Here we propose a new concept of"molecule aging":with some special treatment,a molecule could be"aged"by losing some unknown tiny particles or pieces from atoms in the molecule,Such"aging"...Here we propose a new concept of"molecule aging":with some special treatment,a molecule could be"aged"by losing some unknown tiny particles or pieces from atoms in the molecule,Such"aging"or loss of unknown tiny particles does not change apparently its molecular structure or chemical composition,but some physicochemical properties could be changed irreversibly.We further confirm such"molecule aging"via a long-term electron attacking to age water(H_(2)O)molecules.The IR spectra show no structural difference between the fresh water and the aged one,while the NMR spectra show that the electron attacking can decrease the size of water clusters.Such facts indicate that the electron attacking indeed can"affect"the structure of water molecule slightly but without damaging to its basic molecule frame.Further exploration reveals that the hydrogen evolution reaction(HER)activity of the aged water molecule is lower than the fresh water on the same Pt/C electrocatalyst.The density functional theory calculations indicate that the shortened O-H bond in H_(2)O indeed can present lower HER activity,so the observed size decrease of water clusters from NMR probably could be attributed to the shortening of O-H bond in water molecules.Such results indicate significantly that the molecule aging can produce materials with new functions for new possible applications.展开更多
The netted radar system(NRS)has been proved to possess unique advantages in anti-jamming and improving target tracking performance.Effective resource management can greatly ensure the combat capability of the NRS.In t...The netted radar system(NRS)has been proved to possess unique advantages in anti-jamming and improving target tracking performance.Effective resource management can greatly ensure the combat capability of the NRS.In this paper,based on the netted collocated multiple input multiple output(CMIMO)radar,an effective joint target assignment and power allocation(JTAPA)strategy for tracking multi-targets under self-defense blanket jamming is proposed.An architecture based on the distributed fusion is used in the radar network to estimate target state parameters.By deriving the predicted conditional Cramer-Rao lower bound(PC-CRLB)based on the obtained state estimation information,the objective function is formulated.To maximize the worst case tracking accuracy,the proposed JTAPA strategy implements an online target assignment and power allocation of all active nodes,subject to some resource constraints.Since the formulated JTAPA is non-convex,we propose an efficient two-step solution strategy.In terms of the simulation results,the proposed algorithm can effectively improve tracking performance in the worst case.展开更多
Secure platooning control plays an important role in enhancing the cooperative driving safety of automated vehicles subject to various security vulnerabilities.This paper focuses on the distributed secure control issu...Secure platooning control plays an important role in enhancing the cooperative driving safety of automated vehicles subject to various security vulnerabilities.This paper focuses on the distributed secure control issue of automated vehicles affected by replay attacks.A proportional-integral-observer(PIO)with predetermined forgetting parameters is first constructed to acquire the dynamical information of vehicles.Then,a time-varying parameter and two positive scalars are employed to describe the temporal behavior of replay attacks.In light of such a scheme and the common properties of Laplace matrices,the closed-loop system with PIO-based controllers is transformed into a switched and time-delayed one.Furthermore,some sufficient conditions are derived to achieve the desired platooning performance by the view of the Lyapunov stability theory.The controller gains are analytically determined by resorting to the solution of certain matrix inequalities only dependent on maximum and minimum eigenvalues of communication topologies.Finally,a simulation example is provided to illustrate the effectiveness of the proposed control strategy.展开更多
This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control fram...This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control framework for such ICVs.This framework seamlessly integrates the predesigned optimal control with distributed model predictive control(DMPC)optimization and introduces a unique distributed attack detector to ensure the reliability of the transmitted information among vehicles.Notably,our strategy uses previously broadcasted information and a specialized convex set,termed the“resilience set”,to identify unreliable data.This approach significantly eases graph robustness prerequisites,requiring only an(F+1)-robust graph,in contrast to the established mean sequence reduced algorithms,which require a minimum(2F+1)-robust graph.Additionally,we introduce a verification algorithm to restore trust in vehicles under minor attacks,further reducing communication network robustness.Our analysis demonstrates the recursive feasibility of the DMPC optimization.Furthermore,the proposed method achieves exceptional control performance by minimizing the discrepancies between the DMPC control inputs and predesigned platoon control inputs,while ensuring constraint compliance and cybersecurity.Simulation results verify the effectiveness of our theoretical findings.展开更多
Existing web-based security applications have failed in many situations due to the great intelligence of attackers.Among web applications,Cross-Site Scripting(XSS)is one of the dangerous assaults experienced while mod...Existing web-based security applications have failed in many situations due to the great intelligence of attackers.Among web applications,Cross-Site Scripting(XSS)is one of the dangerous assaults experienced while modifying an organization's or user's information.To avoid these security challenges,this article proposes a novel,all-encompassing combination of machine learning(NB,SVM,k-NN)and deep learning(RNN,CNN,LSTM)frameworks for detecting and defending against XSS attacks with high accuracy and efficiency.Based on the representation,a novel idea for merging stacking ensemble with web applications,termed“hybrid stacking”,is proposed.In order to implement the aforementioned methods,four distinct datasets,each of which contains both safe and unsafe content,are considered.The hybrid detection method can adaptively identify the attacks from the URL,and the defense mechanism inherits the advantages of URL encoding with dictionary-based mapping to improve prediction accuracy,accelerate the training process,and effectively remove the unsafe JScript/JavaScript keywords from the URL.The simulation results show that the proposed hybrid model is more efficient than the existing detection methods.It produces more than 99.5%accurate XSS attack classification results(accuracy,precision,recall,f1_score,and Receiver Operating Characteristic(ROC))and is highly resistant to XSS attacks.In order to ensure the security of the server's information,the proposed hybrid approach is demonstrated in a real-time environment.展开更多
Phishing,an Internet fraudwhere individuals are deceived into revealing critical personal and account information,poses a significant risk to both consumers and web-based institutions.Data indicates a persistent rise ...Phishing,an Internet fraudwhere individuals are deceived into revealing critical personal and account information,poses a significant risk to both consumers and web-based institutions.Data indicates a persistent rise in phishing attacks.Moreover,these fraudulent schemes are progressively becoming more intricate,thereby rendering them more challenging to identify.Hence,it is imperative to utilize sophisticated algorithms to address this issue.Machine learning is a highly effective approach for identifying and uncovering these harmful behaviors.Machine learning(ML)approaches can identify common characteristics in most phishing assaults.In this paper,we propose an ensemble approach and compare it with six machine learning techniques to determine the type of website and whether it is normal or not based on two phishing datasets.After that,we used the normalization technique on the dataset to transform the range of all the features into the same range.The findings of this paper for all algorithms are as follows in the first dataset based on accuracy,precision,recall,and F1-score,respectively:Decision Tree(DT)(0.964,0.961,0.976,0.968),Random Forest(RF)(0.970,0.964,0.984,0.974),Gradient Boosting(GB)(0.960,0.959,0.971,0.965),XGBoost(XGB)(0.973,0.976,0.976,0.976),AdaBoost(0.934,0.934,0.950,0.942),Multi Layer Perceptron(MLP)(0.970,0.971,0.976,0.974)and Voting(0.978,0.975,0.987,0.981).So,the Voting classifier gave the best results.While in the second dataset,all the algorithms gave the same results in four evaluation metrics,which indicates that each of them can effectively accomplish the prediction process.Also,this approach outperformed the previous work in detecting phishing websites with high accuracy,a lower false negative rate,a shorter prediction time,and a lower false positive rate.展开更多
Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables.However,the reliability and integrity of learned Bayesian network models are highly dependent ...Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables.However,the reliability and integrity of learned Bayesian network models are highly dependent on the quality of incoming data streams.One of the primary challenges with Bayesian networks is their vulnerability to adversarial data poisoning attacks,wherein malicious data is injected into the training dataset to negatively influence the Bayesian network models and impair their performance.In this research paper,we propose an efficient framework for detecting data poisoning attacks against Bayesian network structure learning algorithms.Our framework utilizes latent variables to quantify the amount of belief between every two nodes in each causal model over time.We use our innovative methodology to tackle an important issue with data poisoning assaults in the context of Bayesian networks.With regard to four different forms of data poisoning attacks,we specifically aim to strengthen the security and dependability of Bayesian network structure learning techniques,such as the PC algorithm.By doing this,we explore the complexity of this area and offer workablemethods for identifying and reducing these sneaky dangers.Additionally,our research investigates one particular use case,the“Visit to Asia Network.”The practical consequences of using uncertainty as a way to spot cases of data poisoning are explored in this inquiry,which is of utmost relevance.Our results demonstrate the promising efficacy of latent variables in detecting and mitigating the threat of data poisoning attacks.Additionally,our proposed latent-based framework proves to be sensitive in detecting malicious data poisoning attacks in the context of stream data.展开更多
Cocoa farming faces numerous constraints that affect production levels. Among these constraints are termites, one of the biggest scourges in tropical agriculture and agroforestry. The aim of this study is to assess th...Cocoa farming faces numerous constraints that affect production levels. Among these constraints are termites, one of the biggest scourges in tropical agriculture and agroforestry. The aim of this study is to assess the level of damage caused by termites in cocoa plantations. To this end, 3 plantations were selected. In each of the 3 plantations, 18 plots containing an average of 47 ± 6 cocoa plants were delimited. Sampling was based on 25 cocoa plants per plot. The study consisted in sampling the termites observed on the plants and noting the type of damage caused by them, taking into account the density of the harvest veneers and, above all, the termites’ progress through the anatomical structures of the plant, i.e. the bark, sapwood and heartwood. A total of 8 termite species were collected from cocoa plants. These species are responsible for four types of damage (D1, D2, D3 and D4), grouped into minor damage (D1 and D2) and major damage (D3 and D4). D1 damage ranged from 24.67% ± 5.64% to 39.55% ± 7.43%. D2 damage ranged from 6.88% ± 1.31% to 9.33% ± 2.79%. D3 damage ranged from 2.88% ± 1.55% to 6.44% ± 1.55%. D4 damage ranged from 1.11% ± 1% to 3.11% ± 1.37%. Among the termite species collected, Microcerotermes sp, C. sjostedti, A. crucifer and P. militaris were the most formidable on cocoa trees in our study locality. In view of the extensive damage caused by termites, biological control measures should be considered, using insecticidal plants.展开更多
Quantum key distribution(QKD),rooted in quantum mechanics,offers information-theoretic security.However,practi-cal systems open security threats due to imperfections,notably bright-light blinding attacks targeting sin...Quantum key distribution(QKD),rooted in quantum mechanics,offers information-theoretic security.However,practi-cal systems open security threats due to imperfections,notably bright-light blinding attacks targeting single-photon detectors.Here,we propose a concise,robust defense strategy for protecting single-photon detectors in QKD systems against blinding attacks.Our strategy uses a dual approach:detecting the bias current of the avalanche photodiode(APD)to defend against con-tinuous-wave blinding attacks,and monitoring the avalanche amplitude to protect against pulsed blinding attacks.By integrat-ing these two branches,the proposed solution effectively identifies and mitigates a wide range of bright light injection attempts,significantly enhancing the resilience of QKD systems against various bright-light blinding attacks.This method forti-fies the safeguards of quantum communications and offers a crucial contribution to the field of quantum information security.展开更多
Owing to the integration of energy digitization and artificial intelligence technology,smart energy grids can realize the stable,efficient and clean operation of power systems.However,the emergence of cyber-physical a...Owing to the integration of energy digitization and artificial intelligence technology,smart energy grids can realize the stable,efficient and clean operation of power systems.However,the emergence of cyber-physical attacks,such as dynamic load-altering attacks(DLAAs)has introduced great challenges to the security of smart energy grids.Thus,this study developed a novel cyber-physical collaborative security framework for DLAAs in smart energy grids.The proposed framework integrates attack prediction in the cyber layer with the detection and localization of attacks in the physical layer.First,a data-driven method was proposed to predict the DLAA sequence in the cyber layer.By designing a double radial basis function network,the influence of disturbances on attack prediction can be eliminated.Based on the prediction results,an unknown input observer-based detection and localization method was further developed for the physical layer.In addition,an adaptive threshold was designed to replace the traditional precomputed threshold and improve the detection performance of the DLAAs.Consequently,through the collaborative work of the cyber-physics layer,injected DLAAs were effectively detected and located.Compared with existing methodologies,the simulation results on IEEE 14-bus and 118-bus power systems verified the superiority of the proposed cyber-physical collaborative detection and localization against DLAAs.展开更多
In an effort to investigate and quantify the patterns of local scour,researchers embarked on an in-depth study using a systematic experimental approach.The research focused on the effects of local scour around a set o...In an effort to investigate and quantify the patterns of local scour,researchers embarked on an in-depth study using a systematic experimental approach.The research focused on the effects of local scour around a set of four piles,each subjected to different hydromechanical conditions.In particular,this study aimed to determine how different attack angles—the angles at which the water flow impinges on the piles,and gap ratios—the ratios of the spacing between the piles to their diameters,influence the extent and nature of scour.A comprehensive series of 35 carefully designed experiments were orchestrated,each designed to dissect the nuances in how the gap ratio and attack angle might contribute to changes in the local scour observed at the base of pile groups.During these experimental trials,a wealth of local scour data were collected to support the analysis.These data included precise topographic profiles of the sediment bed around the pile groups,as well as detailed scour time histories showing the evolution of scour at strategic feature points throughout the test procedure.The analysis of the experimental data provided interesting insights.The study revealed that the interplay between the gap ratio and the attack angle had a pronounced influence on the scouring dynamics of the pile groups.One of the key observations was that the initial phases of scour,particularly within the first hour of water flow exposure,were characterized by a sharp increase in the scour depth occurring immediately in front of the piles.After this initial rapid development,the scour depth transitioned to a more gradual change rate.In contrast,the scour topography around the piles continuously evolved.This suggests that sediment displacement and the associated sculpting of the seabed around pile foundations are sustained and progressive processes,altering the underwater landscape over time.The results of this empirical investigation have significant implications for the design and construction of offshore multi-pile foundations,providing a critical reference for engineers and designers to estimate the expected scour depth around such structures,which is an integral part of decisions regarding foundation design,selection of structural materials,and implementation of scour protection measures.展开更多
