As the risks associated with air turbulence are intensified by climate change and the growth of the aviation industry,it has become imperative to monitor and mitigate these threats to ensure civil aviation safety.The ...As the risks associated with air turbulence are intensified by climate change and the growth of the aviation industry,it has become imperative to monitor and mitigate these threats to ensure civil aviation safety.The eddy dissipation rate(EDR)has been established as the standard metric for quantifying turbulence in civil aviation.This study aims to explore a universally applicable symbolic classification approach based on genetic programming to detect turbulence anomalies using quick access recorder(QAR)data.The detection of atmospheric turbulence is approached as an anomaly detection problem.Comparative evaluations demonstrate that this approach performs on par with direct EDR calculation methods in identifying turbulence events.Moreover,comparisons with alternative machine learning techniques indicate that the proposed technique is the optimal methodology currently available.In summary,the use of symbolic classification via genetic programming enables accurate turbulence detection from QAR data,comparable to that with established EDR approaches and surpassing that achieved with machine learning algorithms.This finding highlights the potential of integrating symbolic classifiers into turbulence monitoring systems to enhance civil aviation safety amidst rising environmental and operational hazards.展开更多
Dear Editor,This letter concerns the development of approximately bi-similar symbolic models for a discrete-time interconnected switched system(DT-ISS).The DT-ISS under consideration is formed by connecting multiple s...Dear Editor,This letter concerns the development of approximately bi-similar symbolic models for a discrete-time interconnected switched system(DT-ISS).The DT-ISS under consideration is formed by connecting multiple switched systems known as component switched systems(CSSs).Although the problem of constructing approximately bi-similar symbolic models for DT-ISS has been addressed in some literature,the previous works have relied on the assumption that all the subsystems of CSSs are incrementally input-state stable.展开更多
Cultural symbols,a manifestation of cities’cultural resources,are not only signs that frame concepts but also forms that express meanings.Exploring the international communication of cities from the perspective of sy...Cultural symbols,a manifestation of cities’cultural resources,are not only signs that frame concepts but also forms that express meanings.Exploring the international communication of cities from the perspective of symbols,this paper analyzes in depth how cities create their cultural symbols in the dynamic process of international communication in an era of symbol-based digital media,and how they develop their narratives and explain meanings through the dissemination of symbols when telling their stories to international audiences,thus enhancing the efficiency and effectiveness of their international communication efforts.展开更多
The article takes the famous modern American Jewish writer Bernard Malamud’s novel The Magic Barrel as the object of study,and uses symbolism to interpret it,analyzing it one by one in terms of the magic barrel,the c...The article takes the famous modern American Jewish writer Bernard Malamud’s novel The Magic Barrel as the object of study,and uses symbolism to interpret it,analyzing it one by one in terms of the magic barrel,the colors,the seasons and the windows,respectively,so as to reveal the process of getting rid of the childishness within the novel’s male protagonist,Leo Finkel,who is maturing,as well as the novel’s Jewish theme of searching for the soul of the self.展开更多
Background:Choerospondias axillaris(CA)is a traditional Mongolian medicine that has been proven to have a good therapeutic effect on cerebrovascular disease.Cerebral Ischemia(CI)is a severe and life-threatening cerebr...Background:Choerospondias axillaris(CA)is a traditional Mongolian medicine that has been proven to have a good therapeutic effect on cerebrovascular disease.Cerebral Ischemia(CI)is a severe and life-threatening cerebrovascular disease.However,the specific mechanism of action of CA in the treatment of CI is still unclear.Methods:In this study,the related targets and pathways of CA in the treatment of CI were first predicted by system pharmacology and then verified by relevant experiments.Results:The results showed that 12 active ingredients and 208 targets were selected.Further validation through protein-protein interaction(PPI)network analysis and active ingredients-target-pathway(A-T-P)network analysis has confirmed the pivotal roles of the main bioactive constituents,including quercetin,kaempferol,naringin,β-sitosterol,and gallic acid.These components exert their anti-ischemic effects by modulating key targets such as IL6,TNF,MAPK3,and CASP3,thereby regulating the PI3K-Akt,HIF-1,and MAPK signaling pathways,which are integral to processes like inflammation,apoptosis,and oxidative stress.More importantly,through experimental verification,this study confirmed our prediction that CAE significantly reduced neurological function scores,infarct volume,and the percentage of apoptosis neurons.Conclusion:This indicates that CA acts on CI through multi-target synergistic mechanism,and this study provides theoretical basis for the clinical application of CA.展开更多
