A self-adaptive differential evolution neutron spectrum unfolding algorithm(SDENUA)is established in this study to unfold the neutron spectra obtained from a water-pumping-injection multilayered concentric sphere neut...A self-adaptive differential evolution neutron spectrum unfolding algorithm(SDENUA)is established in this study to unfold the neutron spectra obtained from a water-pumping-injection multilayered concentric sphere neutron spectrometer(WMNS).Specifically,the neutron fluence bounds are estimated to accelerate the algorithm convergence,and the minimum error between the optimal solution and input neutron counts with relative uncertainties is limited to 10^(-6)to avoid unnecessary calculations.Furthermore,the crossover probability and scaling factor are self-adaptively controlled.FLUKA Monte Carlo is used to simulate the readings of the WMNS under(1)a spectrum of Cf-252 and(2)its spectrum after being moderated,(3)a spectrum used for boron neutron capture therapy,and(4)a reactor spectrum.Subsequently,the measured neutron counts are unfolded using the SDENUA.The uncertainties of the measured neutron count and the response matrix are considered in the SDENUA,which does not require complex parameter tuning or an a priori default spectrum.The results indicate that the solutions of the SDENUA agree better with the IAEA spectra than those of MAXED and GRAVEL in UMG 3.1,and the errors of the final results calculated using the SDENUA are less than 12%.The established SDENUA can be used to unfold spectra from the WMNS.展开更多
The rise in the use of global polyester fiber contributed to strong demand of the Terephthalic acid (TPA). The liquid-phase catalytic oxidation of p-xylene (PX) to TPA is regarded as a critical and efficient chemi...The rise in the use of global polyester fiber contributed to strong demand of the Terephthalic acid (TPA). The liquid-phase catalytic oxidation of p-xylene (PX) to TPA is regarded as a critical and efficient chemical process in industry [ 1 ]. PX oxidation reaction involves many complex side reactions, among which acetic acid combustion and PX combustion are the most important. As the target product of this oxidation process, the quality and yield of TPA are of great concern. However, the improvement of the qualified product yield can bring about the high energy consumption, which means that the economic objectives of this process cannot be achieved simulta- neously because the two objectives are in conflict with each other. In this paper, an improved self-adaptive multi-objective differential evolution algorithm was proposed to handle the multi-objective optimization prob- lems. The immune concept is introduced to the self-adaptive multi-objective differential evolution algorithm (SADE) to strengthen the local search ability and optimization accuracy. The proposed algorithm is successfully tested on several benchmark test problems, and the performance measures such as convergence and divergence metrics are calculated. Subsequently, the multi-objective optimization of an industrial PX oxidation process is carried out using the proposed immune self-adaptive multi-objective differential evolution algorithm (ISADE). Optimization results indicate that application oflSADE can greatly improve the yield of TPA with low combustion loss without degenerating TA quality.展开更多
In the fed-batch cultivation of Saccharomyces cerevisiae,excessive glucose addition leads to increased ethanol accumulation,which will reduce the efficiency of glucose utilization and inhibit product synthesis.Insuffi...In the fed-batch cultivation of Saccharomyces cerevisiae,excessive glucose addition leads to increased ethanol accumulation,which will reduce the efficiency of glucose utilization and inhibit product synthesis.Insufficient glucose addition limits cell growth.To properly regulate glucose feed,a different evolution algorithm based on self-adaptive control strategy was proposed,consisting of three modules(PID,system identification and parameter optimization).Performance of the proposed and conventional PID controllers was validated and compared in simulated and experimental cultivations.In the simulation,cultivation with the self-adaptive control strategy had a more stable glucose feed rate and concentration,more stable ethanol concentration around the set-point(1.0 g·L^(-1)),and final biomass concentration of 34.5 g-DCW·L^(-1),29.2%higher than that with a conventional PID control strategy.In the experiment,the cultivation with the self-adaptive control strategy also had more stable glucose and ethanol concentrations,as well as a final biomass concentration that was 37.4%higher than that using the conventional strategy.展开更多