Link flooding attack(LFA)is a type of covert distributed denial of service(DDoS)attack.The attack mechanism of LFAs is to flood critical links within the network to cut off the target area from the Internet.Recently,t...Link flooding attack(LFA)is a type of covert distributed denial of service(DDoS)attack.The attack mechanism of LFAs is to flood critical links within the network to cut off the target area from the Internet.Recently,the proliferation of Internet of Things(IoT)has increased the quantity of vulnerable devices connected to the network and has intensified the threat of LFAs.In LFAs,attackers typically utilize low-speed flows that do not reach the victims,making the attack difficult to detect.Traditional LFA defense methods mainly reroute the attack traffic around the congested link,which encounters high complexity and high computational overhead due to the aggregation of massive attack traffic.To address these challenges,we present an LFA defense framework which can mitigate the attack flows at the border switches when they are small in scale.This framework is lightweight and can be deployed at border switches of the network in a distributed manner,which ensures the scalability of our defense system.The performance of our framework is assessed in an experimental environment.The simulation results indicate that our method is effective in detecting and mitigating LFAs with low time complexity.展开更多
With the prevalence of machine learning in malware defense,hackers have tried to attack machine learning models to evade detection.It is generally difficult to explore the details of malware detection models,hackers c...With the prevalence of machine learning in malware defense,hackers have tried to attack machine learning models to evade detection.It is generally difficult to explore the details of malware detection models,hackers can adopt fuzzing attack to manipulate the features of the malware closer to benign programs on the premise of retaining their functions.In this paper,attack and defense methods on malware detection models based on machine learning algorithms were studied.Firstly,we designed a fuzzing attack method by randomly modifying features to evade detection.The fuzzing attack can effectively descend the accuracy of machine learning model with single feature.Then an adversarial malware detection model MaliFuzz is proposed to defend fuzzing attack.Different from the ordinary single feature detection model,the combined features by static and dynamic analysis to improve the defense ability are used.The experiment results show that the adversarial malware detection model with combined features can deal with the attack.The methods designed in this paper have great significance in improving the security of malware detection models and have good application prospects.展开更多
Continuous-variable quantum key distribution with a local local oscillator(LLO CVQKD)has been extensively researched due to its simplicity and security.For practical security of an LLO CVQKD system,there are two main ...Continuous-variable quantum key distribution with a local local oscillator(LLO CVQKD)has been extensively researched due to its simplicity and security.For practical security of an LLO CVQKD system,there are two main attack modes referred to as reference pulse attack and polarization attack presently.However,there is currently no general defense strategy against such attacks,and the security of the system needs further investigation.Here,we employ a deep learning framework called generative adversarial networks(GANs)to detect both attacks.We first analyze the data in different cases,derive a feature vector as input to a GAN model,and then show the training and testing process of the GAN model for attack classification.The proposed model has two parts,a discriminator and a generator,both of which employ a convolutional neural network(CNN)to improve accuracy.Simulation results show that the proposed scheme can detect and classify attacks without reducing the secret key rate and the maximum transmission distance.It only establishes a detection model by monitoring features of the pulse without adding additional devices.展开更多
A critical problem in the cube attack is how to recover superpolies efficiently.As the targeting number of rounds of an iterative stream cipher increases,the scale of its superpolies becomes larger and larger.Recently...A critical problem in the cube attack is how to recover superpolies efficiently.As the targeting number of rounds of an iterative stream cipher increases,the scale of its superpolies becomes larger and larger.Recently,to recover massive superpolies,the nested monomial prediction technique,the algorithm based on the divide-and-conquer strategy,and stretching cube attacks were proposed,which have been used to recover a superpoly with over ten million monomials for the NFSR-based stream ciphers such as Trivium and Grain-128AEAD.Nevertheless,when these methods are used to recover superpolies,many invalid calculations are performed,which makes recovering superpolies more difficult.This study finds an interesting observation that can be used to improve the above methods.Based on the observation,a new method is proposed to avoid a part of invalid calculations during the process of recovering superpolies.Then,the new method is applied to the nested monomial prediction technique and an improved superpoly recovery framework is presented.To verify the effectiveness of the proposed scheme,the improved framework is applied to 844-and 846-round Trivium and the exact ANFs of the superpolies is obtained with over one hundred million monomials,showing the improved superpoly recovery technique is powerful.Besides,extensive experiments on other scaled-down variants of NFSR-based stream ciphers show that the proposed scheme indeed could be more efficient on the superpoly recovery against NFSR-based stream ciphers.展开更多
Object detection finds wide application in various sectors,including autonomous driving,industry,and healthcare.Recent studies have highlighted the vulnerability of object detection models built using deep neural netw...Object detection finds wide application in various sectors,including autonomous driving,industry,and healthcare.Recent studies have highlighted the vulnerability of object detection models built using deep neural networks when confronted with carefully crafted adversarial examples.This not only reveals their shortcomings in defending against malicious attacks but also raises widespread concerns about the security of existing systems.Most existing adversarial attack strategies focus primarily on image classification problems,failing to fully exploit the unique characteristics of object detectionmodels,thus resulting in widespread deficiencies in their transferability.Furthermore,previous research has predominantly concentrated on the transferability issues of non-targeted attacks,whereas enhancing the transferability of targeted adversarial examples presents even greater challenges.Traditional attack techniques typically employ cross-entropy as a loss measure,iteratively adjusting adversarial examples to match target categories.However,their inherent limitations restrict their broad applicability and transferability across different models.To address the aforementioned challenges,this study proposes a novel targeted adversarial attack method aimed at enhancing the transferability of adversarial samples across object detection models.Within the framework of iterative attacks,we devise a new objective function designed to mitigate consistency issues arising from cumulative noise and to enhance the separation between target and non-target categories(logit margin).Secondly,a data augmentation framework incorporating random erasing and color transformations is introduced into targeted adversarial attacks.This enhances the diversity of gradients,preventing overfitting to white-box models.Lastly,perturbations are applied only within the specified object’s bounding box to reduce the perturbation range,enhancing attack stealthiness.Experiments were conducted on the Microsoft Common Objects in Context(MS COCO)dataset using You Only Look Once version 3(YOLOv3),You Only Look Once version 8(YOLOv8),Faster Region-based Convolutional Neural Networks(Faster R-CNN),and RetinaNet.The results demonstrate a significant advantage of the proposed method in black-box settings.Among these,the success rate of RetinaNet transfer attacks reached a maximum of 82.59%.展开更多
