This paper studies the difference algorithm parameters characteristic of the multicast routing problem, and to compare it with genetic algorithms. The algorithm uses the path of individual coding, combined with the di...This paper studies the difference algorithm parameters characteristic of the multicast routing problem, and to compare it with genetic algorithms. The algorithm uses the path of individual coding, combined with the differential cross-choice strategy and operations optimization. Finally, we simulated 30 node networks, and compared the performance of genetic algorithm and differential evolution algorithm. Experimental results show that multi-strategy Differential Evolution algorithm converges faster and better global search ability and stability.展开更多
The optimization of the rule base of a fuzzy logic system (FLS) based on evolutionary algorithm has achievednotable results. However, due to the diversity of the deep structure in the hierarchical fuzzy system (HFS) a...The optimization of the rule base of a fuzzy logic system (FLS) based on evolutionary algorithm has achievednotable results. However, due to the diversity of the deep structure in the hierarchical fuzzy system (HFS) and thecorrelation of each sub fuzzy system, the uncertainty of the HFS’s deep structure increases. For the HFS, a largenumber of studies mainly use fixed structures, which cannot be selected automatically. To solve this problem, thispaper proposes a novel approach for constructing the incremental HFS. During system design, the deep structureand the rule base of the HFS are encoded separately. Subsequently, the deep structure is adaptively mutated basedon the fitness value, so as to realize the diversity of deep structures while ensuring reasonable competition amongthe structures. Finally, the differential evolution (DE) is used to optimize the deep structure of HFS and theparameters of antecedent and consequent simultaneously. The simulation results confirm the effectiveness of themodel. Specifically, the root mean square errors in the Laser dataset and Friedman dataset are 0.0395 and 0.0725,respectively with rule counts of rules is 8 and 12, respectively.When compared to alternative methods, the resultsindicate that the proposed method offers improvements in accuracy and rule counts.展开更多
Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation indust...Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation industrial processes.This paper addresses the fluctuation problem of CCG through an operational optimization method.Firstly,a density-based affinity propagationalgorithm is proposed so that more ideal working condition categories can be obtained for the complex raw ore properties.Next,a Bayesian network(BN)is applied to explore the relationship between the operational variables and the CCG.Based on the analysis results of BN,a weighted Gaussian process regression model is constructed to predict the CCG that a higher prediction accuracy can be obtained.To ensure the predicted CCG is close to the set value with a smaller magnitude of the operation adjustments and a smaller uncertainty of the prediction results,an index-oriented adaptive differential evolution(IOADE)algorithm is proposed,and the convergence performance of IOADE is superior to the traditional differential evolution and adaptive differential evolution methods.Finally,the effectiveness and feasibility of the proposed methods are verified by the experiments on a copper flotation industrial process.展开更多
The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various ...The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives.The Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ)is an effective approach for solving the multi-objective job shop scheduling problem.Nevertheless,it has some limitations in solving scheduling problems,including inadequate global search capability,susceptibility to premature convergence,and challenges in balancing convergence and diversity.To enhance its performance,this paper introduces a strengthened dominance relation NSGA-Ⅲ algorithm based on differential evolution(NSGA-Ⅲ-SD).By incorporating constrained differential evolution and simulated binary crossover genetic operators,this algorithm effectively improves NSGA-Ⅲ’s global search capability while mitigating pre-mature convergence issues.Furthermore,it introduces a reinforced dominance relation to address the trade-off between convergence and diversity in NSGA-Ⅲ.Additionally,effective encoding and decoding methods for discrete job shop scheduling are proposed,which can improve the overall performance of the algorithm without complex computation.To validate the algorithm’s effectiveness,NSGA-Ⅲ-SD is extensively compared with other advanced multi-objective optimization algorithms using 20 job shop scheduling test instances.The experimental results demonstrate that NSGA-Ⅲ-SD achieves better solution quality and diversity,proving its effectiveness in solving the multi-objective job shop scheduling problem.展开更多
This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide...This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide a more reasonable utilization of the constrained communication channel,a novel adaptive memory event-triggered(AMET)mechanism is developed,where two event-triggered thresholds can be dynamically adjusted in the light of the current system information and the transmitted historical data.Sufficient conditions with less conservative design of the fuzzy imperfect premise matching(IPM)controller are presented by introducing the Wirtinger-based integral inequality,the information of membership functions(MFs)and slack matrices.Subsequently,under the IPM policy,a new MFs intelligent optimization technique that takes advantage of the differential evolution algorithm is first provided for IT2 TakagiSugeno(T-S)fuzzy systems to update the fuzzy controller MFs in real-time and achieve a better system control effect.Finally,simulation results demonstrate that the proposed control scheme can obtain better system performance in the case of using fewer communication resources.展开更多
When soldering electronic components onto circuit boards,the temperature curves of the reflow ovens across different zones and the conveyor belt speed significantly influence the product quality.This study focuses on ...When soldering electronic components onto circuit boards,the temperature curves of the reflow ovens across different zones and the conveyor belt speed significantly influence the product quality.This study focuses on optimizing the furnace temperature curve under varying settings of reflow oven zone temperatures and conveyor belt speeds.To address this,the research sequentially develops a heat transfer model for reflow soldering,an optimization model for reflow furnace conditions using the differential evolution algorithm,and an evaluation and decision model combining the differential evolution algorithm with the Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)method.This approach aims to determine the optimal furnace temperature curve,zone temperatures of the reflow oven,and the conveyor belt speed.展开更多