Control parameters of original differential evolution (DE) are kept fixed throughout the entire evolutionary process. However, it is not an easy task to properly set control parameters in DE for different optiinizat...Control parameters of original differential evolution (DE) are kept fixed throughout the entire evolutionary process. However, it is not an easy task to properly set control parameters in DE for different optiinization problems. According to the relative position of two different individual vectors selected to generate a difference vector in the searching place, a self-adapting strategy for the scale factor F of the difference vector is proposed. In terms of the convergence status of the target vector in the current population, a self-adapting crossover probability constant CR strategy is proposed. Therefore, good target vectors have a lower CFI while worse target vectors have a large CFI. At the same time, the mutation operator is modified to improve the convergence speed. The performance of these proposed approaches are studied with the use of some benchmark problems and applied to the trajectory planning of a three-joint redundant manipulator. Finally, the experiment results show that the proposed approaches can greatly improve robustness and convergence speed.展开更多
Differential evolution(DE) demonstrates good convergence performance,but it is difficult to choose trial vector generation strategies and associated control parameter values.An improved method,self-adapting scalable D...Differential evolution(DE) demonstrates good convergence performance,but it is difficult to choose trial vector generation strategies and associated control parameter values.An improved method,self-adapting scalable DE(SSDE) algorithm,is proposed.Trial vector generation strategies and crossover probability are respectively self-adapted by two operators in this algorithm.Meanwhile,to enhance the convergence rate,vectors selected randomly with the optimal fitness values are introduced to guide searching direction.Benchmark problems are used to verify this algorithm.Compared with other well-known DE algorithms,experiment results indicate that this algorithm is better than other DE algorithms in terms of convergence rate and quality of optimization.展开更多
This paper studies the difference algorithm parameters characteristic of the multicast routing problem, and to compare it with genetic algorithms. The algorithm uses the path of individual coding, combined with the di...This paper studies the difference algorithm parameters characteristic of the multicast routing problem, and to compare it with genetic algorithms. The algorithm uses the path of individual coding, combined with the differential cross-choice strategy and operations optimization. Finally, we simulated 30 node networks, and compared the performance of genetic algorithm and differential evolution algorithm. Experimental results show that multi-strategy Differential Evolution algorithm converges faster and better global search ability and stability.展开更多
To solve dynamic optimization problem of chemical process (CPDOP), a hybrid differential evolution algorithm, which is integrated with Alopex and named as Alopex-DE, was proposed. In Alopex-DE, each original individua...To solve dynamic optimization problem of chemical process (CPDOP), a hybrid differential evolution algorithm, which is integrated with Alopex and named as Alopex-DE, was proposed. In Alopex-DE, each original individual has its own symbiotic individual, which consists of control parameters. Differential evolution operator is applied for the original individuals to search the global optimization solution. Alopex algorithm is used to co-evolve the symbiotic individuals during the original individual evolution and enhance the fitness of the original individuals. Thus, control parameters are self-adaptively adjusted by Alopex to obtain the real-time optimum values for the original population. To illustrate the whole performance of Alopex-DE, several varietal DEs were applied to optimize 13 benchmark functions. The results show that the whole performance of Alopex-DE is the best. Further, Alopex-DE was applied to solve 4 typical CPDOPs, and the effect of the discrete time degree on the optimization solution was analyzed. The satisfactory result is obtained.展开更多
The Rosenbrock function optimization belongs to unconstrained optimization problems, and its global minimum value is located at the bottom of a smooth and narrow valley of the parabolic shape. It is very difficult to ...The Rosenbrock function optimization belongs to unconstrained optimization problems, and its global minimum value is located at the bottom of a smooth and narrow valley of the parabolic shape. It is very difficult to find the global minimum value of the function because of the little information provided for the optimization algorithm. According to the characteristics of the Rosenbrock function, this paper specifically proposed an improved differential evolution algorithm that adopts the self-adaptive scaling factor F and crossover rate CR with elimination mechanism, which can effectively avoid premature convergence of the algorithm and local optimum. This algorithm can also expand the search range at an early stage to find the global minimum of the Rosenbrock function. Many experimental results show that the algorithm has good performance of function optimization and provides a new idea for optimization problems similar to the Rosenbrock function for some problems of special fields.展开更多
