Anti-ship missile coordinated attack mission planning is a complex multi-objective optimization problem with multiple combinations of platforms, strong decision-making constraints,and tightly coupled links. To avoid t...Anti-ship missile coordinated attack mission planning is a complex multi-objective optimization problem with multiple combinations of platforms, strong decision-making constraints,and tightly coupled links. To avoid the coupling disorder between path planning and firepower distribution and improve the efficiency of coordinated attack mission planning, a firepower distribution model under the conditions of path planning is established from the perspective of decoupling optimization and the algorithm is implemented. First, we establish reference coordinate system of firepower distribution to clarify the reference direction of firepower distribution and divide the area of firepower distribution;then, we construct an index table of membership of firepower distribution to obtain alternative firepower distribution plans;finally, the fitness function of firepower distribution is established based on damage income, missile loss,ratio of efficiency and cost of firepower distribution, and the mean square deviation of the number of missiles used, and the alternatives are sorted to obtain the optimal firepower distribution plan. According to two simulation experiments, the method in this paper can effectively solve the many-to-many firepower distribution problem of coupled path planning. Under the premise of ensuring that no path crossing occurs, the optimal global solution can be obtained, and the operability and timeliness are good.展开更多
This paper considers the problem of generating a flight trajectory for a single fixed-wing unmanned combat aerial vehicle (UCAV) performing an air-to-surface multi-target attack (A/SMTA) mission using satellite-gu...This paper considers the problem of generating a flight trajectory for a single fixed-wing unmanned combat aerial vehicle (UCAV) performing an air-to-surface multi-target attack (A/SMTA) mission using satellite-guided bombs. First, this problem is formulated as a variant of the traveling salesman problem (TSP), called the dynamic-constrained TSP with neighborhoods (DCT- SPN). Then, a hierarchical hybrid approach, which partitions the planning algorithm into a roadmap planning layer and an optimal control layer, is proposed to solve the DCTSPN. In the roadmap planning layer, a novel algorithm based on an updatable proba- bilistic roadmap (PRM) is presented, which operates by randomly sampling a finite set of vehicle states from continuous state space in order to reduce the complicated trajectory planning problem to planning on a finite directed graph. In the optimal control layer, a collision-free state-to-state trajectory planner based on the Gauss pseudospectral method is developed, which can generate both dynamically feasible and optimal flight trajectories. The entire process of solving a DCTSPN consists of two phases. First, in the offline preprocessing phase, the algorithm constructs a PRM, and then converts the original problem into a standard asymmet- ric TSP (ATSP). Second, in the online querying phase, the costs of directed edges in PRM are updated first, and a fast heuristic searching algorithm is then used to solve the ATSP. Numerical experiments indicate that the algorithm proposed in this paper can generate both feasible and near-optimal solutions quickly for online purposes.展开更多
基金supported by the Natural Science Foundation of Hunan Province (2020JJ4339)the Scientific Research Fund of Hunan Provincial Education Department (20B272)。
文摘Anti-ship missile coordinated attack mission planning is a complex multi-objective optimization problem with multiple combinations of platforms, strong decision-making constraints,and tightly coupled links. To avoid the coupling disorder between path planning and firepower distribution and improve the efficiency of coordinated attack mission planning, a firepower distribution model under the conditions of path planning is established from the perspective of decoupling optimization and the algorithm is implemented. First, we establish reference coordinate system of firepower distribution to clarify the reference direction of firepower distribution and divide the area of firepower distribution;then, we construct an index table of membership of firepower distribution to obtain alternative firepower distribution plans;finally, the fitness function of firepower distribution is established based on damage income, missile loss,ratio of efficiency and cost of firepower distribution, and the mean square deviation of the number of missiles used, and the alternatives are sorted to obtain the optimal firepower distribution plan. According to two simulation experiments, the method in this paper can effectively solve the many-to-many firepower distribution problem of coupled path planning. Under the premise of ensuring that no path crossing occurs, the optimal global solution can be obtained, and the operability and timeliness are good.
文摘This paper considers the problem of generating a flight trajectory for a single fixed-wing unmanned combat aerial vehicle (UCAV) performing an air-to-surface multi-target attack (A/SMTA) mission using satellite-guided bombs. First, this problem is formulated as a variant of the traveling salesman problem (TSP), called the dynamic-constrained TSP with neighborhoods (DCT- SPN). Then, a hierarchical hybrid approach, which partitions the planning algorithm into a roadmap planning layer and an optimal control layer, is proposed to solve the DCTSPN. In the roadmap planning layer, a novel algorithm based on an updatable proba- bilistic roadmap (PRM) is presented, which operates by randomly sampling a finite set of vehicle states from continuous state space in order to reduce the complicated trajectory planning problem to planning on a finite directed graph. In the optimal control layer, a collision-free state-to-state trajectory planner based on the Gauss pseudospectral method is developed, which can generate both dynamically feasible and optimal flight trajectories. The entire process of solving a DCTSPN consists of two phases. First, in the offline preprocessing phase, the algorithm constructs a PRM, and then converts the original problem into a standard asymmet- ric TSP (ATSP). Second, in the online querying phase, the costs of directed edges in PRM are updated first, and a fast heuristic searching algorithm is then used to solve the ATSP. Numerical experiments indicate that the algorithm proposed in this paper can generate both feasible and near-optimal solutions quickly for online purposes.