Aiming at the problems of low efficiency,poor anti-noise and robustness of transfer learning model in intelligent fault diagnosis of rotating machinery,a new method of intelligent fault diagnosis of rotating machinery...Aiming at the problems of low efficiency,poor anti-noise and robustness of transfer learning model in intelligent fault diagnosis of rotating machinery,a new method of intelligent fault diagnosis of rotating machinery based on single source and multi-target domain adversarial network model(WDMACN)and Gram Angle Product field(GAPF)was proposed.Firstly,the original one-dimensional vibration signal is preprocessed using GAPF to generate the image data including all time series.Secondly,the residual network is used to extract data features,and the features of the target domain without labels are pseudo-labeled,and the transferable features among the feature extractors are shared through the depth parameter,and the feature extractors of the multi-target domain are updated anatomically to generate the features that the discriminator cannot distinguish.The modelt through adversarial domain adaptation,thus achieving fault classification.Finally,a large number of validations were carried out on the bearing data set of Case Western Reserve University(CWRU)and the gear data.The results show that the proposed method can greatly improve the diagnostic efficiency of the model,and has good noise resistance and generalization.展开更多
The Altomani&Sons Collection owns a remarkable newly discovered portrait of Guidobaldo II della Rovere,Duke of Urbino(1514-1574),a historical military figure who was a condottiere,ruler of Urbino,Commander-in-chie...The Altomani&Sons Collection owns a remarkable newly discovered portrait of Guidobaldo II della Rovere,Duke of Urbino(1514-1574),a historical military figure who was a condottiere,ruler of Urbino,Commander-in-chief of the Papal Estate,and Perfect of Rome,as well as a collector and patron of the Fine Arts.Camilla Guerrieri Nati(1628-1694),a seventeenth-century Italian painter from Fossombrone(in the province of Pesaro and Urbino),portrayed this heroic personage surrounded by emblems associated with his military courage and leadership,including his plumed burgonet helmet,metal gilded armor,a necklace with the golden fleece,and batons of secular and religious dominions.This oil painting on copper-considered a precious metal at the time-emphasizes the importance of the commission.The material and technique also reveals a unique artistic achievement in that it provides the painting with a smooth,reflective surface and vibrant coloration,symbolizing precious imagery.展开更多
BACKGROUND Colorectal cancer(CRC)is a major global health burden.The current diagnostic tests have shortcomings of being invasive and low accuracy.AIM To explore the combination of intestinal microbiome composition an...BACKGROUND Colorectal cancer(CRC)is a major global health burden.The current diagnostic tests have shortcomings of being invasive and low accuracy.AIM To explore the combination of intestinal microbiome composition and multi-target stool DNA(MT-sDNA)test in the diagnosis of CRC.METHODS We assessed the performance of the MT-sDNA test based on a hospital clinical trial.The intestinal microbiota was tested using 16S rRNA gene sequencing.This case-control study enrolled 54 CRC patients and 51 healthy controls.We identified biomarkers of bacterial structure,analyzed the relationship between different tumor markers and the relative abundance of related flora components,and distinguished CRC patients from healthy subjects by the linear discriminant analysis effect size,redundancy analysis,and random forest analysis.RESULTS MT-sDNA was associated with Bacteroides.MT-sDNA and carcinoembryonic antigen(CEA)were positively correlated with the existence of Parabacteroides,and alpha-fetoprotein(AFP)was positively associated with Faecalibacterium and Megamonas.In the random forest model,the existence of Streptococcus,Escherichia,Chitinophaga,Parasutterella,Lachnospira,and Romboutsia can distinguish CRC from health controls.The diagnostic accuracy of MT-sDNA combined with the six genera and CEA in the diagnosis of CRC was 97.1%,with a sensitivity and specificity of 98.1%and 92.3%,respectively.CONCLUSION There is a positive correlation of MT-sDNA,CEA,and AFP with intestinal microbiome.Eight biomarkers including six genera of gut microbiota,MT-sDNA,and CEA showed a prominent sensitivity and specificity for CRC prediction,which could be used as a non-invasive method for improving the diagnostic accuracy for this malignancy.展开更多
Machine learning(ML)has powerful nonlinear processing and multivariate learning capabilities,so it has been widely utilised in the fatigue field.However,most ML methods are inexplicable black-box models that are diffi...Machine learning(ML)has powerful nonlinear processing and multivariate learning capabilities,so it has been widely utilised in the fatigue field.However,most ML methods are inexplicable black-box models that are difficult to apply in engineering practice.Symbolic regression(SR)is an interpretable machine learning method for determining the optimal fitting equation for datasets.In this study,domain knowledge-guided SR was used to determine a new fatigue crack growth(FCG)rate model.Three terms of the variable subtree ofΔK,R-ratio,andΔK_(th)were obtained by analysing eight traditional semi-empirical FCG rate models.Based on the FCG rate test data from other literature,the SR model was constructed using Al-7055-T7511.It was subsequently extended to other alloys(Ti-10V-2Fe-3Al,Ti-6Al-4V,Cr-Mo-V,LC9cs,Al-6013-T651,and Al-2324-T3)using multiple linear regression.Compared with the three semi-empirical FCG rate models,the SR model yielded higher prediction accuracy.This result demonstrates the potential of domain knowledge-guided SR for building the FCG rate model.展开更多