A modified harmony search algorithm with co-evolutional control parameters(DEHS), applied through differential evolution optimization, is proposed. In DEHS, two control parameters, i.e., harmony memory considering rat...A modified harmony search algorithm with co-evolutional control parameters(DEHS), applied through differential evolution optimization, is proposed. In DEHS, two control parameters, i.e., harmony memory considering rate and pitch adjusting rate, are encoded as a symbiotic individual of an original individual(i.e., harmony vector). Harmony search operators are applied to evolving the original population. DE is applied to co-evolving the symbiotic population based on feedback information from the original population. Thus, with the evolution of the original population in DEHS, the symbiotic population is dynamically and self-adaptively adjusted, and real-time optimum control parameters are obtained. The proposed DEHS algorithm has been applied to various benchmark functions and two typical dynamic optimization problems. The experimental results show that the performance of the proposed algorithm is better than that of other HS variants. Satisfactory results are obtained in the application.展开更多
Injection molding machine,hydraulic elevator,speed actuators belong to variable speed pump control cylinder system.Because variable speed pump control cylinder system is a nonlinear hydraulic system,it has some proble...Injection molding machine,hydraulic elevator,speed actuators belong to variable speed pump control cylinder system.Because variable speed pump control cylinder system is a nonlinear hydraulic system,it has some problems such as response lag and poor steady-state accuracy.To solve these problems,for the hydraulic cylinder of injection molding machine driven by the servo motor,a fractional order proportion-integration-diferentiation(FOPID)control strategy is proposed to realize the speed tracking control.Combined with the adaptive differential evolution algorithm,FOPID control strategy is used to determine the parameters of controller on line based on the test on the servo-motor-driven gear-pump-controlled hydraulic cylinder injection molding machine.Then the slef-adaptive differential evolution fractional order PID controller(SADE-FOPID)model of variable speed pump-controlled hydraulic cylinder is established in the test system with simulated loading.The simulation results show that compared with the classical PID control,the FOPID has better steady-state accuracy and fast response when the control parameters are optimized by the adaptive differential evolution algorithm.Experimental results show that SADE-FOPID control strategy is effective and feasible,and has good anti-load disturbance performance.展开更多
To implement self-adaptive control parameters, a hybrid differential evolution algorithm integrated with particle swarm optimization (PSODE) is proposed. In the PSODE, control parameters are encoded to be a symbioti...To implement self-adaptive control parameters, a hybrid differential evolution algorithm integrated with particle swarm optimization (PSODE) is proposed. In the PSODE, control parameters are encoded to be a symbiotic individual of original individual, and each original individual has its own symbiotic individual. Differential evolution ( DE) operators are used to evolve the original population. And, particle swarm optimization (PSO) is applied to co-evolving the symbiotic population. Thus, with the evolution of the original population in PSODE, the symbiotic population is dynamically and self-adaptively adjusted and the realtime optimum control parameters are obtained. The proposed algorithm is compared with some DE variants on nine functious. The results show that the average performance of PSODE is the best.展开更多
Differential evolution algorithm based on the covariance matrix learning can adjust the coordinate system according to the characteristics of the population, which make<span style="font-family:Verdana;"&g...Differential evolution algorithm based on the covariance matrix learning can adjust the coordinate system according to the characteristics of the population, which make<span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> the search move in a more favorable direction. In order to obtain more accurate information about the function shape, this paper propose</span><span style="font-family:Verdana;">s</span><span style="font-family:;" "=""> <span style="font-family:Verdana;">covariance</span><span style="font-family:Verdana;"> matrix learning differential evolution algorithm based on correlation (denoted as RCLDE)</span></span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">to improve the search efficiency of the algorithm. First, a hybrid mutation strategy is designed to balance the diversity and convergence of the population;secondly, the covariance learning matrix is constructed by selecting the individual with the less correlation;then, a comprehensive learning mechanism is comprehensively designed by two covariance matrix learning mechanisms based on the principle of probability. Finally,</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">the algorithm is tested on the CEC2005, and the experimental results are compared with other effective differential evolution algorithms. The experimental results show that the algorithm proposed in this paper is </span><span style="font-family:Verdana;">an effective algorithm</span><span style="font-family:Verdana;">.</span></span>展开更多
In this paper, the mixed H-two/H-infinity control synthesis problem is stated as a multiobjective opti-mization problem, with objectives of minimizing the H-two and H-infinity norms simultaneously. Instead of building...In this paper, the mixed H-two/H-infinity control synthesis problem is stated as a multiobjective opti-mization problem, with objectives of minimizing the H-two and H-infinity norms simultaneously. Instead of building a LMIs-based synthesis algorithm, a self-adaptive control parameter multiobjective differential evolution algorithm is developed directly in the controller parameters space. In the case of systems with polytopic uncertainties, the worst case norm computation is formulated as an implicit optimization problem, and the proposed self-adaptive differential evolution is employed to calculate the worst case H-two and H-infinity norms. The numerical examples illustrate the power and validity of the proposed approach for the mixed H-two/H-infinity control multiobjective optimal design.展开更多
A new optimization method is proposed to realize the synthesis of duplexers.The traditional optimization method takes all the variables of the duplexer into account,resulting in too many variables to be optimized when...A new optimization method is proposed to realize the synthesis of duplexers.The traditional optimization method takes all the variables of the duplexer into account,resulting in too many variables to be optimized when the order of the duplexer is too high,so it is not easy to fall into the local solution.In order to solve this problem,a new optimization strategy is proposed in this paper,that is,two-channel filters are optimized separately,which can reduce the number of optimization variables and greatly reduce the probability of results falling into local solutions.The optimization method combines the self-adaptive differential evolution algorithm(SADE)with the Levenberg-Marquardt(LM)algorithm to get a global solution more easily and accelerate the optimization speed.To verify its practical value,we design a 5 G duplexer based on the proposed method.The duplexer has a large external coupling,and how to achieve a feed structure with a large coupling bandwidth at the source is also discussed.The experimental results show that the proposed optimization method can realize the synthesis of higher-order duplexers compared with the traditional methods.展开更多
基金supported by the National Key R&D Program of the MOST of China(No.2016YFA0300204)the National Natural Science Foundation of China(Nos.11227902)as part of the Si PáME2beamline project+1 种基金supported by the National Natural Science Foundation of China(No.41774120)the Sichuan Science and Technology Program(No.2021YJ0329)。
文摘A self-adaptive differential evolution neutron spectrum unfolding algorithm(SDENUA)is established in this study to unfold the neutron spectra obtained from a water-pumping-injection multilayered concentric sphere neutron spectrometer(WMNS).Specifically,the neutron fluence bounds are estimated to accelerate the algorithm convergence,and the minimum error between the optimal solution and input neutron counts with relative uncertainties is limited to 10^(-6)to avoid unnecessary calculations.Furthermore,the crossover probability and scaling factor are self-adaptively controlled.FLUKA Monte Carlo is used to simulate the readings of the WMNS under(1)a spectrum of Cf-252 and(2)its spectrum after being moderated,(3)a spectrum used for boron neutron capture therapy,and(4)a reactor spectrum.Subsequently,the measured neutron counts are unfolded using the SDENUA.The uncertainties of the measured neutron count and the response matrix are considered in the SDENUA,which does not require complex parameter tuning or an a priori default spectrum.The results indicate that the solutions of the SDENUA agree better with the IAEA spectra than those of MAXED and GRAVEL in UMG 3.1,and the errors of the final results calculated using the SDENUA are less than 12%.The established SDENUA can be used to unfold spectra from the WMNS.