The differential evolution(DE)algorithm relies mainly on mutation strategy and control parameters'selection.To take full advantage of top elite individuals in terms of fitness and success rates,a new mutation oper...The differential evolution(DE)algorithm relies mainly on mutation strategy and control parameters'selection.To take full advantage of top elite individuals in terms of fitness and success rates,a new mutation operator is proposed.The control parameters such as scale factor and crossover rate are tuned based on their success rates recorded over past evolutionary stages.The proposed DE variant,MIDE,performs the evolution in a piecewise manner,i.e.,after every predefined evolutionary stages,MIDE adjusts its settings to enrich its diversity skills.The performance of the MIDE is validated on two different sets of benchmarks:CEC 2014 and CEC 2017(special sessions&competitions on real-parameter single objective optimization)using different performance measures.In the end,MIDE is also applied to solve constrained engineering problems.The efficiency and effectiveness of the MIDE are further confirmed by a set of experiments.展开更多
Effective constrained optimization algorithms have been proposed for engineering problems recently.It is common to consider constraint violation and optimization algorithm as two separate parts.In this study,a pbest s...Effective constrained optimization algorithms have been proposed for engineering problems recently.It is common to consider constraint violation and optimization algorithm as two separate parts.In this study,a pbest selection mechanism is proposed to integrate the current mutation strategy in constrained optimization problems.Based on the improved pbest selection method,an adaptive differential evolution approach is proposed,which helps the population jump out of the infeasible region.If all the individuals are infeasible,the top 5%of infeasible individuals are selected.In addition,a modified truncatedε-level method is proposed to avoid trapping in infeasible regions.The proposed adaptive differential evolution approach with an improvedεconstraint processmechanism(IεJADE)is examined on CEC 2006 and CEC 2010 constrained benchmark function series.Besides,a standard IEEE-30 bus test system is studied on the efficiency of the IεJADE.The numerical analysis verifies the IεJADE algorithm is effective in comparisonwith other effective algorithms.展开更多
Dynamic constrained optimization is a challenging research topic in which the objective function and/or constraints change over time.In such problems,it is commonly assumed that all problem instances are feasible.In r...Dynamic constrained optimization is a challenging research topic in which the objective function and/or constraints change over time.In such problems,it is commonly assumed that all problem instances are feasible.In reality some instances can be infeasible due to various practical issues,such as a sudden change in resource requirements or a big change in the availability of resources.Decision-makers have to determine whether a particular instance is feasible or not,as infeasible instances cannot be solved as there are no solutions to implement.In this case,locating the nearest feasible solution would be valuable information for the decision-makers.In this paper,a differential evolution algorithm is proposed for solving dynamic constrained problems that learns from past environments and transfers important knowledge from them to use in solving the current instance and includes a mechanism for suggesting a good feasible solution when an instance is infeasible.To judge the performance of the proposed algorithm,13 well-known dynamic test problems were solved.The results indicate that the proposed algorithm outperforms existing recent algorithms with a margin of 79.40%over all the environments and it can also find a good,but infeasible solution,when an instance is infeasible.展开更多
Design constraints verification is the most computationally expensive task in evolutionary structural optimization due to a large number of structural analyses thatmust be conducted.Building a surrogatemodel to approx...Design constraints verification is the most computationally expensive task in evolutionary structural optimization due to a large number of structural analyses thatmust be conducted.Building a surrogatemodel to approximate the behavior of structures instead of the exact structural analyses is a possible solution to tackle this problem.However,most existing surrogate models have been designed based on regression techniques.This paper proposes a novel method,called CaDE,which adopts a machine learning classification technique for enhancing the performance of the Differential Evolution(DE)optimization.The proposed method is separated into two stages.During the first optimization stage,the original DE is implemented as usual,but all individuals produced in this phase are stored as inputs of the training data.Based on design constraints verification,these individuals are labeled as“safe”or“unsafe”and their labels are saved as outputs of the training data.When collecting enough data,an AdaBoost model is trained to evaluate the safety state of structures.This model is then used in the second stage to preliminarily assess new individuals,and unpromising ones are rejected without checking design constraints.This method reduces unnecessary structural analyses,thereby shortens the optimization process.Five benchmark truss sizing optimization problems are solved using the proposed method to demonstrate its effectiveness.The obtained results show that the CaDE finds good optimal designs with less structural analyses in comparison with the original DE and four other DE variants.The reduction rate of five examples ranges from 18 to over 50%.Moreover,the proposed method is applied to a real-size transmission tower design problem to exhibit its applicability in practice.展开更多