The netted radar system(NRS)has been proved to possess unique advantages in anti-jamming and improving target tracking performance.Effective resource management can greatly ensure the combat capability of the NRS.In t...The netted radar system(NRS)has been proved to possess unique advantages in anti-jamming and improving target tracking performance.Effective resource management can greatly ensure the combat capability of the NRS.In this paper,based on the netted collocated multiple input multiple output(CMIMO)radar,an effective joint target assignment and power allocation(JTAPA)strategy for tracking multi-targets under self-defense blanket jamming is proposed.An architecture based on the distributed fusion is used in the radar network to estimate target state parameters.By deriving the predicted conditional Cramer-Rao lower bound(PC-CRLB)based on the obtained state estimation information,the objective function is formulated.To maximize the worst case tracking accuracy,the proposed JTAPA strategy implements an online target assignment and power allocation of all active nodes,subject to some resource constraints.Since the formulated JTAPA is non-convex,we propose an efficient two-step solution strategy.In terms of the simulation results,the proposed algorithm can effectively improve tracking performance in the worst case.展开更多
To improve the tracking accuracy of persons in the surveillance video,we proposed an algorithm for multi-target tracking persons based on deep learning.In this paper,we used You Only Look Once v5(YOLOv5)to obtain pers...To improve the tracking accuracy of persons in the surveillance video,we proposed an algorithm for multi-target tracking persons based on deep learning.In this paper,we used You Only Look Once v5(YOLOv5)to obtain person targets of each frame in the video and used Simple Online and Realtime Tracking with a Deep Association Metric(DeepSORT)to do cascade matching and Intersection Over Union(IOU)matching of person targets between different frames.To solve the IDSwitch problem caused by the low feature extraction ability of the Re-Identification(ReID)network in the process of cascade matching,we introduced Spatial Relation-aware Global Attention(RGA-S)and Channel Relation-aware Global Attention(RGA-C)attention mechanisms into the network structure.The pre-training weights are loaded for Transfer Learning training on the dataset CUHK03.To enhance the discrimination performance of the network,we proposed a new loss function design method,which introduces the Hard-Negative-Mining way into the benchmark triplet loss.To improve the classification accuracy of the network,we introduced a Label-Smoothing regularization method to the cross-entropy loss.To facilitate the model’s convergence stability and convergence speed at the early training stage and to prevent the model from oscillating around the global optimum due to excessive learning rate at the later stage of training,this paper proposed a learning rate regulation method combining Linear-Warmup and exponential decay.The experimental results on CUHK03 show that the mean Average Precision(mAP)of the improved ReID network is 76.5%.The Top 1 is 42.5%,the Top 5 is 65.4%,and the Top 10 is 74.3%in Cumulative Matching Characteristics(CMC);Compared with the original algorithm,the tracking accuracy of the optimized DeepSORT tracking algorithm is improved by 2.5%,the tracking precision is improved by 3.8%.The number of identity switching is reduced by 25%.The algorithm effectively alleviates the IDSwitch problem,improves the tracking accuracy of persons,and has a high practical value.展开更多
In cellular systems,establishing the initial symbol timing of potential preambles is the first step of a cell search.The envelope fluctuation of the downlink signal hinders the successful timing of conventional symbol...In cellular systems,establishing the initial symbol timing of potential preambles is the first step of a cell search.The envelope fluctuation of the downlink signal hinders the successful timing of conventional symbol timing methods.To solve this problem,a hybrid timing strategy is proposed with two novel detectors,namely the normalized replica-based detector and normalized differential detector.The strategy first detects all potential preambles via the normalized replica-based detector and then employs the normalized differential detector to verify the target preamble,which comes from the target cell and has the highest power.The strategy is unaffected by envelope fluctuation and has computational complexity comparable to that of conventional methods.Simu-lations and real-data tests show that the hybrid timing strategy is robust and practical for initial symbol timing.展开更多
In order to reduce the physical impairment caused by signal distortion,in this paper,we investigate symbol detection with Deep Learning(DL)methods to improve bit-error performance in the optical communication system.M...In order to reduce the physical impairment caused by signal distortion,in this paper,we investigate symbol detection with Deep Learning(DL)methods to improve bit-error performance in the optical communication system.Many DL-based methods have been applied to such systems to improve bit-error performance.Referring to the speech-to-text method of automatic speech recognition,this paper proposes a signal-to-symbol method based on DL and designs a receiver for symbol detection on single-polarized optical communications modes.To realize this detection method,we propose a non-causal temporal convolutional network-assisted receiver to detect symbols directly from the baseband signal,which specifically integrates most modules of the receiver.Meanwhile,we adopt three training approaches for different signal-to-noise ratios.We also apply a parametric rectified linear unit to enhance the noise robustness of the proposed network.According to the simulation experiments,the biterror-rate performance of the proposed method is close to or even superior to that of the conventional receiver and better than the recurrent neural network-based receiver.展开更多
