期刊文献+
共找到94篇文章
< 1 2 5 >
每页显示 20 50 100
MDTCNet:Multi-Task Classifications Network and TCNN for Direction of Arrival Estimation
1
作者 Yu Jiarun Wang Yafeng 《China Communications》 SCIE CSCD 2024年第10期148-166,共19页
The direction-of-arrival(DoA) estimation is one of the hot research areas in signal processing. To overcome the DoA estimation challenge without the prior information about signal sources number and multipath number i... The direction-of-arrival(DoA) estimation is one of the hot research areas in signal processing. To overcome the DoA estimation challenge without the prior information about signal sources number and multipath number in millimeter wave system,the multi-task deep residual shrinkage network(MTDRSN) and transfer learning-based convolutional neural network(TCNN), namely MDTCNet, are proposed. The sampling covariance matrix based on the received signal is used as the input to the proposed network. A DRSN-based multi-task classifications model is first introduced to estimate signal sources number and multipath number simultaneously. Then, the DoAs with multi-signal and multipath are estimated by the regression model. The proposed CNN is applied for DoAs estimation with the predicted number of signal sources and paths. Furthermore, the modelbased transfer learning is also introduced into the regression model. The TCNN inherits the partial network parameters of the already formed optimization model obtained by the CNN. A series of experimental results show that the MDTCNet-based DoAs estimation method can accurately predict the signal sources number and multipath number under a range of signal-to-noise ratios. Remarkably, the proposed method achieves the lower root mean square error compared with some existing deep learning-based and traditional methods. 展开更多
关键词 DoA estimation MDTCNet millimeter wave system multi-task classifications model regression model
下载PDF
A Multi-Task Deep Learning Framework for Simultaneous Detection of Thoracic Pathology through Image Classification
2
作者 Nada Al Zahrani Ramdane Hedjar +4 位作者 Mohamed Mekhtiche Mohamed Bencherif Taha Al Fakih Fattoh Al-Qershi Muna Alrazghan 《Journal of Computer and Communications》 2024年第4期153-170,共18页
Thoracic diseases pose significant risks to an individual's chest health and are among the most perilous medical diseases. They can impact either one or both lungs, which leads to a severe impairment of a person’... Thoracic diseases pose significant risks to an individual's chest health and are among the most perilous medical diseases. They can impact either one or both lungs, which leads to a severe impairment of a person’s ability to breathe normally. Some notable examples of such diseases encompass pneumonia, lung cancer, coronavirus disease 2019 (COVID-19), tuberculosis, and chronic obstructive pulmonary disease (COPD). Consequently, early and precise detection of these diseases is paramount during the diagnostic process. Traditionally, the primary methods employed for the detection involve the use of X-ray imaging or computed tomography (CT) scans. Nevertheless, due to the scarcity of proficient radiologists and the inherent similarities between these diseases, the accuracy of detection can be compromised, leading to imprecise or erroneous results. To address this challenge, scientists have turned to computer-based solutions, aiming for swift and accurate diagnoses. The primary objective of this study is to develop two machine learning models, utilizing single-task and multi-task learning frameworks, to enhance classification accuracy. Within the multi-task learning architecture, two principal approaches exist soft parameter sharing and hard parameter sharing. Consequently, this research adopts a multi-task deep learning approach that leverages CNNs to achieve improved classification performance for the specified tasks. These tasks, focusing on pneumonia and COVID-19, are processed and learned simultaneously within a multi-task model. To assess the effectiveness of the trained model, it is rigorously validated using three different real-world datasets for training and testing. 展开更多
关键词 PNEUMONIA Thoracic Pathology COVID-19 Deep Learning multi-task Learning
下载PDF
Multi-tasking to Address Diversity in Language Learning
3
作者 雷琨 《海外英语》 2014年第21期98-99,103,共3页