Electrocardiogram(ECG)signal is a measure of the heart’s electrical activity.Recently,ECG detection and classification have benefited from the use of computer-aided systems by cardiologists.The goal of this paper is ...Electrocardiogram(ECG)signal is a measure of the heart’s electrical activity.Recently,ECG detection and classification have benefited from the use of computer-aided systems by cardiologists.The goal of this paper is to improve the accuracy of ECG classification by combining the Dipper Throated Optimization(DTO)and Differential Evolution Algorithm(DEA)into a unified algorithm to optimize the hyperparameters of neural network(NN)for boosting the ECG classification accuracy.In addition,we proposed a new feature selection method for selecting the significant feature that can improve the overall performance.To prove the superiority of the proposed approach,several experimentswere conducted to compare the results achieved by the proposed approach and other competing approaches.Moreover,statistical analysis is performed to study the significance and stability of the proposed approach using Wilcoxon and ANOVA tests.Experimental results confirmed the superiority and effectiveness of the proposed approach.The classification accuracy achieved by the proposed approach is(99.98%).展开更多
Stochastic fractional differential systems are important and useful in the mathematics,physics,and engineering fields.However,the determination of their probabilistic responses is difficult due to their non-Markovian ...Stochastic fractional differential systems are important and useful in the mathematics,physics,and engineering fields.However,the determination of their probabilistic responses is difficult due to their non-Markovian property.The recently developed globally-evolving-based generalized density evolution equation(GE-GDEE),which is a unified partial differential equation(PDE)governing the transient probability density function(PDF)of a generic path-continuous process,including non-Markovian ones,provides a feasible tool to solve this problem.In the paper,the GE-GDEE for multi-dimensional linear fractional differential systems subject to Gaussian white noise is established.In particular,it is proved that in the GE-GDEE corresponding to the state-quantities of interest,the intrinsic drift coefficient is a time-varying linear function,and can be analytically determined.In this sense,an alternative low-dimensional equivalent linear integer-order differential system with exact closed-form coefficients for the original highdimensional linear fractional differential system can be constructed such that their transient PDFs are identical.Specifically,for a multi-dimensional linear fractional differential system,if only one or two quantities are of interest,GE-GDEE is only in one or two dimensions,and the surrogate system would be a one-or two-dimensional linear integer-order system.Several examples are studied to assess the merit of the proposed method.Though presently the closed-form intrinsic drift coefficient is only available for linear stochastic fractional differential systems,the findings in the present paper provide a remarkable demonstration on the existence and eligibility of GE-GDEE for the case that the original high-dimensional system itself is non-Markovian,and provide insights for the physical-mechanism-informed determination of intrinsic drift and diffusion coefficients of GE-GDEE of more generic complex nonlinear systems.展开更多
Propagation models are the foundation for radio planning in mobile networks. They are widely used during feasibility studies and initial network deployment, or during network extensions, particularly in new cities. Th...Propagation models are the foundation for radio planning in mobile networks. They are widely used during feasibility studies and initial network deployment, or during network extensions, particularly in new cities. They can be used to calculate the power of the signal received by a mobile terminal, evaluate the coverage radius, and calculate the number of cells required to cover a given area. This paper takes into account the standard k factors model and then uses the differential evolution algorithm to set up a propagation model adapted to the physical environment of the Cameroonian cities of Bertoua. Drive tests were made on the LTE TDD network in the city of Bertoua. Differential evolution algorithm is used as the optimization algorithm to deduct a propagation model which fits the environment of the considered town. The calculation of the root mean square error between the actual data from the drive tests and the prediction data from the implemented model allows the validation of the obtained results. A comparative study made between the RMSE value obtained by the new model and those obtained by the Okumura Hata and free space models, allowed us to conclude that the new model obtained is better and more representative of our local environment than the Okumura Hata currently used. The implementation shows that Differential evolution can perform well and solve this kind of optimization problem;the newly obtained models can be used for radio planning in the city of Bertoua in Cameroon.展开更多
The differential evolution algorithm is an evolutionary algorithm for global optimization and the un-capacitated facility location problem (UFL) is one of the classic NP-Hard problems. In this paper, combined with the...The differential evolution algorithm is an evolutionary algorithm for global optimization and the un-capacitated facility location problem (UFL) is one of the classic NP-Hard problems. In this paper, combined with the specific characteristics of the UFL problem, we introduce the activation function to the algorithm for solving UFL problem and name it improved adaptive differential evolution algorithm (IADEA). Next, to improve the efficiency of the algorithm and to alleviate the problem of being stuck in a local optimum, an adaptive operator was added. To test the improvement of our algorithm, we compare the IADEA with the basic differential evolution algorithm by solving typical instances of UFL problem respectively. Moreover, to compare with other heuristic algorithm, we use the hybrid ant colony algorithm to solve the same instances. The computational results show that IADEA improves the performance of the basic DE and it outperforms the hybrid ant colony algorithm.展开更多
A method for in-situ stress measurement via fiber optics was proposed. The method utilizes the relationship between rock mass elastic parameters and in-situ stress. The approach offers the advantage of long-term stres...A method for in-situ stress measurement via fiber optics was proposed. The method utilizes the relationship between rock mass elastic parameters and in-situ stress. The approach offers the advantage of long-term stress measurements with high spatial resolution and frequency, significantly enhancing the ability to measure in-situ stress. The sensing casing, spirally wrapped with fiber optic, is cemented into the formation to establish a formation sensing nerve. Injecting fluid into the casing generates strain disturbance, establishing the relationship between rock mass properties and treatment pressure.Moreover, an optimization algorithm is established to invert the elastic parameters of formation via fiber optic strains. In the first part of this paper series, we established the theoretical basis for the inverse differential strain analysis method for in-situ stress measurement, which was subsequently verified using an analytical model. This paper is the fundamental basis for the inverse differential strain analysis method.展开更多