基金Supported by the Shanghai Second Polytechnic University Key Discipline Construction-Control Theory & Control Engineering(No.XXKPY1609)the National Natural Science Foundation of China(61422303)+1 种基金Shanghai Talent Development Funding(H200-2R-15111)2017 Shanghai Second Polytechnic University Cultivation Research Program of Young Teachers(02)
文摘The rise in the use of global polyester fiber contributed to strong demand of the Terephthalic acid (TPA). The liquid-phase catalytic oxidation of p-xylene (PX) to TPA is regarded as a critical and efficient chemical process in industry [ 1 ]. PX oxidation reaction involves many complex side reactions, among which acetic acid combustion and PX combustion are the most important. As the target product of this oxidation process, the quality and yield of TPA are of great concern. However, the improvement of the qualified product yield can bring about the high energy consumption, which means that the economic objectives of this process cannot be achieved simulta- neously because the two objectives are in conflict with each other. In this paper, an improved self-adaptive multi-objective differential evolution algorithm was proposed to handle the multi-objective optimization prob- lems. The immune concept is introduced to the self-adaptive multi-objective differential evolution algorithm (SADE) to strengthen the local search ability and optimization accuracy. The proposed algorithm is successfully tested on several benchmark test problems, and the performance measures such as convergence and divergence metrics are calculated. Subsequently, the multi-objective optimization of an industrial PX oxidation process is carried out using the proposed immune self-adaptive multi-objective differential evolution algorithm (ISADE). Optimization results indicate that application oflSADE can greatly improve the yield of TPA with low combustion loss without degenerating TA quality.
文摘In the fed-batch cultivation of Saccharomyces cerevisiae,excessive glucose addition leads to increased ethanol accumulation,which will reduce the efficiency of glucose utilization and inhibit product synthesis.Insufficient glucose addition limits cell growth.To properly regulate glucose feed,a different evolution algorithm based on self-adaptive control strategy was proposed,consisting of three modules(PID,system identification and parameter optimization).Performance of the proposed and conventional PID controllers was validated and compared in simulated and experimental cultivations.In the simulation,cultivation with the self-adaptive control strategy had a more stable glucose feed rate and concentration,more stable ethanol concentration around the set-point(1.0 g·L^(-1)),and final biomass concentration of 34.5 g-DCW·L^(-1),29.2%higher than that with a conventional PID control strategy.In the experiment,the cultivation with the self-adaptive control strategy also had more stable glucose and ethanol concentrations,as well as a final biomass concentration that was 37.4%higher than that using the conventional strategy.
基金This work was supported by the National Natural Science Foundation of China(No.60375001)the High School Doctoral Foundation of China(NO.20030532004).
文摘Control parameters of original differential evolution (DE) are kept fixed throughout the entire evolutionary process. However, it is not an easy task to properly set control parameters in DE for different optiinization problems. According to the relative position of two different individual vectors selected to generate a difference vector in the searching place, a self-adapting strategy for the scale factor F of the difference vector is proposed. In terms of the convergence status of the target vector in the current population, a self-adapting crossover probability constant CR strategy is proposed. Therefore, good target vectors have a lower CFI while worse target vectors have a large CFI. At the same time, the mutation operator is modified to improve the convergence speed. The performance of these proposed approaches are studied with the use of some benchmark problems and applied to the trajectory planning of a three-joint redundant manipulator. Finally, the experiment results show that the proposed approaches can greatly improve robustness and convergence speed.
基金National Natural Science Foundation of China (No. 70971020)
文摘Differential evolution(DE) demonstrates good convergence performance,but it is difficult to choose trial vector generation strategies and associated control parameter values.An improved method,self-adapting scalable DE(SSDE) algorithm,is proposed.Trial vector generation strategies and crossover probability are respectively self-adapted by two operators in this algorithm.Meanwhile,to enhance the convergence rate,vectors selected randomly with the optimal fitness values are introduced to guide searching direction.Benchmark problems are used to verify this algorithm.Compared with other well-known DE algorithms,experiment results indicate that this algorithm is better than other DE algorithms in terms of convergence rate and quality of optimization.
文摘This paper studies the difference algorithm parameters characteristic of the multicast routing problem, and to compare it with genetic algorithms. The algorithm uses the path of individual coding, combined with the differential cross-choice strategy and operations optimization. Finally, we simulated 30 node networks, and compared the performance of genetic algorithm and differential evolution algorithm. Experimental results show that multi-strategy Differential Evolution algorithm converges faster and better global search ability and stability.