A symbol is an expression of meaning,while blank symbols express special meanings.By focusing on the application of blank symbols in Japanese architecture and indoor designs,we analyzed the aesthetic principles in Jap...A symbol is an expression of meaning,while blank symbols express special meanings.By focusing on the application of blank symbols in Japanese architecture and indoor designs,we analyzed the aesthetic principles in Japanese architecture and indoor designs from the perspective of semiotics,such as“Kongji,”“Emptiness,”and“Dying out,”and their minimalist and pure design concepts.Traditional Chinese culture was also further explored,especially the profound influence of the“Chan sect”and the philosophy of“unity of heaven and mankind”on Japanese architecture and designs.This study aims to facilitate the coexistence and mutual appreciation of Chinese and Japanese architectural designs.展开更多
In the Italian novel Lacci,the young husband abandoned his wife and lived with another woman.Although the marriage has been maintained under the stress of tense relations,friction and cracks have long existed and brok...In the Italian novel Lacci,the young husband abandoned his wife and lived with another woman.Although the marriage has been maintained under the stress of tense relations,friction and cracks have long existed and broken their peaceful life.This betrayal story restores the whole story from three perspectives through the eyes of the husband,the wife,and the memory of two children.It also reveals the indifferent and uncommunicable situations experienced by everyone in the family.The shoelace that appeared repeatedly in this article not only symbolizes the entangled and chaotic relationship between husband and wife,but also symbolizes the parent-child relationship that has long been broken but still tied up with each other;another image,the cat,not only symbolizes the seductive lover in the eyes of the husband,but also represents himself who pursues the satisfaction of desire.At the same time,cat also implies the disintegration of this marriage from inside to outside.In short,in this suffocating marriage novel,shoelace symbolizes order,while cat symbolizes chaos.The cat who keeps breaking in wore away their trust and emotion,and in the end,the two people in marriage can only bind reluctantly with shoelaces and hurt each other.展开更多
Araby is a short story by the famous Irish stream-of-consciousness writer James Joyce.Through a series of images,the novel expresses the theme of the story:the“mental paralysis”of Dubliners and the“spiritual Epiph...Araby is a short story by the famous Irish stream-of-consciousness writer James Joyce.Through a series of images,the novel expresses the theme of the story:the“mental paralysis”of Dubliners and the“spiritual Epiphany”of the little boy,which reflects the spiritual barren of Dubliners at that time.Through the analysis of the symbolic meaning of many images in the work,this paper reveals the social background and religious significance hidden behind the images.展开更多
In the novels, the clothing worn by the characters are symbols made and used by the authors to express the characters’ personality and deepen the theme, and grasping their symbolism helps to enter into the interior o...In the novels, the clothing worn by the characters are symbols made and used by the authors to express the characters’ personality and deepen the theme, and grasping their symbolism helps to enter into the interior of the novels and understand their essence. This paper will analyze and interpret the clothing of typical female characters in The Scarlet Letter, Daisy Miller and Dry September from the perspective of symbolism, so as to illustrate how the symbolism of clothing, as a kind of symbols, shapes the image of the main characters.展开更多
Radial Basis Function Neural Network(RBFNN)ensembles have long suffered from non-efficient training,where incorrect parameter settings can be computationally disastrous.This paper examines different evolutionary algor...Radial Basis Function Neural Network(RBFNN)ensembles have long suffered from non-efficient training,where incorrect parameter settings can be computationally disastrous.This paper examines different evolutionary algorithms for training the Symbolic Radial Basis Function Neural Network(SRBFNN)through the behavior’s integration of satisfiability programming.Inspired by evolutionary algorithms,which can iteratively find the nearoptimal solution,different Evolutionary Algorithms(EAs)were designed to optimize the producer output weight of the SRBFNN that corresponds to the embedded logic programming 2Satisfiability representation(SRBFNN-2SAT).The SRBFNN’s objective function that corresponds to Satisfiability logic programming can be minimized by different algorithms,including Genetic Algorithm(GA),Evolution Strategy Algorithm(ES),Differential Evolution Algorithm(DE),and Evolutionary Programming Algorithm(EP).Each of these methods is presented in the steps in the flowchart form which can be used for its straightforward implementation in any programming language.With the use of SRBFNN-2SAT,a training method based on these algorithms has been presented,then training has been compared among algorithms,which were applied in Microsoft Visual C++software using multiple metrics of performance,including Mean Absolute Relative Error(MARE),Root Mean Square Error(RMSE),Mean Absolute Percentage Error(MAPE),Mean Bias Error(MBE),Systematic Error(SD),Schwarz Bayesian Criterion(SBC),and Central Process Unit time(CPU time).Based on the results,the EP algorithm achieved a higher training rate and simple structure compared with the rest of the algorithms.It has been confirmed that the EP algorithm is quite effective in training and obtaining the best output weight,accompanied by the slightest iteration error,which minimizes the objective function of SRBFNN-2SAT.展开更多
基金supported by the Meteorological Soft Science Project(Grant No.2023ZZXM29)the Natural Science Fund Project of Tianjin,China(Grant No.21JCYBJC00740)the Key Research and Development-Social Development Program of Jiangsu Province,China(Grant No.BE2021685).