In this paper,we firstly recall some basic results on pseudo S-asymptotically(ω,c)-periodic functions and Sobolev type fractional differential equation.We secondly investigate some existence of pseudo S-asymptotical...In this paper,we firstly recall some basic results on pseudo S-asymptotically(ω,c)-periodic functions and Sobolev type fractional differential equation.We secondly investigate some existence of pseudo S-asymptotically(ω,c)-periodic solutions for a semilinear fractional differential equations of Sobolev type.We finally present a simple example.展开更多
To determine the optimal or near optimal parameters of PID controller with incomplete derivation, a novel design method based on differential evolution (DE) algorithm is presented. The controller is called DE-PID co...To determine the optimal or near optimal parameters of PID controller with incomplete derivation, a novel design method based on differential evolution (DE) algorithm is presented. The controller is called DE-PID controller. To overcome the disadvantages of the integral performance criteria in the frequency domain such as IAE, ISE, and ITSE, a new performance criterion in the time domain is proposed. The optimization procedures employing the DE algorithm to search the optimal or near optimal PID controller parameters of a control system are demonstrated in detail. Three typical control systems are chosen to test and evaluate the adaptation and robustness of the proposed DE-PID controller. The simulation results show that the proposed approach has superior features of easy implementation, stable convergence characteristic, and good computational efficiency. Compared with the ZN, GA, and ASA, the proposed design method is indeed more efficient and robust in improving the step response of a control system.展开更多
Dimensional synthesis is one of the most difficult issues in the field of parallel robots with actuation redundancy. To deal with the optimal design of a redundantly actuated parallel robot used for ankle rehabilitati...Dimensional synthesis is one of the most difficult issues in the field of parallel robots with actuation redundancy. To deal with the optimal design of a redundantly actuated parallel robot used for ankle rehabilitation, a methodology of dimensional synthesis based on multi-objective optimization is presented. First, the dimensional synthesis of the redundant parallel robot is formulated as a nonlinear constrained multi-objective optimization problem. Then four objective functions, separately reflecting occupied space, input/output transmission and torque performances, and multi-criteria constraints, such as dimension, interference and kinematics, are defined. In consideration of the passive exercise of plantar/dorsiflexion requiring large output moment, a torque index is proposed. To cope with the actuation redundancy of the parallel robot, a new output transmission index is defined as well. The multi-objective optimization problem is solved by using a modified Differential Evolution(DE) algorithm, which is characterized by new selection and mutation strategies. Meanwhile, a special penalty method is presented to tackle the multi-criteria constraints. Finally, numerical experiments for different optimization algorithms are implemented. The computation results show that the proposed indices of output transmission and torque, and constraint handling are effective for the redundant parallel robot; the modified DE algorithm is superior to the other tested algorithms, in terms of the ability of global search and the number of non-dominated solutions. The proposed methodology of multi-objective optimization can be also applied to the dimensional synthesis of other redundantly actuated parallel robots only with rotational movements.展开更多
Control parameters of original differential evolution (DE) are kept fixed throughout the entire evolutionary process. However, it is not an easy task to properly set control parameters in DE for different optiinizat...Control parameters of original differential evolution (DE) are kept fixed throughout the entire evolutionary process. However, it is not an easy task to properly set control parameters in DE for different optiinization problems. According to the relative position of two different individual vectors selected to generate a difference vector in the searching place, a self-adapting strategy for the scale factor F of the difference vector is proposed. In terms of the convergence status of the target vector in the current population, a self-adapting crossover probability constant CR strategy is proposed. Therefore, good target vectors have a lower CFI while worse target vectors have a large CFI. At the same time, the mutation operator is modified to improve the convergence speed. The performance of these proposed approaches are studied with the use of some benchmark problems and applied to the trajectory planning of a three-joint redundant manipulator. Finally, the experiment results show that the proposed approaches can greatly improve robustness and convergence speed.展开更多
Aiming at the hybrid flow-shop (HFS) scheduling that is a complex NP-hard combinatorial problem with wide engineering background, an effective algorithm based on differential evolution (DE) is proposed. By using a...Aiming at the hybrid flow-shop (HFS) scheduling that is a complex NP-hard combinatorial problem with wide engineering background, an effective algorithm based on differential evolution (DE) is proposed. By using a special encoding scheme and combining DE based evolutionary search and local search, the exploration and exploitation abilities are enhanced and well balanced for solving the HFS problems. Simulation results based on some typical problems and comparisons with some existing genetic algorithms demonstrate the proposed algorithm is effective, efficient and robust for solving the HFS problems.展开更多
文摘This paper studies the difference algorithm parameters characteristic of the multicast routing problem, and to compare it with genetic algorithms. The algorithm uses the path of individual coding, combined with the differential cross-choice strategy and operations optimization. Finally, we simulated 30 node networks, and compared the performance of genetic algorithm and differential evolution algorithm. Experimental results show that multi-strategy Differential Evolution algorithm converges faster and better global search ability and stability.