In the era of the Internet of Things(IoT),the proliferation of connected devices has raised security concerns,increasing the risk of intrusions into diverse systems.Despite the convenience and efficiency offered by Io...In the era of the Internet of Things(IoT),the proliferation of connected devices has raised security concerns,increasing the risk of intrusions into diverse systems.Despite the convenience and efficiency offered by IoT technology,the growing number of IoT devices escalates the likelihood of attacks,emphasizing the need for robust security tools to automatically detect and explain threats.This paper introduces a deep learning methodology for detecting and classifying distributed denial of service(DDoS)attacks,addressing a significant security concern within IoT environments.An effective procedure of deep transfer learning is applied to utilize deep learning backbones,which is then evaluated on two benchmarking datasets of DDoS attacks in terms of accuracy and time complexity.By leveraging several deep architectures,the study conducts thorough binary and multiclass experiments,each varying in the complexity of classifying attack types and demonstrating real-world scenarios.Additionally,this study employs an explainable artificial intelligence(XAI)AI technique to elucidate the contribution of extracted features in the process of attack detection.The experimental results demonstrate the effectiveness of the proposed method,achieving a recall of 99.39%by the XAI bidirectional long short-term memory(XAI-BiLSTM)model.展开更多
In recent years,deep learning has been the mainstream technology for fingerprint liveness detection(FLD)tasks because of its remarkable performance.However,recent studies have shown that these deep fake fingerprint de...In recent years,deep learning has been the mainstream technology for fingerprint liveness detection(FLD)tasks because of its remarkable performance.However,recent studies have shown that these deep fake fingerprint detection(DFFD)models are not resistant to attacks by adversarial examples,which are generated by the introduction of subtle perturbations in the fingerprint image,allowing the model to make fake judgments.Most of the existing adversarial example generation methods are based on gradient optimization,which is easy to fall into local optimal,resulting in poor transferability of adversarial attacks.In addition,the perturbation added to the blank area of the fingerprint image is easily perceived by the human eye,leading to poor visual quality.In response to the above challenges,this paper proposes a novel adversarial attack method based on local adaptive gradient variance for DFFD.The ridge texture area within the fingerprint image has been identified and designated as the region for perturbation generation.Subsequently,the images are fed into the targeted white-box model,and the gradient direction is optimized to compute gradient variance.Additionally,an adaptive parameter search method is proposed using stochastic gradient ascent to explore the parameter values during adversarial example generation,aiming to maximize adversarial attack performance.Experimental results on two publicly available fingerprint datasets show that ourmethod achieves higher attack transferability and robustness than existing methods,and the perturbation is harder to perceive.展开更多
The development of Intelligent Railway Transportation Systems necessitates incorporating privacy-preserving mechanisms into AI models to protect sensitive information and enhance system efficiency.Federated learning o...The development of Intelligent Railway Transportation Systems necessitates incorporating privacy-preserving mechanisms into AI models to protect sensitive information and enhance system efficiency.Federated learning offers a promising solution by allowing multiple clients to train models collaboratively without sharing private data.However,despite its privacy benefits,federated learning systems are vulnerable to poisoning attacks,where adversaries alter local model parameters on compromised clients and send malicious updates to the server,potentially compromising the global model’s accuracy.In this study,we introduce PMM(Perturbation coefficient Multiplied by Maximum value),a new poisoning attack method that perturbs model updates layer by layer,demonstrating the threat of poisoning attacks faced by federated learning.Extensive experiments across three distinct datasets have demonstrated PMM’s ability to significantly reduce the global model’s accuracy.Additionally,we propose an effective defense method,namely CLBL(Cluster Layer By Layer).Experiment results on three datasets have confirmed CLBL’s effectiveness.展开更多
Serverless computing is a promising paradigm in cloud computing that greatly simplifies cloud programming.With serverless computing,developers only provide function code to serverless platform,and these functions are ...Serverless computing is a promising paradigm in cloud computing that greatly simplifies cloud programming.With serverless computing,developers only provide function code to serverless platform,and these functions are invoked by its driven events.Nonetheless,security threats in serverless computing such as vulnerability-based security threats have become the pain point hindering its wide adoption.The ideas in proactive defense such as redundancy,diversity and dynamic provide promising approaches to protect against cyberattacks.However,these security technologies are mostly applied to serverless platform based on“stacked”mode,as they are designed independent with serverless computing.The lack of security consideration in the initial design makes it especially challenging to achieve the all life cycle protection for serverless application with limited cost.In this paper,we present ATSSC,a proactive defense enabled attack tolerant serverless platform.ATSSC integrates the characteristic of redundancy,diversity and dynamic into serverless seamless to achieve high-level security and efficiency.Specifically,ATSSC constructs multiple diverse function replicas to process the driven events and performs cross-validation to verify the results.In order to create diverse function replicas,both software diversity and environment diversity are adopted.Furthermore,a dynamic function refresh strategy is proposed to keep the clean state of serverless functions.We implement ATSSC based on Kubernetes and Knative.Analysis and experimental results demonstrate that ATSSC can effectively protect serverless computing against cyberattacks with acceptable costs.展开更多
基金funded by the Key Research and Development Program sponsored by the Ministry of Science and Technology(MOST)(2022YFA1203400)National Natural Science Foundation of China(21925205,22072145,21372155,22005294,and 22102172)。
文摘Here we propose a new concept of"molecule aging":with some special treatment,a molecule could be"aged"by losing some unknown tiny particles or pieces from atoms in the molecule,Such"aging"or loss of unknown tiny particles does not change apparently its molecular structure or chemical composition,but some physicochemical properties could be changed irreversibly.We further confirm such"molecule aging"via a long-term electron attacking to age water(H_(2)O)molecules.The IR spectra show no structural difference between the fresh water and the aged one,while the NMR spectra show that the electron attacking can decrease the size of water clusters.Such facts indicate that the electron attacking indeed can"affect"the structure of water molecule slightly but without damaging to its basic molecule frame.Further exploration reveals that the hydrogen evolution reaction(HER)activity of the aged water molecule is lower than the fresh water on the same Pt/C electrocatalyst.The density functional theory calculations indicate that the shortened O-H bond in H_(2)O indeed can present lower HER activity,so the observed size decrease of water clusters from NMR probably could be attributed to the shortening of O-H bond in water molecules.Such results indicate significantly that the molecule aging can produce materials with new functions for new possible applications.