文摘As the risks associated with air turbulence are intensified by climate change and the growth of the aviation industry,it has become imperative to monitor and mitigate these threats to ensure civil aviation safety.The eddy dissipation rate(EDR)has been established as the standard metric for quantifying turbulence in civil aviation.This study aims to explore a universally applicable symbolic classification approach based on genetic programming to detect turbulence anomalies using quick access recorder(QAR)data.The detection of atmospheric turbulence is approached as an anomaly detection problem.Comparative evaluations demonstrate that this approach performs on par with direct EDR calculation methods in identifying turbulence events.Moreover,comparisons with alternative machine learning techniques indicate that the proposed technique is the optimal methodology currently available.In summary,the use of symbolic classification via genetic programming enables accurate turbulence detection from QAR data,comparable to that with established EDR approaches and surpassing that achieved with machine learning algorithms.This finding highlights the potential of integrating symbolic classifiers into turbulence monitoring systems to enhance civil aviation safety amidst rising environmental and operational hazards.
基金supported by the Natural Science Foundation of Shanghai Municipality(21ZR1423400)the National Natural Science Funds of China(62173217)NSFC/Royal Society Cooperation and Exchange Project(62111530154,IEC\NSFC\201107).
文摘Dear Editor,This letter concerns the development of approximately bi-similar symbolic models for a discrete-time interconnected switched system(DT-ISS).The DT-ISS under consideration is formed by connecting multiple switched systems known as component switched systems(CSSs).Although the problem of constructing approximately bi-similar symbolic models for DT-ISS has been addressed in some literature,the previous works have relied on the assumption that all the subsystems of CSSs are incrementally input-state stable.
文摘Cultural symbols,a manifestation of cities’cultural resources,are not only signs that frame concepts but also forms that express meanings.Exploring the international communication of cities from the perspective of symbols,this paper analyzes in depth how cities create their cultural symbols in the dynamic process of international communication in an era of symbol-based digital media,and how they develop their narratives and explain meanings through the dissemination of symbols when telling their stories to international audiences,thus enhancing the efficiency and effectiveness of their international communication efforts.
文摘The article takes the famous modern American Jewish writer Bernard Malamud’s novel The Magic Barrel as the object of study,and uses symbolism to interpret it,analyzing it one by one in terms of the magic barrel,the colors,the seasons and the windows,respectively,so as to reveal the process of getting rid of the childishness within the novel’s male protagonist,Leo Finkel,who is maturing,as well as the novel’s Jewish theme of searching for the soul of the self.
基金supported by the National Natural Science Foundation of China,specifically through grants(No.8227431382074321).
文摘Background:Choerospondias axillaris(CA)is a traditional Mongolian medicine that has been proven to have a good therapeutic effect on cerebrovascular disease.Cerebral Ischemia(CI)is a severe and life-threatening cerebrovascular disease.However,the specific mechanism of action of CA in the treatment of CI is still unclear.Methods:In this study,the related targets and pathways of CA in the treatment of CI were first predicted by system pharmacology and then verified by relevant experiments.Results:The results showed that 12 active ingredients and 208 targets were selected.Further validation through protein-protein interaction(PPI)network analysis and active ingredients-target-pathway(A-T-P)network analysis has confirmed the pivotal roles of the main bioactive constituents,including quercetin,kaempferol,naringin,β-sitosterol,and gallic acid.These components exert their anti-ischemic effects by modulating key targets such as IL6,TNF,MAPK3,and CASP3,thereby regulating the PI3K-Akt,HIF-1,and MAPK signaling pathways,which are integral to processes like inflammation,apoptosis,and oxidative stress.More importantly,through experimental verification,this study confirmed our prediction that CAE significantly reduced neurological function scores,infarct volume,and the percentage of apoptosis neurons.Conclusion:This indicates that CA acts on CI through multi-target synergistic mechanism,and this study provides theoretical basis for the clinical application of CA.