基金the Sichuan Science and Technology Program(2021ZYD0016).
文摘The optimization of the rule base of a fuzzy logic system (FLS) based on evolutionary algorithm has achievednotable results. However, due to the diversity of the deep structure in the hierarchical fuzzy system (HFS) and thecorrelation of each sub fuzzy system, the uncertainty of the HFS’s deep structure increases. For the HFS, a largenumber of studies mainly use fixed structures, which cannot be selected automatically. To solve this problem, thispaper proposes a novel approach for constructing the incremental HFS. During system design, the deep structureand the rule base of the HFS are encoded separately. Subsequently, the deep structure is adaptively mutated basedon the fitness value, so as to realize the diversity of deep structures while ensuring reasonable competition amongthe structures. Finally, the differential evolution (DE) is used to optimize the deep structure of HFS and theparameters of antecedent and consequent simultaneously. The simulation results confirm the effectiveness of themodel. Specifically, the root mean square errors in the Laser dataset and Friedman dataset are 0.0395 and 0.0725,respectively with rule counts of rules is 8 and 12, respectively.When compared to alternative methods, the resultsindicate that the proposed method offers improvements in accuracy and rule counts.
基金supported in part by the National Key Research and Development Program of China(2021YFC2902703)the National Natural Science Foundation of China(62173078,61773105,61533007,61873049,61873053,61703085,61374147)。
文摘Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation industrial processes.This paper addresses the fluctuation problem of CCG through an operational optimization method.Firstly,a density-based affinity propagationalgorithm is proposed so that more ideal working condition categories can be obtained for the complex raw ore properties.Next,a Bayesian network(BN)is applied to explore the relationship between the operational variables and the CCG.Based on the analysis results of BN,a weighted Gaussian process regression model is constructed to predict the CCG that a higher prediction accuracy can be obtained.To ensure the predicted CCG is close to the set value with a smaller magnitude of the operation adjustments and a smaller uncertainty of the prediction results,an index-oriented adaptive differential evolution(IOADE)algorithm is proposed,and the convergence performance of IOADE is superior to the traditional differential evolution and adaptive differential evolution methods.Finally,the effectiveness and feasibility of the proposed methods are verified by the experiments on a copper flotation industrial process.
基金in part supported by the Key Research and Development Project of Hubei Province(Nos.2020BAB1141,2023BAB094)the Key Project of Science and Technology Research ProgramofHubei Educational Committee(No.D20211402)+1 种基金the Teaching Research Project of Hubei University of Technology(No.XIAO2018001)the Project of Xiangyang Industrial Research Institute of Hubei University of Technology(No.XYYJ2022C04).
文摘The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives.The Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ)is an effective approach for solving the multi-objective job shop scheduling problem.Nevertheless,it has some limitations in solving scheduling problems,including inadequate global search capability,susceptibility to premature convergence,and challenges in balancing convergence and diversity.To enhance its performance,this paper introduces a strengthened dominance relation NSGA-Ⅲ algorithm based on differential evolution(NSGA-Ⅲ-SD).By incorporating constrained differential evolution and simulated binary crossover genetic operators,this algorithm effectively improves NSGA-Ⅲ’s global search capability while mitigating pre-mature convergence issues.Furthermore,it introduces a reinforced dominance relation to address the trade-off between convergence and diversity in NSGA-Ⅲ.Additionally,effective encoding and decoding methods for discrete job shop scheduling are proposed,which can improve the overall performance of the algorithm without complex computation.To validate the algorithm’s effectiveness,NSGA-Ⅲ-SD is extensively compared with other advanced multi-objective optimization algorithms using 20 job shop scheduling test instances.The experimental results demonstrate that NSGA-Ⅲ-SD achieves better solution quality and diversity,proving its effectiveness in solving the multi-objective job shop scheduling problem.
基金supported by the National Natural Science Foundation of China(61973105,62373137)。
文摘This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide a more reasonable utilization of the constrained communication channel,a novel adaptive memory event-triggered(AMET)mechanism is developed,where two event-triggered thresholds can be dynamically adjusted in the light of the current system information and the transmitted historical data.Sufficient conditions with less conservative design of the fuzzy imperfect premise matching(IPM)controller are presented by introducing the Wirtinger-based integral inequality,the information of membership functions(MFs)and slack matrices.Subsequently,under the IPM policy,a new MFs intelligent optimization technique that takes advantage of the differential evolution algorithm is first provided for IT2 TakagiSugeno(T-S)fuzzy systems to update the fuzzy controller MFs in real-time and achieve a better system control effect.Finally,simulation results demonstrate that the proposed control scheme can obtain better system performance in the case of using fewer communication resources.