基金National Natural Science Foundation of China(Grant No.62001506)to provide fund for conducting experiments。
文摘The netted radar system(NRS)has been proved to possess unique advantages in anti-jamming and improving target tracking performance.Effective resource management can greatly ensure the combat capability of the NRS.In this paper,based on the netted collocated multiple input multiple output(CMIMO)radar,an effective joint target assignment and power allocation(JTAPA)strategy for tracking multi-targets under self-defense blanket jamming is proposed.An architecture based on the distributed fusion is used in the radar network to estimate target state parameters.By deriving the predicted conditional Cramer-Rao lower bound(PC-CRLB)based on the obtained state estimation information,the objective function is formulated.To maximize the worst case tracking accuracy,the proposed JTAPA strategy implements an online target assignment and power allocation of all active nodes,subject to some resource constraints.Since the formulated JTAPA is non-convex,we propose an efficient two-step solution strategy.In terms of the simulation results,the proposed algorithm can effectively improve tracking performance in the worst case.
基金supported in part by the National Natural Science Foundation of China (61973219,U21A2019,61873058)the Hainan Province Science and Technology Special Fund (ZDYF2022SHFZ105)。
文摘Secure platooning control plays an important role in enhancing the cooperative driving safety of automated vehicles subject to various security vulnerabilities.This paper focuses on the distributed secure control issue of automated vehicles affected by replay attacks.A proportional-integral-observer(PIO)with predetermined forgetting parameters is first constructed to acquire the dynamical information of vehicles.Then,a time-varying parameter and two positive scalars are employed to describe the temporal behavior of replay attacks.In light of such a scheme and the common properties of Laplace matrices,the closed-loop system with PIO-based controllers is transformed into a switched and time-delayed one.Furthermore,some sufficient conditions are derived to achieve the desired platooning performance by the view of the Lyapunov stability theory.The controller gains are analytically determined by resorting to the solution of certain matrix inequalities only dependent on maximum and minimum eigenvalues of communication topologies.Finally,a simulation example is provided to illustrate the effectiveness of the proposed control strategy.
基金the financial support from the Natural Sciences and Engineering Research Council of Canada(NSERC)。
文摘This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control framework for such ICVs.This framework seamlessly integrates the predesigned optimal control with distributed model predictive control(DMPC)optimization and introduces a unique distributed attack detector to ensure the reliability of the transmitted information among vehicles.Notably,our strategy uses previously broadcasted information and a specialized convex set,termed the“resilience set”,to identify unreliable data.This approach significantly eases graph robustness prerequisites,requiring only an(F+1)-robust graph,in contrast to the established mean sequence reduced algorithms,which require a minimum(2F+1)-robust graph.Additionally,we introduce a verification algorithm to restore trust in vehicles under minor attacks,further reducing communication network robustness.Our analysis demonstrates the recursive feasibility of the DMPC optimization.Furthermore,the proposed method achieves exceptional control performance by minimizing the discrepancies between the DMPC control inputs and predesigned platoon control inputs,while ensuring constraint compliance and cybersecurity.Simulation results verify the effectiveness of our theoretical findings.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MEST)No.2015R1A3A2031159,2016R1A5A1008055.
文摘Existing web-based security applications have failed in many situations due to the great intelligence of attackers.Among web applications,Cross-Site Scripting(XSS)is one of the dangerous assaults experienced while modifying an organization's or user's information.To avoid these security challenges,this article proposes a novel,all-encompassing combination of machine learning(NB,SVM,k-NN)and deep learning(RNN,CNN,LSTM)frameworks for detecting and defending against XSS attacks with high accuracy and efficiency.Based on the representation,a novel idea for merging stacking ensemble with web applications,termed“hybrid stacking”,is proposed.In order to implement the aforementioned methods,four distinct datasets,each of which contains both safe and unsafe content,are considered.The hybrid detection method can adaptively identify the attacks from the URL,and the defense mechanism inherits the advantages of URL encoding with dictionary-based mapping to improve prediction accuracy,accelerate the training process,and effectively remove the unsafe JScript/JavaScript keywords from the URL.The simulation results show that the proposed hybrid model is more efficient than the existing detection methods.It produces more than 99.5%accurate XSS attack classification results(accuracy,precision,recall,f1_score,and Receiver Operating Characteristic(ROC))and is highly resistant to XSS attacks.In order to ensure the security of the server's information,the proposed hybrid approach is demonstrated in a real-time environment.
基金funding from Deanship of Scientific Research in King Faisal University with Grant Number KFU 241085.