基金Shaanxi Province key Research and Development Plan-Listed project(2022-JBGS-07)。
文摘Aiming at the problems of low efficiency,poor anti-noise and robustness of transfer learning model in intelligent fault diagnosis of rotating machinery,a new method of intelligent fault diagnosis of rotating machinery based on single source and multi-target domain adversarial network model(WDMACN)and Gram Angle Product field(GAPF)was proposed.Firstly,the original one-dimensional vibration signal is preprocessed using GAPF to generate the image data including all time series.Secondly,the residual network is used to extract data features,and the features of the target domain without labels are pseudo-labeled,and the transferable features among the feature extractors are shared through the depth parameter,and the feature extractors of the multi-target domain are updated anatomically to generate the features that the discriminator cannot distinguish.The modelt through adversarial domain adaptation,thus achieving fault classification.Finally,a large number of validations were carried out on the bearing data set of Case Western Reserve University(CWRU)and the gear data.The results show that the proposed method can greatly improve the diagnostic efficiency of the model,and has good noise resistance and generalization.
文摘The Altomani&Sons Collection owns a remarkable newly discovered portrait of Guidobaldo II della Rovere,Duke of Urbino(1514-1574),a historical military figure who was a condottiere,ruler of Urbino,Commander-in-chief of the Papal Estate,and Perfect of Rome,as well as a collector and patron of the Fine Arts.Camilla Guerrieri Nati(1628-1694),a seventeenth-century Italian painter from Fossombrone(in the province of Pesaro and Urbino),portrayed this heroic personage surrounded by emblems associated with his military courage and leadership,including his plumed burgonet helmet,metal gilded armor,a necklace with the golden fleece,and batons of secular and religious dominions.This oil painting on copper-considered a precious metal at the time-emphasizes the importance of the commission.The material and technique also reveals a unique artistic achievement in that it provides the painting with a smooth,reflective surface and vibrant coloration,symbolizing precious imagery.
基金Supported by the Medical and Health Research Project of Zhejiang Province,No.2021KY1048 and 2022KY1142Ningbo Health Young Technical Backbone Talents Training Program,No.2020SWSQNGG-02the Key Science and Technology Project of Ningbo City,No.2021Z133.
文摘BACKGROUND Colorectal cancer(CRC)is a major global health burden.The current diagnostic tests have shortcomings of being invasive and low accuracy.AIM To explore the combination of intestinal microbiome composition and multi-target stool DNA(MT-sDNA)test in the diagnosis of CRC.METHODS We assessed the performance of the MT-sDNA test based on a hospital clinical trial.The intestinal microbiota was tested using 16S rRNA gene sequencing.This case-control study enrolled 54 CRC patients and 51 healthy controls.We identified biomarkers of bacterial structure,analyzed the relationship between different tumor markers and the relative abundance of related flora components,and distinguished CRC patients from healthy subjects by the linear discriminant analysis effect size,redundancy analysis,and random forest analysis.RESULTS MT-sDNA was associated with Bacteroides.MT-sDNA and carcinoembryonic antigen(CEA)were positively correlated with the existence of Parabacteroides,and alpha-fetoprotein(AFP)was positively associated with Faecalibacterium and Megamonas.In the random forest model,the existence of Streptococcus,Escherichia,Chitinophaga,Parasutterella,Lachnospira,and Romboutsia can distinguish CRC from health controls.The diagnostic accuracy of MT-sDNA combined with the six genera and CEA in the diagnosis of CRC was 97.1%,with a sensitivity and specificity of 98.1%and 92.3%,respectively.CONCLUSION There is a positive correlation of MT-sDNA,CEA,and AFP with intestinal microbiome.Eight biomarkers including six genera of gut microbiota,MT-sDNA,and CEA showed a prominent sensitivity and specificity for CRC prediction,which could be used as a non-invasive method for improving the diagnostic accuracy for this malignancy.
基金Supported by Sichuan Provincial Science and Technology Program(Grant No.2022YFH0075)Opening Project of State Key Laboratory of Performance Monitoring and Protecting of Rail Transit Infrastructure(Grant No.HJGZ2021113)Independent Research Project of State Key Laboratory of Traction Power(Grant No.2022TPL_T03).
文摘Machine learning(ML)has powerful nonlinear processing and multivariate learning capabilities,so it has been widely utilised in the fatigue field.However,most ML methods are inexplicable black-box models that are difficult to apply in engineering practice.Symbolic regression(SR)is an interpretable machine learning method for determining the optimal fitting equation for datasets.In this study,domain knowledge-guided SR was used to determine a new fatigue crack growth(FCG)rate model.Three terms of the variable subtree ofΔK,R-ratio,andΔK_(th)were obtained by analysing eight traditional semi-empirical FCG rate models.Based on the FCG rate test data from other literature,the SR model was constructed using Al-7055-T7511.It was subsequently extended to other alloys(Ti-10V-2Fe-3Al,Ti-6Al-4V,Cr-Mo-V,LC9cs,Al-6013-T651,and Al-2324-T3)using multiple linear regression.Compared with the three semi-empirical FCG rate models,the SR model yielded higher prediction accuracy.This result demonstrates the potential of domain knowledge-guided SR for building the FCG rate model.