文摘When soldering electronic components onto circuit boards,the temperature curves of the reflow ovens across different zones and the conveyor belt speed significantly influence the product quality.This study focuses on optimizing the furnace temperature curve under varying settings of reflow oven zone temperatures and conveyor belt speeds.To address this,the research sequentially develops a heat transfer model for reflow soldering,an optimization model for reflow furnace conditions using the differential evolution algorithm,and an evaluation and decision model combining the differential evolution algorithm with the Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)method.This approach aims to determine the optimal furnace temperature curve,zone temperatures of the reflow oven,and the conveyor belt speed.
基金supported by the A*STAR under its RIE2020 Advanced Manufacturing and Engineering(AME)Industry Alignment Fund-Pre-Positioning(IAF-PP)(Award A19D6a0053)the Japan Society for the Promotion of Science(JSPS)KAKENHI(JP22H03643)。
文摘The differential evolution(DE)algorithm relies mainly on mutation strategy and control parameters'selection.To take full advantage of top elite individuals in terms of fitness and success rates,a new mutation operator is proposed.The control parameters such as scale factor and crossover rate are tuned based on their success rates recorded over past evolutionary stages.The proposed DE variant,MIDE,performs the evolution in a piecewise manner,i.e.,after every predefined evolutionary stages,MIDE adjusts its settings to enrich its diversity skills.The performance of the MIDE is validated on two different sets of benchmarks:CEC 2014 and CEC 2017(special sessions&competitions on real-parameter single objective optimization)using different performance measures.In the end,MIDE is also applied to solve constrained engineering problems.The efficiency and effectiveness of the MIDE are further confirmed by a set of experiments.
基金supported by National Natural Science Foundation of China under Grant Nos.52005447,72271222,71371170,71871203,L1924063Zhejiang Provincial Natural Science Foundation of China underGrant No.LQ21E050014Foundation of Zhejiang Education Committee under Grant No.Y201840056.
文摘Effective constrained optimization algorithms have been proposed for engineering problems recently.It is common to consider constraint violation and optimization algorithm as two separate parts.In this study,a pbest selection mechanism is proposed to integrate the current mutation strategy in constrained optimization problems.Based on the improved pbest selection method,an adaptive differential evolution approach is proposed,which helps the population jump out of the infeasible region.If all the individuals are infeasible,the top 5%of infeasible individuals are selected.In addition,a modified truncatedε-level method is proposed to avoid trapping in infeasible regions.The proposed adaptive differential evolution approach with an improvedεconstraint processmechanism(IεJADE)is examined on CEC 2006 and CEC 2010 constrained benchmark function series.Besides,a standard IEEE-30 bus test system is studied on the efficiency of the IεJADE.The numerical analysis verifies the IεJADE algorithm is effective in comparisonwith other effective algorithms.
基金supported by the Australian Research Council Discovery Project(Grant Nos.DP210102939).
文摘Dynamic constrained optimization is a challenging research topic in which the objective function and/or constraints change over time.In such problems,it is commonly assumed that all problem instances are feasible.In reality some instances can be infeasible due to various practical issues,such as a sudden change in resource requirements or a big change in the availability of resources.Decision-makers have to determine whether a particular instance is feasible or not,as infeasible instances cannot be solved as there are no solutions to implement.In this case,locating the nearest feasible solution would be valuable information for the decision-makers.In this paper,a differential evolution algorithm is proposed for solving dynamic constrained problems that learns from past environments and transfers important knowledge from them to use in solving the current instance and includes a mechanism for suggesting a good feasible solution when an instance is infeasible.To judge the performance of the proposed algorithm,13 well-known dynamic test problems were solved.The results indicate that the proposed algorithm outperforms existing recent algorithms with a margin of 79.40%over all the environments and it can also find a good,but infeasible solution,when an instance is infeasible.
基金funded by Hanoi University of Civil Engineering(HUCE)in Project Code 35-2021/KHXD-TD.
文摘Design constraints verification is the most computationally expensive task in evolutionary structural optimization due to a large number of structural analyses thatmust be conducted.Building a surrogatemodel to approximate the behavior of structures instead of the exact structural analyses is a possible solution to tackle this problem.However,most existing surrogate models have been designed based on regression techniques.This paper proposes a novel method,called CaDE,which adopts a machine learning classification technique for enhancing the performance of the Differential Evolution(DE)optimization.The proposed method is separated into two stages.During the first optimization stage,the original DE is implemented as usual,but all individuals produced in this phase are stored as inputs of the training data.Based on design constraints verification,these individuals are labeled as“safe”or“unsafe”and their labels are saved as outputs of the training data.When collecting enough data,an AdaBoost model is trained to evaluate the safety state of structures.This model is then used in the second stage to preliminarily assess new individuals,and unpromising ones are rejected without checking design constraints.This method reduces unnecessary structural analyses,thereby shortens the optimization process.Five benchmark truss sizing optimization problems are solved using the proposed method to demonstrate its effectiveness.The obtained results show that the CaDE finds good optimal designs with less structural analyses in comparison with the original DE and four other DE variants.The reduction rate of five examples ranges from 18 to over 50%.Moreover,the proposed method is applied to a real-size transmission tower design problem to exhibit its applicability in practice.