文摘Phishing,an Internet fraudwhere individuals are deceived into revealing critical personal and account information,poses a significant risk to both consumers and web-based institutions.Data indicates a persistent rise in phishing attacks.Moreover,these fraudulent schemes are progressively becoming more intricate,thereby rendering them more challenging to identify.Hence,it is imperative to utilize sophisticated algorithms to address this issue.Machine learning is a highly effective approach for identifying and uncovering these harmful behaviors.Machine learning(ML)approaches can identify common characteristics in most phishing assaults.In this paper,we propose an ensemble approach and compare it with six machine learning techniques to determine the type of website and whether it is normal or not based on two phishing datasets.After that,we used the normalization technique on the dataset to transform the range of all the features into the same range.The findings of this paper for all algorithms are as follows in the first dataset based on accuracy,precision,recall,and F1-score,respectively:Decision Tree(DT)(0.964,0.961,0.976,0.968),Random Forest(RF)(0.970,0.964,0.984,0.974),Gradient Boosting(GB)(0.960,0.959,0.971,0.965),XGBoost(XGB)(0.973,0.976,0.976,0.976),AdaBoost(0.934,0.934,0.950,0.942),Multi Layer Perceptron(MLP)(0.970,0.971,0.976,0.974)and Voting(0.978,0.975,0.987,0.981).So,the Voting classifier gave the best results.While in the second dataset,all the algorithms gave the same results in four evaluation metrics,which indicates that each of them can effectively accomplish the prediction process.Also,this approach outperformed the previous work in detecting phishing websites with high accuracy,a lower false negative rate,a shorter prediction time,and a lower false positive rate.
文摘Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables.However,the reliability and integrity of learned Bayesian network models are highly dependent on the quality of incoming data streams.One of the primary challenges with Bayesian networks is their vulnerability to adversarial data poisoning attacks,wherein malicious data is injected into the training dataset to negatively influence the Bayesian network models and impair their performance.In this research paper,we propose an efficient framework for detecting data poisoning attacks against Bayesian network structure learning algorithms.Our framework utilizes latent variables to quantify the amount of belief between every two nodes in each causal model over time.We use our innovative methodology to tackle an important issue with data poisoning assaults in the context of Bayesian networks.With regard to four different forms of data poisoning attacks,we specifically aim to strengthen the security and dependability of Bayesian network structure learning techniques,such as the PC algorithm.By doing this,we explore the complexity of this area and offer workablemethods for identifying and reducing these sneaky dangers.Additionally,our research investigates one particular use case,the“Visit to Asia Network.”The practical consequences of using uncertainty as a way to spot cases of data poisoning are explored in this inquiry,which is of utmost relevance.Our results demonstrate the promising efficacy of latent variables in detecting and mitigating the threat of data poisoning attacks.Additionally,our proposed latent-based framework proves to be sensitive in detecting malicious data poisoning attacks in the context of stream data.
文摘Cocoa farming faces numerous constraints that affect production levels. Among these constraints are termites, one of the biggest scourges in tropical agriculture and agroforestry. The aim of this study is to assess the level of damage caused by termites in cocoa plantations. To this end, 3 plantations were selected. In each of the 3 plantations, 18 plots containing an average of 47 ± 6 cocoa plants were delimited. Sampling was based on 25 cocoa plants per plot. The study consisted in sampling the termites observed on the plants and noting the type of damage caused by them, taking into account the density of the harvest veneers and, above all, the termites’ progress through the anatomical structures of the plant, i.e. the bark, sapwood and heartwood. A total of 8 termite species were collected from cocoa plants. These species are responsible for four types of damage (D1, D2, D3 and D4), grouped into minor damage (D1 and D2) and major damage (D3 and D4). D1 damage ranged from 24.67% ± 5.64% to 39.55% ± 7.43%. D2 damage ranged from 6.88% ± 1.31% to 9.33% ± 2.79%. D3 damage ranged from 2.88% ± 1.55% to 6.44% ± 1.55%. D4 damage ranged from 1.11% ± 1% to 3.11% ± 1.37%. Among the termite species collected, Microcerotermes sp, C. sjostedti, A. crucifer and P. militaris were the most formidable on cocoa trees in our study locality. In view of the extensive damage caused by termites, biological control measures should be considered, using insecticidal plants.
基金This work was supported by the Major Scientific and Technological Special Project of Anhui Province(202103a13010004)the Major Scientific and Technological Special Project of Hefei City(2021DX007)+1 种基金the Key R&D Plan of Shandong Province(2020CXGC010105)the China Postdoctoral Science Foundation(2021M700315).
文摘Quantum key distribution(QKD),rooted in quantum mechanics,offers information-theoretic security.However,practi-cal systems open security threats due to imperfections,notably bright-light blinding attacks targeting single-photon detectors.Here,we propose a concise,robust defense strategy for protecting single-photon detectors in QKD systems against blinding attacks.Our strategy uses a dual approach:detecting the bias current of the avalanche photodiode(APD)to defend against con-tinuous-wave blinding attacks,and monitoring the avalanche amplitude to protect against pulsed blinding attacks.By integrat-ing these two branches,the proposed solution effectively identifies and mitigates a wide range of bright light injection attempts,significantly enhancing the resilience of QKD systems against various bright-light blinding attacks.This method forti-fies the safeguards of quantum communications and offers a crucial contribution to the field of quantum information security.
基金supported by the National Nature Science Foundation of China under 62203376the Science and Technology Plan of Hebei Education Department under QN2021139+1 种基金the Nature Science Foundation of Hebei Province under F2021203043the Open Research Fund of Jiangsu Collaborative Innovation Center for Smart Distribution Network,Nanjing Institute of Technology under No.XTCX202203.
文摘Owing to the integration of energy digitization and artificial intelligence technology,smart energy grids can realize the stable,efficient and clean operation of power systems.However,the emergence of cyber-physical attacks,such as dynamic load-altering attacks(DLAAs)has introduced great challenges to the security of smart energy grids.Thus,this study developed a novel cyber-physical collaborative security framework for DLAAs in smart energy grids.The proposed framework integrates attack prediction in the cyber layer with the detection and localization of attacks in the physical layer.First,a data-driven method was proposed to predict the DLAA sequence in the cyber layer.By designing a double radial basis function network,the influence of disturbances on attack prediction can be eliminated.Based on the prediction results,an unknown input observer-based detection and localization method was further developed for the physical layer.In addition,an adaptive threshold was designed to replace the traditional precomputed threshold and improve the detection performance of the DLAAs.Consequently,through the collaborative work of the cyber-physics layer,injected DLAAs were effectively detected and located.Compared with existing methodologies,the simulation results on IEEE 14-bus and 118-bus power systems verified the superiority of the proposed cyber-physical collaborative detection and localization against DLAAs.
