft pipe.The stability analyses show that,provided that the inclination angle is not equal to π,the soft pipe is stable at a low flow velocity and becomes unstable via flutter once the flow velocity is beyond a critical value.As the inclination angle is equal to π,the pipe experiences,in turn,buckling instability,regaining stability,and flutter instability with the increase in the flow velocity.Interestingly,the stability of the pipe can be either enhanced or weakened by varying the gravity parameter,mainly dependent on the value of the inclination angle.In the nonlinear dynamic analysis,it is demonstrated that the post-flutter amplitude of the soft pipe can be extremely large in the form of limit-cycle oscillations.Besides,the oscillating shapes for various inclination angles are provided to display interesting dynamical behaviors of the inclined soft pipe conveying fluid.
基金Funded by the National Natural Science Foundation of China(No.50873014)
文摘A novel particle-size conveying model was established to examine the effects of the dimension relationships of the groove depth and particle size on the solids conveying mechanism of the helically grooved feed section. In the model, one or two shear interfaces were proposed based on the dimension relationships of the groove depth and particle size, and the solid-plug embedded in the groove and screw channel were divided into two or three layers by the shear interfaces to consider the solids conveying mechanism of each layer by the boundary condition equation for positive conveying. By the particle-size model, the effects of different dimension relationships on the transformation of solids conveying mechanisms between the friction-drag conveying and the positive conveying were discussed and compared with the on-line measuring experimental data. The results showed that the shear interfaces among the solids existed indeed and the dimension relationships determined the conveying mechanism and the throughput of helically grooved extruders, which was well confirmed by the excellent consistence between the predicted and measured data.
基金Project supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(No.51221004)the National Natural Science Foundation of China(Nos.11172260,11072213,and 51375434)the Higher School Specialized Research Fund for the Doctoral Program(No.20110101110016)
文摘The effects of the supported angle on the stability and dynamical bifurcations of an inclined cantilevered pipe conveying fluid are investigated. First, a theoretical model of the pipe is developed through the force balance and stress-strain relationship. Second, the response surfaces, stability, and critical lines of the typical hanging system (H-S) and standing system (S-S) are discussed based on the modal analysis. Last, the bifurcation diagrams of the pipe are presented for different supported angles. It is shown that pipes will undergo a series of bifurcation processes and show rich dynamic phenomena such as buckling, Hopf bifurcation, period-doubling bifurcation, chaotic motion, and divergence motion.