文摘Electrocardiogram(ECG)signal is a measure of the heart’s electrical activity.Recently,ECG detection and classification have benefited from the use of computer-aided systems by cardiologists.The goal of this paper is to improve the accuracy of ECG classification by combining the Dipper Throated Optimization(DTO)and Differential Evolution Algorithm(DEA)into a unified algorithm to optimize the hyperparameters of neural network(NN)for boosting the ECG classification accuracy.In addition,we proposed a new feature selection method for selecting the significant feature that can improve the overall performance.To prove the superiority of the proposed approach,several experimentswere conducted to compare the results achieved by the proposed approach and other competing approaches.Moreover,statistical analysis is performed to study the significance and stability of the proposed approach using Wilcoxon and ANOVA tests.Experimental results confirmed the superiority and effectiveness of the proposed approach.The classification accuracy achieved by the proposed approach is(99.98%).
基金The supports of the National Natural Science Foundation of China(Grant Nos.51725804 and U1711264)the Research Fund for State Key Laboratories of Ministry of Science and Technology of China(SLDRCE19-B-23)the Shanghai Post-Doctoral Excellence Program(2022558)。
文摘Stochastic fractional differential systems are important and useful in the mathematics,physics,and engineering fields.However,the determination of their probabilistic responses is difficult due to their non-Markovian property.The recently developed globally-evolving-based generalized density evolution equation(GE-GDEE),which is a unified partial differential equation(PDE)governing the transient probability density function(PDF)of a generic path-continuous process,including non-Markovian ones,provides a feasible tool to solve this problem.In the paper,the GE-GDEE for multi-dimensional linear fractional differential systems subject to Gaussian white noise is established.In particular,it is proved that in the GE-GDEE corresponding to the state-quantities of interest,the intrinsic drift coefficient is a time-varying linear function,and can be analytically determined.In this sense,an alternative low-dimensional equivalent linear integer-order differential system with exact closed-form coefficients for the original highdimensional linear fractional differential system can be constructed such that their transient PDFs are identical.Specifically,for a multi-dimensional linear fractional differential system,if only one or two quantities are of interest,GE-GDEE is only in one or two dimensions,and the surrogate system would be a one-or two-dimensional linear integer-order system.Several examples are studied to assess the merit of the proposed method.Though presently the closed-form intrinsic drift coefficient is only available for linear stochastic fractional differential systems,the findings in the present paper provide a remarkable demonstration on the existence and eligibility of GE-GDEE for the case that the original high-dimensional system itself is non-Markovian,and provide insights for the physical-mechanism-informed determination of intrinsic drift and diffusion coefficients of GE-GDEE of more generic complex nonlinear systems.
文摘Propagation models are the foundation for radio planning in mobile networks. They are widely used during feasibility studies and initial network deployment, or during network extensions, particularly in new cities. They can be used to calculate the power of the signal received by a mobile terminal, evaluate the coverage radius, and calculate the number of cells required to cover a given area. This paper takes into account the standard k factors model and then uses the differential evolution algorithm to set up a propagation model adapted to the physical environment of the Cameroonian cities of Bertoua. Drive tests were made on the LTE TDD network in the city of Bertoua. Differential evolution algorithm is used as the optimization algorithm to deduct a propagation model which fits the environment of the considered town. The calculation of the root mean square error between the actual data from the drive tests and the prediction data from the implemented model allows the validation of the obtained results. A comparative study made between the RMSE value obtained by the new model and those obtained by the Okumura Hata and free space models, allowed us to conclude that the new model obtained is better and more representative of our local environment than the Okumura Hata currently used. The implementation shows that Differential evolution can perform well and solve this kind of optimization problem;the newly obtained models can be used for radio planning in the city of Bertoua in Cameroon.
文摘The differential evolution algorithm is an evolutionary algorithm for global optimization and the un-capacitated facility location problem (UFL) is one of the classic NP-Hard problems. In this paper, combined with the specific characteristics of the UFL problem, we introduce the activation function to the algorithm for solving UFL problem and name it improved adaptive differential evolution algorithm (IADEA). Next, to improve the efficiency of the algorithm and to alleviate the problem of being stuck in a local optimum, an adaptive operator was added. To test the improvement of our algorithm, we compare the IADEA with the basic differential evolution algorithm by solving typical instances of UFL problem respectively. Moreover, to compare with other heuristic algorithm, we use the hybrid ant colony algorithm to solve the same instances. The computational results show that IADEA improves the performance of the basic DE and it outperforms the hybrid ant colony algorithm.