基金financially supported by the National Natural Science Foundation of China(Grant No.51890913)the Natural Science Foundation of Sichuan Province of China(Grant No.2023YFQ0111)。
文摘In an effort to investigate and quantify the patterns of local scour,researchers embarked on an in-depth study using a systematic experimental approach.The research focused on the effects of local scour around a set of four piles,each subjected to different hydromechanical conditions.In particular,this study aimed to determine how different attack angles—the angles at which the water flow impinges on the piles,and gap ratios—the ratios of the spacing between the piles to their diameters,influence the extent and nature of scour.A comprehensive series of 35 carefully designed experiments were orchestrated,each designed to dissect the nuances in how the gap ratio and attack angle might contribute to changes in the local scour observed at the base of pile groups.During these experimental trials,a wealth of local scour data were collected to support the analysis.These data included precise topographic profiles of the sediment bed around the pile groups,as well as detailed scour time histories showing the evolution of scour at strategic feature points throughout the test procedure.The analysis of the experimental data provided interesting insights.The study revealed that the interplay between the gap ratio and the attack angle had a pronounced influence on the scouring dynamics of the pile groups.One of the key observations was that the initial phases of scour,particularly within the first hour of water flow exposure,were characterized by a sharp increase in the scour depth occurring immediately in front of the piles.After this initial rapid development,the scour depth transitioned to a more gradual change rate.In contrast,the scour topography around the piles continuously evolved.This suggests that sediment displacement and the associated sculpting of the seabed around pile foundations are sustained and progressive processes,altering the underwater landscape over time.The results of this empirical investigation have significant implications for the design and construction of offshore multi-pile foundations,providing a critical reference for engineers and designers to estimate the expected scour depth around such structures,which is an integral part of decisions regarding foundation design,selection of structural materials,and implementation of scour protection measures.
基金supported in part by the National Key R&D Program of China under Grant 2018YFA0701601in part by the National Natural Science Foundation of China(Grant No.62201605,62341110,U22A2002)in part by Tsinghua University-China Mobile Communications Group Co.,Ltd.Joint Institute。
文摘Link flooding attack(LFA)is a type of covert distributed denial of service(DDoS)attack.The attack mechanism of LFAs is to flood critical links within the network to cut off the target area from the Internet.Recently,the proliferation of Internet of Things(IoT)has increased the quantity of vulnerable devices connected to the network and has intensified the threat of LFAs.In LFAs,attackers typically utilize low-speed flows that do not reach the victims,making the attack difficult to detect.Traditional LFA defense methods mainly reroute the attack traffic around the congested link,which encounters high complexity and high computational overhead due to the aggregation of massive attack traffic.To address these challenges,we present an LFA defense framework which can mitigate the attack flows at the border switches when they are small in scale.This framework is lightweight and can be deployed at border switches of the network in a distributed manner,which ensures the scalability of our defense system.The performance of our framework is assessed in an experimental environment.The simulation results indicate that our method is effective in detecting and mitigating LFAs with low time complexity.
文摘With the prevalence of machine learning in malware defense,hackers have tried to attack machine learning models to evade detection.It is generally difficult to explore the details of malware detection models,hackers can adopt fuzzing attack to manipulate the features of the malware closer to benign programs on the premise of retaining their functions.In this paper,attack and defense methods on malware detection models based on machine learning algorithms were studied.Firstly,we designed a fuzzing attack method by randomly modifying features to evade detection.The fuzzing attack can effectively descend the accuracy of machine learning model with single feature.Then an adversarial malware detection model MaliFuzz is proposed to defend fuzzing attack.Different from the ordinary single feature detection model,the combined features by static and dynamic analysis to improve the defense ability are used.The experiment results show that the adversarial malware detection model with combined features can deal with the attack.The methods designed in this paper have great significance in improving the security of malware detection models and have good application prospects.
基金Project supported by the National Natural Science Foundation of China(Grant No.62001383)。
文摘Continuous-variable quantum key distribution with a local local oscillator(LLO CVQKD)has been extensively researched due to its simplicity and security.For practical security of an LLO CVQKD system,there are two main attack modes referred to as reference pulse attack and polarization attack presently.However,there is currently no general defense strategy against such attacks,and the security of the system needs further investigation.Here,we employ a deep learning framework called generative adversarial networks(GANs)to detect both attacks.We first analyze the data in different cases,derive a feature vector as input to a GAN model,and then show the training and testing process of the GAN model for attack classification.The proposed model has two parts,a discriminator and a generator,both of which employ a convolutional neural network(CNN)to improve accuracy.Simulation results show that the proposed scheme can detect and classify attacks without reducing the secret key rate and the maximum transmission distance.It only establishes a detection model by monitoring features of the pulse without adding additional devices.
基金National Natural Science Foundation of China(62372464)。
文摘A critical problem in the cube attack is how to recover superpolies efficiently.As the targeting number of rounds of an iterative stream cipher increases,the scale of its superpolies becomes larger and larger.Recently,to recover massive superpolies,the nested monomial prediction technique,the algorithm based on the divide-and-conquer strategy,and stretching cube attacks were proposed,which have been used to recover a superpoly with over ten million monomials for the NFSR-based stream ciphers such as Trivium and Grain-128AEAD.Nevertheless,when these methods are used to recover superpolies,many invalid calculations are performed,which makes recovering superpolies more difficult.This study finds an interesting observation that can be used to improve the above methods.Based on the observation,a new method is proposed to avoid a part of invalid calculations during the process of recovering superpolies.Then,the new method is applied to the nested monomial prediction technique and an improved superpoly recovery framework is presented.To verify the effectiveness of the proposed scheme,the improved framework is applied to 844-and 846-round Trivium and the exact ANFs of the superpolies is obtained with over one hundred million monomials,showing the improved superpoly recovery technique is powerful.Besides,extensive experiments on other scaled-down variants of NFSR-based stream ciphers show that the proposed scheme indeed could be more efficient on the superpoly recovery against NFSR-based stream ciphers.