基金Project(2013CB733600) supported by the National Basic Research Program of ChinaProject(21176073) supported by the National Natural Science Foundation of China+2 种基金Project(20090074110005) supported by Doctoral Fund of Ministry of Education of ChinaProject(NCET-09-0346) supported by Program for New Century Excellent Talents in University of ChinaProject(09SG29) supported by "Shu Guang", China
文摘To solve dynamic optimization problem of chemical process (CPDOP), a hybrid differential evolution algorithm, which is integrated with Alopex and named as Alopex-DE, was proposed. In Alopex-DE, each original individual has its own symbiotic individual, which consists of control parameters. Differential evolution operator is applied for the original individuals to search the global optimization solution. Alopex algorithm is used to co-evolve the symbiotic individuals during the original individual evolution and enhance the fitness of the original individuals. Thus, control parameters are self-adaptively adjusted by Alopex to obtain the real-time optimum values for the original population. To illustrate the whole performance of Alopex-DE, several varietal DEs were applied to optimize 13 benchmark functions. The results show that the whole performance of Alopex-DE is the best. Further, Alopex-DE was applied to solve 4 typical CPDOPs, and the effect of the discrete time degree on the optimization solution was analyzed. The satisfactory result is obtained.
文摘The Rosenbrock function optimization belongs to unconstrained optimization problems, and its global minimum value is located at the bottom of a smooth and narrow valley of the parabolic shape. It is very difficult to find the global minimum value of the function because of the little information provided for the optimization algorithm. According to the characteristics of the Rosenbrock function, this paper specifically proposed an improved differential evolution algorithm that adopts the self-adaptive scaling factor F and crossover rate CR with elimination mechanism, which can effectively avoid premature convergence of the algorithm and local optimum. This algorithm can also expand the search range at an early stage to find the global minimum of the Rosenbrock function. Many experimental results show that the algorithm has good performance of function optimization and provides a new idea for optimization problems similar to the Rosenbrock function for some problems of special fields.
基金Project(2013CB733605)supported by the National Basic Research Program of ChinaProject(21176073)supported by the National Natural Science Foundation of China
文摘A modified harmony search algorithm with co-evolutional control parameters(DEHS), applied through differential evolution optimization, is proposed. In DEHS, two control parameters, i.e., harmony memory considering rate and pitch adjusting rate, are encoded as a symbiotic individual of an original individual(i.e., harmony vector). Harmony search operators are applied to evolving the original population. DE is applied to co-evolving the symbiotic population based on feedback information from the original population. Thus, with the evolution of the original population in DEHS, the symbiotic population is dynamically and self-adaptively adjusted, and real-time optimum control parameters are obtained. The proposed DEHS algorithm has been applied to various benchmark functions and two typical dynamic optimization problems. The experimental results show that the performance of the proposed algorithm is better than that of other HS variants. Satisfactory results are obtained in the application.
基金National Natural Science Foundation of China(No.51675399)。
文摘Injection molding machine,hydraulic elevator,speed actuators belong to variable speed pump control cylinder system.Because variable speed pump control cylinder system is a nonlinear hydraulic system,it has some problems such as response lag and poor steady-state accuracy.To solve these problems,for the hydraulic cylinder of injection molding machine driven by the servo motor,a fractional order proportion-integration-diferentiation(FOPID)control strategy is proposed to realize the speed tracking control.Combined with the adaptive differential evolution algorithm,FOPID control strategy is used to determine the parameters of controller on line based on the test on the servo-motor-driven gear-pump-controlled hydraulic cylinder injection molding machine.Then the slef-adaptive differential evolution fractional order PID controller(SADE-FOPID)model of variable speed pump-controlled hydraulic cylinder is established in the test system with simulated loading.The simulation results show that compared with the classical PID control,the FOPID has better steady-state accuracy and fast response when the control parameters are optimized by the adaptive differential evolution algorithm.Experimental results show that SADE-FOPID control strategy is effective and feasible,and has good anti-load disturbance performance.