基金the Project Support of NSFC(No.U19B6003-05 and No.52074314)。
文摘A method for in-situ stress measurement via fiber optics was proposed. The method utilizes the relationship between rock mass elastic parameters and in-situ stress. The approach offers the advantage of long-term stress measurements with high spatial resolution and frequency, significantly enhancing the ability to measure in-situ stress. The sensing casing, spirally wrapped with fiber optic, is cemented into the formation to establish a formation sensing nerve. Injecting fluid into the casing generates strain disturbance, establishing the relationship between rock mass properties and treatment pressure.Moreover, an optimization algorithm is established to invert the elastic parameters of formation via fiber optic strains. In the first part of this paper series, we established the theoretical basis for the inverse differential strain analysis method for in-situ stress measurement, which was subsequently verified using an analytical model. This paper is the fundamental basis for the inverse differential strain analysis method.
基金supported by NSF of Shaanxi Province(Grant No.2023-JC-YB-011).
文摘In this paper,we firstly recall some basic results on pseudo S-asymptotically(ω,c)-periodic functions and Sobolev type fractional differential equation.We secondly investigate some existence of pseudo S-asymptotically(ω,c)-periodic solutions for a semilinear fractional differential equations of Sobolev type.We finally present a simple example.
基金the National Natural Science Foundation of China (60375001)the Scientific Research Foundation of Hunan Provincial Education Department (05B016).
文摘To determine the optimal or near optimal parameters of PID controller with incomplete derivation, a novel design method based on differential evolution (DE) algorithm is presented. The controller is called DE-PID controller. To overcome the disadvantages of the integral performance criteria in the frequency domain such as IAE, ISE, and ITSE, a new performance criterion in the time domain is proposed. The optimization procedures employing the DE algorithm to search the optimal or near optimal PID controller parameters of a control system are demonstrated in detail. Three typical control systems are chosen to test and evaluate the adaptation and robustness of the proposed DE-PID controller. The simulation results show that the proposed approach has superior features of easy implementation, stable convergence characteristic, and good computational efficiency. Compared with the ZN, GA, and ASA, the proposed design method is indeed more efficient and robust in improving the step response of a control system.
基金Supported by National Natural Science Foundation of China(Grant No.51175029)Beijing Municipal Natural Science Foundation of China(Grant No.3132019)
文摘Dimensional synthesis is one of the most difficult issues in the field of parallel robots with actuation redundancy. To deal with the optimal design of a redundantly actuated parallel robot used for ankle rehabilitation, a methodology of dimensional synthesis based on multi-objective optimization is presented. First, the dimensional synthesis of the redundant parallel robot is formulated as a nonlinear constrained multi-objective optimization problem. Then four objective functions, separately reflecting occupied space, input/output transmission and torque performances, and multi-criteria constraints, such as dimension, interference and kinematics, are defined. In consideration of the passive exercise of plantar/dorsiflexion requiring large output moment, a torque index is proposed. To cope with the actuation redundancy of the parallel robot, a new output transmission index is defined as well. The multi-objective optimization problem is solved by using a modified Differential Evolution(DE) algorithm, which is characterized by new selection and mutation strategies. Meanwhile, a special penalty method is presented to tackle the multi-criteria constraints. Finally, numerical experiments for different optimization algorithms are implemented. The computation results show that the proposed indices of output transmission and torque, and constraint handling are effective for the redundant parallel robot; the modified DE algorithm is superior to the other tested algorithms, in terms of the ability of global search and the number of non-dominated solutions. The proposed methodology of multi-objective optimization can be also applied to the dimensional synthesis of other redundantly actuated parallel robots only with rotational movements.
基金This work was supported by the National Natural Science Foundation of China(No.60375001)the High School Doctoral Foundation of China(NO.20030532004).
文摘Control parameters of original differential evolution (DE) are kept fixed throughout the entire evolutionary process. However, it is not an easy task to properly set control parameters in DE for different optiinization problems. According to the relative position of two different individual vectors selected to generate a difference vector in the searching place, a self-adapting strategy for the scale factor F of the difference vector is proposed. In terms of the convergence status of the target vector in the current population, a self-adapting crossover probability constant CR strategy is proposed. Therefore, good target vectors have a lower CFI while worse target vectors have a large CFI. At the same time, the mutation operator is modified to improve the convergence speed. The performance of these proposed approaches are studied with the use of some benchmark problems and applied to the trajectory planning of a three-joint redundant manipulator. Finally, the experiment results show that the proposed approaches can greatly improve robustness and convergence speed.
基金supported by the National Natural Science Fundation of China (60774082 70871065+2 种基金 60834004)the Program for New Century Excellent Talents in University (NCET-10-0505)the Doctoral Program Foundation of Institutions of Higher Education of China(20100002110014)
文摘Aiming at the hybrid flow-shop (HFS) scheduling that is a complex NP-hard combinatorial problem with wide engineering background, an effective algorithm based on differential evolution (DE) is proposed. By using a special encoding scheme and combining DE based evolutionary search and local search, the exploration and exploitation abilities are enhanced and well balanced for solving the HFS problems. Simulation results based on some typical problems and comparisons with some existing genetic algorithms demonstrate the proposed algorithm is effective, efficient and robust for solving the HFS problems.