文摘Object detection finds wide application in various sectors,including autonomous driving,industry,and healthcare.Recent studies have highlighted the vulnerability of object detection models built using deep neural networks when confronted with carefully crafted adversarial examples.This not only reveals their shortcomings in defending against malicious attacks but also raises widespread concerns about the security of existing systems.Most existing adversarial attack strategies focus primarily on image classification problems,failing to fully exploit the unique characteristics of object detectionmodels,thus resulting in widespread deficiencies in their transferability.Furthermore,previous research has predominantly concentrated on the transferability issues of non-targeted attacks,whereas enhancing the transferability of targeted adversarial examples presents even greater challenges.Traditional attack techniques typically employ cross-entropy as a loss measure,iteratively adjusting adversarial examples to match target categories.However,their inherent limitations restrict their broad applicability and transferability across different models.To address the aforementioned challenges,this study proposes a novel targeted adversarial attack method aimed at enhancing the transferability of adversarial samples across object detection models.Within the framework of iterative attacks,we devise a new objective function designed to mitigate consistency issues arising from cumulative noise and to enhance the separation between target and non-target categories(logit margin).Secondly,a data augmentation framework incorporating random erasing and color transformations is introduced into targeted adversarial attacks.This enhances the diversity of gradients,preventing overfitting to white-box models.Lastly,perturbations are applied only within the specified object’s bounding box to reduce the perturbation range,enhancing attack stealthiness.Experiments were conducted on the Microsoft Common Objects in Context(MS COCO)dataset using You Only Look Once version 3(YOLOv3),You Only Look Once version 8(YOLOv8),Faster Region-based Convolutional Neural Networks(Faster R-CNN),and RetinaNet.The results demonstrate a significant advantage of the proposed method in black-box settings.Among these,the success rate of RetinaNet transfer attacks reached a maximum of 82.59%.
文摘In the era of the Internet of Things(IoT),the proliferation of connected devices has raised security concerns,increasing the risk of intrusions into diverse systems.Despite the convenience and efficiency offered by IoT technology,the growing number of IoT devices escalates the likelihood of attacks,emphasizing the need for robust security tools to automatically detect and explain threats.This paper introduces a deep learning methodology for detecting and classifying distributed denial of service(DDoS)attacks,addressing a significant security concern within IoT environments.An effective procedure of deep transfer learning is applied to utilize deep learning backbones,which is then evaluated on two benchmarking datasets of DDoS attacks in terms of accuracy and time complexity.By leveraging several deep architectures,the study conducts thorough binary and multiclass experiments,each varying in the complexity of classifying attack types and demonstrating real-world scenarios.Additionally,this study employs an explainable artificial intelligence(XAI)AI technique to elucidate the contribution of extracted features in the process of attack detection.The experimental results demonstrate the effectiveness of the proposed method,achieving a recall of 99.39%by the XAI bidirectional long short-term memory(XAI-BiLSTM)model.
基金supported by the National Natural Science Foundation of China under Grant(62102189,62122032,61972205)the National Social Sciences Foundation of China under Grant 2022-SKJJ-C-082+2 种基金the Natural Science Foundation of Jiangsu Province under Grant BK20200807NUDT Scientific Research Program under Grant(JS21-4,ZK21-43)Guangdong Natural Science Funds for Distinguished Young Scholar under Grant 2023B1515020041.
文摘In recent years,deep learning has been the mainstream technology for fingerprint liveness detection(FLD)tasks because of its remarkable performance.However,recent studies have shown that these deep fake fingerprint detection(DFFD)models are not resistant to attacks by adversarial examples,which are generated by the introduction of subtle perturbations in the fingerprint image,allowing the model to make fake judgments.Most of the existing adversarial example generation methods are based on gradient optimization,which is easy to fall into local optimal,resulting in poor transferability of adversarial attacks.In addition,the perturbation added to the blank area of the fingerprint image is easily perceived by the human eye,leading to poor visual quality.In response to the above challenges,this paper proposes a novel adversarial attack method based on local adaptive gradient variance for DFFD.The ridge texture area within the fingerprint image has been identified and designated as the region for perturbation generation.Subsequently,the images are fed into the targeted white-box model,and the gradient direction is optimized to compute gradient variance.Additionally,an adaptive parameter search method is proposed using stochastic gradient ascent to explore the parameter values during adversarial example generation,aiming to maximize adversarial attack performance.Experimental results on two publicly available fingerprint datasets show that ourmethod achieves higher attack transferability and robustness than existing methods,and the perturbation is harder to perceive.
基金supported by Systematic Major Project of China State Railway Group Corporation Limited(Grant Number:P2023W002).
文摘The development of Intelligent Railway Transportation Systems necessitates incorporating privacy-preserving mechanisms into AI models to protect sensitive information and enhance system efficiency.Federated learning offers a promising solution by allowing multiple clients to train models collaboratively without sharing private data.However,despite its privacy benefits,federated learning systems are vulnerable to poisoning attacks,where adversaries alter local model parameters on compromised clients and send malicious updates to the server,potentially compromising the global model’s accuracy.In this study,we introduce PMM(Perturbation coefficient Multiplied by Maximum value),a new poisoning attack method that perturbs model updates layer by layer,demonstrating the threat of poisoning attacks faced by federated learning.Extensive experiments across three distinct datasets have demonstrated PMM’s ability to significantly reduce the global model’s accuracy.Additionally,we propose an effective defense method,namely CLBL(Cluster Layer By Layer).Experiment results on three datasets have confirmed CLBL’s effectiveness.
基金supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China under Grant No.61521003the National Natural Science Foundation of China under Grant No.62072467 and 62002383.
文摘Serverless computing is a promising paradigm in cloud computing that greatly simplifies cloud programming.With serverless computing,developers only provide function code to serverless platform,and these functions are invoked by its driven events.Nonetheless,security threats in serverless computing such as vulnerability-based security threats have become the pain point hindering its wide adoption.The ideas in proactive defense such as redundancy,diversity and dynamic provide promising approaches to protect against cyberattacks.However,these security technologies are mostly applied to serverless platform based on“stacked”mode,as they are designed independent with serverless computing.The lack of security consideration in the initial design makes it especially challenging to achieve the all life cycle protection for serverless application with limited cost.In this paper,we present ATSSC,a proactive defense enabled attack tolerant serverless platform.ATSSC integrates the characteristic of redundancy,diversity and dynamic into serverless seamless to achieve high-level security and efficiency.Specifically,ATSSC constructs multiple diverse function replicas to process the driven events and performs cross-validation to verify the results.In order to create diverse function replicas,both software diversity and environment diversity are adopted.Furthermore,a dynamic function refresh strategy is proposed to keep the clean state of serverless functions.We implement ATSSC based on Kubernetes and Knative.Analysis and experimental results demonstrate that ATSSC can effectively protect serverless computing against cyberattacks with acceptable costs.