基金National Natural Science Foundation of China(Grant No.62001506)to provide fund for conducting experiments。
文摘The netted radar system(NRS)has been proved to possess unique advantages in anti-jamming and improving target tracking performance.Effective resource management can greatly ensure the combat capability of the NRS.In this paper,based on the netted collocated multiple input multiple output(CMIMO)radar,an effective joint target assignment and power allocation(JTAPA)strategy for tracking multi-targets under self-defense blanket jamming is proposed.An architecture based on the distributed fusion is used in the radar network to estimate target state parameters.By deriving the predicted conditional Cramer-Rao lower bound(PC-CRLB)based on the obtained state estimation information,the objective function is formulated.To maximize the worst case tracking accuracy,the proposed JTAPA strategy implements an online target assignment and power allocation of all active nodes,subject to some resource constraints.Since the formulated JTAPA is non-convex,we propose an efficient two-step solution strategy.In terms of the simulation results,the proposed algorithm can effectively improve tracking performance in the worst case.
文摘To improve the tracking accuracy of persons in the surveillance video,we proposed an algorithm for multi-target tracking persons based on deep learning.In this paper,we used You Only Look Once v5(YOLOv5)to obtain person targets of each frame in the video and used Simple Online and Realtime Tracking with a Deep Association Metric(DeepSORT)to do cascade matching and Intersection Over Union(IOU)matching of person targets between different frames.To solve the IDSwitch problem caused by the low feature extraction ability of the Re-Identification(ReID)network in the process of cascade matching,we introduced Spatial Relation-aware Global Attention(RGA-S)and Channel Relation-aware Global Attention(RGA-C)attention mechanisms into the network structure.The pre-training weights are loaded for Transfer Learning training on the dataset CUHK03.To enhance the discrimination performance of the network,we proposed a new loss function design method,which introduces the Hard-Negative-Mining way into the benchmark triplet loss.To improve the classification accuracy of the network,we introduced a Label-Smoothing regularization method to the cross-entropy loss.To facilitate the model’s convergence stability and convergence speed at the early training stage and to prevent the model from oscillating around the global optimum due to excessive learning rate at the later stage of training,this paper proposed a learning rate regulation method combining Linear-Warmup and exponential decay.The experimental results on CUHK03 show that the mean Average Precision(mAP)of the improved ReID network is 76.5%.The Top 1 is 42.5%,the Top 5 is 65.4%,and the Top 10 is 74.3%in Cumulative Matching Characteristics(CMC);Compared with the original algorithm,the tracking accuracy of the optimized DeepSORT tracking algorithm is improved by 2.5%,the tracking precision is improved by 3.8%.The number of identity switching is reduced by 25%.The algorithm effectively alleviates the IDSwitch problem,improves the tracking accuracy of persons,and has a high practical value.
基金supported in part by the National Natural Science Foundation of China(61931015,62071335)in part by the Natural Science Foundation of Hubei Province of China(2021CFA002)+2 种基金in part by the Fundamental Research Funds for the Central Universitiesin part by the Technological Innovation Project of Hubei Province of China(2019AAA061)in part by the Science and Technology Program of Shenzhen(JCYJ20170818112037398).
文摘In cellular systems,establishing the initial symbol timing of potential preambles is the first step of a cell search.The envelope fluctuation of the downlink signal hinders the successful timing of conventional symbol timing methods.To solve this problem,a hybrid timing strategy is proposed with two novel detectors,namely the normalized replica-based detector and normalized differential detector.The strategy first detects all potential preambles via the normalized replica-based detector and then employs the normalized differential detector to verify the target preamble,which comes from the target cell and has the highest power.The strategy is unaffected by envelope fluctuation and has computational complexity comparable to that of conventional methods.Simu-lations and real-data tests show that the hybrid timing strategy is robust and practical for initial symbol timing.
基金supported by the National Key R&D Program of China under Grant 2018YFB1801500.
文摘In order to reduce the physical impairment caused by signal distortion,in this paper,we investigate symbol detection with Deep Learning(DL)methods to improve bit-error performance in the optical communication system.Many DL-based methods have been applied to such systems to improve bit-error performance.Referring to the speech-to-text method of automatic speech recognition,this paper proposes a signal-to-symbol method based on DL and designs a receiver for symbol detection on single-polarized optical communications modes.To realize this detection method,we propose a non-causal temporal convolutional network-assisted receiver to detect symbols directly from the baseband signal,which specifically integrates most modules of the receiver.Meanwhile,we adopt three training approaches for different signal-to-noise ratios.We also apply a parametric rectified linear unit to enhance the noise robustness of the proposed network.According to the simulation experiments,the biterror-rate performance of the proposed method is close to or even superior to that of the conventional receiver and better than the recurrent neural network-based receiver.