基金National Key Basic Research Project of China(973 program)(No.2013CB733600)National Natural Science Foundation of China(No.21176073)+1 种基金Program for New Century Excellent Talents in University,China(No.NCET-09-0346)the Fundamental Research Funds for the Central Universities,China
文摘To implement self-adaptive control parameters, a hybrid differential evolution algorithm integrated with particle swarm optimization (PSODE) is proposed. In the PSODE, control parameters are encoded to be a symbiotic individual of original individual, and each original individual has its own symbiotic individual. Differential evolution ( DE) operators are used to evolve the original population. And, particle swarm optimization (PSO) is applied to co-evolving the symbiotic population. Thus, with the evolution of the original population in PSODE, the symbiotic population is dynamically and self-adaptively adjusted and the realtime optimum control parameters are obtained. The proposed algorithm is compared with some DE variants on nine functious. The results show that the average performance of PSODE is the best.
文摘Differential evolution algorithm based on the covariance matrix learning can adjust the coordinate system according to the characteristics of the population, which make<span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> the search move in a more favorable direction. In order to obtain more accurate information about the function shape, this paper propose</span><span style="font-family:Verdana;">s</span><span style="font-family:;" "=""> <span style="font-family:Verdana;">covariance</span><span style="font-family:Verdana;"> matrix learning differential evolution algorithm based on correlation (denoted as RCLDE)</span></span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">to improve the search efficiency of the algorithm. First, a hybrid mutation strategy is designed to balance the diversity and convergence of the population;secondly, the covariance learning matrix is constructed by selecting the individual with the less correlation;then, a comprehensive learning mechanism is comprehensively designed by two covariance matrix learning mechanisms based on the principle of probability. Finally,</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">the algorithm is tested on the CEC2005, and the experimental results are compared with other effective differential evolution algorithms. The experimental results show that the algorithm proposed in this paper is </span><span style="font-family:Verdana;">an effective algorithm</span><span style="font-family:Verdana;">.</span></span>
基金supported by the National Natural Science Foundation of China (Nos. 61203309, 61104088, 60835004)the Scientific Research Fund of Hunan Provincial Education Department (No. 12B043)+2 种基金the Natural Science Foundation of Hunan Province (No. 10JJ9007)the Industry-University-Research Combination Innovation Platform of Hunan Province (No. 2010XK6066)the Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province
文摘In this paper, the mixed H-two/H-infinity control synthesis problem is stated as a multiobjective opti-mization problem, with objectives of minimizing the H-two and H-infinity norms simultaneously. Instead of building a LMIs-based synthesis algorithm, a self-adaptive control parameter multiobjective differential evolution algorithm is developed directly in the controller parameters space. In the case of systems with polytopic uncertainties, the worst case norm computation is formulated as an implicit optimization problem, and the proposed self-adaptive differential evolution is employed to calculate the worst case H-two and H-infinity norms. The numerical examples illustrate the power and validity of the proposed approach for the mixed H-two/H-infinity control multiobjective optimal design.
基金supported by the National Natural Science Foundation of China(NSFC)under project no.62071357the Fundamental Research Funds for the Central Unive rsities。
文摘A new optimization method is proposed to realize the synthesis of duplexers.The traditional optimization method takes all the variables of the duplexer into account,resulting in too many variables to be optimized when the order of the duplexer is too high,so it is not easy to fall into the local solution.In order to solve this problem,a new optimization strategy is proposed in this paper,that is,two-channel filters are optimized separately,which can reduce the number of optimization variables and greatly reduce the probability of results falling into local solutions.The optimization method combines the self-adaptive differential evolution algorithm(SADE)with the Levenberg-Marquardt(LM)algorithm to get a global solution more easily and accelerate the optimization speed.To verify its practical value,we design a 5 G duplexer based on the proposed method.The duplexer has a large external coupling,and how to achieve a feed structure with a large coupling bandwidth at the source is also discussed.The experimental results show that the proposed optimization method can realize the synthesis of higher-order duplexers compared with the traditional methods.