基金Department of Education in Yunnan Province Fund for Scientific Research,Research on the Origin Tracing of the Traditional Architectures of Limi People of Yunnan Yi Ethnic Group(No.2022Y658).
文摘A symbol is an expression of meaning,while blank symbols express special meanings.By focusing on the application of blank symbols in Japanese architecture and indoor designs,we analyzed the aesthetic principles in Japanese architecture and indoor designs from the perspective of semiotics,such as“Kongji,”“Emptiness,”and“Dying out,”and their minimalist and pure design concepts.Traditional Chinese culture was also further explored,especially the profound influence of the“Chan sect”and the philosophy of“unity of heaven and mankind”on Japanese architecture and designs.This study aims to facilitate the coexistence and mutual appreciation of Chinese and Japanese architectural designs.
文摘In the Italian novel Lacci,the young husband abandoned his wife and lived with another woman.Although the marriage has been maintained under the stress of tense relations,friction and cracks have long existed and broken their peaceful life.This betrayal story restores the whole story from three perspectives through the eyes of the husband,the wife,and the memory of two children.It also reveals the indifferent and uncommunicable situations experienced by everyone in the family.The shoelace that appeared repeatedly in this article not only symbolizes the entangled and chaotic relationship between husband and wife,but also symbolizes the parent-child relationship that has long been broken but still tied up with each other;another image,the cat,not only symbolizes the seductive lover in the eyes of the husband,but also represents himself who pursues the satisfaction of desire.At the same time,cat also implies the disintegration of this marriage from inside to outside.In short,in this suffocating marriage novel,shoelace symbolizes order,while cat symbolizes chaos.The cat who keeps breaking in wore away their trust and emotion,and in the end,the two people in marriage can only bind reluctantly with shoelaces and hurt each other.
文摘Araby is a short story by the famous Irish stream-of-consciousness writer James Joyce.Through a series of images,the novel expresses the theme of the story:the“mental paralysis”of Dubliners and the“spiritual Epiphany”of the little boy,which reflects the spiritual barren of Dubliners at that time.Through the analysis of the symbolic meaning of many images in the work,this paper reveals the social background and religious significance hidden behind the images.
文摘In the novels, the clothing worn by the characters are symbols made and used by the authors to express the characters’ personality and deepen the theme, and grasping their symbolism helps to enter into the interior of the novels and understand their essence. This paper will analyze and interpret the clothing of typical female characters in The Scarlet Letter, Daisy Miller and Dry September from the perspective of symbolism, so as to illustrate how the symbolism of clothing, as a kind of symbols, shapes the image of the main characters.
基金This work is supported by Ministry of Higher Education(MOHE)through Fundamental Research Grant Scheme(FRGS)(FRGS/1/2020/STG06/UTHM/03/7).
文摘Radial Basis Function Neural Network(RBFNN)ensembles have long suffered from non-efficient training,where incorrect parameter settings can be computationally disastrous.This paper examines different evolutionary algorithms for training the Symbolic Radial Basis Function Neural Network(SRBFNN)through the behavior’s integration of satisfiability programming.Inspired by evolutionary algorithms,which can iteratively find the nearoptimal solution,different Evolutionary Algorithms(EAs)were designed to optimize the producer output weight of the SRBFNN that corresponds to the embedded logic programming 2Satisfiability representation(SRBFNN-2SAT).The SRBFNN’s objective function that corresponds to Satisfiability logic programming can be minimized by different algorithms,including Genetic Algorithm(GA),Evolution Strategy Algorithm(ES),Differential Evolution Algorithm(DE),and Evolutionary Programming Algorithm(EP).Each of these methods is presented in the steps in the flowchart form which can be used for its straightforward implementation in any programming language.With the use of SRBFNN-2SAT,a training method based on these algorithms has been presented,then training has been compared among algorithms,which were applied in Microsoft Visual C++software using multiple metrics of performance,including Mean Absolute Relative Error(MARE),Root Mean Square Error(RMSE),Mean Absolute Percentage Error(MAPE),Mean Bias Error(MBE),Systematic Error(SD),Schwarz Bayesian Criterion(SBC),and Central Process Unit time(CPU time).Based on the results,the EP algorithm achieved a higher training rate and simple structure compared with the rest of the algorithms.It has been confirmed that the EP algorithm is quite effective in training and obtaining the best output weight,accompanied by the slightest iteration error,which minimizes the objective function of SRBFNN-2SAT.