With focus now placed on the learner, more attention is given to his learning style, multiple intelligence and developing learning strategies to enable him to make sense of and use of the target language appropriately... With focus now placed on the learner, more attention is given to his learning style, multiple intelligence and developing learning strategies to enable him to make sense of and use of the target language appropriately in varied contexts and with different uses of the language. To attain this, the teacher is tasked with designing, monitoring and processing language learning activities for students to carry out and in the process learn by doing and reflecting on the learning process they went through as they interacted socially with each other. This paper describes a task named"The Fishbowl Technique"and found to be effective in large ESL classes in the secondary level in the Philippines. 展开更多
关键词 multi-tasking DIVERSITY LEARNING STYLE the fishbow
下载PDF
Nuclear mass based on the multi-task learning neural network method 被引量:10
4
作者 Xing-Chen Ming Hong-Fei Zhang +3 位作者 Rui-Rui Xu Xiao-Dong Sun Yuan Tian Zhi-Gang Ge 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2022年第4期96-103,共8页
The global nuclear mass based on the macroscopic-microscopic model was studied by applying a newly designed multi-task learning artificial neural network(MTL-ANN). First, the reported nuclear binding energies of 2095 ... The global nuclear mass based on the macroscopic-microscopic model was studied by applying a newly designed multi-task learning artificial neural network(MTL-ANN). First, the reported nuclear binding energies of 2095 nuclei(Z ≥ 8, N ≥ 8) released in the latest Atomic Mass Evaluation AME2020 and the deviations between the fitting result of the liquid drop model(LDM)and data from AME2020 for each nucleus were obtained.To compensate for the deviations and investigate the possible ignored physics in the LDM, the MTL-ANN method was introduced in the model. Compared to the single-task learning(STL) method, this new network has a powerful ability to simultaneously learn multi-nuclear properties,such as the binding energies and single neutron and proton separation energies. Moreover, it is highly effective in reducing the risk of overfitting and achieving better predictions. Consequently, good predictions can be obtained using this nuclear mass model for both the training and validation datasets and for the testing dataset. In detail, the global root mean square(RMS) of the binding energy is effectively reduced from approximately 2.4 MeV of LDM to the current 0.2 MeV, and the RMS of Sn, Spcan also reach approximately 0.2 MeV. Moreover, compared to STL, for the training and validation sets, 3-9% improvement can be achieved with the binding energy, and 20-30% improvement for S_(n), S_(p);for the testing sets, the reduction in deviations can even reach 30-40%, which significantly illustrates the advantage of the current MTL. 展开更多
关键词 Macroscopic–microscopic model Binding energy Neural network multi-task learning
下载PDF
Face Detection Detection, Alignment Alignment, Quality Assessment and Attribute Analysis with Multi-Task Hybrid Convolutional Neural Networks 被引量:5
5
作者 GUO Da ZHENG Qingfang +1 位作者 PENG Xiaojiang LIU Ming 《ZTE Communications》 2019年第3期15-22,49,共9页
This paper proposes a universal framework,termed as Multi-Task Hybrid Convolutional Neural Network(MHCNN),for joint face detection,facial landmark detection,facial quality,and facial attribute analysis.MHCNN consists ... This paper proposes a universal framework,termed as Multi-Task Hybrid Convolutional Neural Network(MHCNN),for joint face detection,facial landmark detection,facial quality,and facial attribute analysis.MHCNN consists of a high-accuracy single stage detector(SSD)and an efficient tiny convolutional neural network(T-CNN)for joint face detection refinement,alignment and attribute analysis.Though the SSD face detectors achieve promising results,we find that applying a tiny CNN on detections further boosts the detected face scores and bounding boxes.By multi-task training,our T-CNN aims to provide five facial landmarks,facial quality scores,and facial attributes like wearing sunglasses and wearing masks.Since there is no public facial quality data and facial attribute data as we need,we contribute two datasets,namely FaceQ and FaceA,which are collected from the Internet.Experiments show that our MHCNN achieves face detection performance comparable to the state of the art in face detection data set and benchmark(FDDB),and gets reasonable results on AFLW,FaceQ and FaceA. 展开更多
关键词 FACE DETECTION FACE ALIGNMENT FACIAL ATTRIBUTE CNN multi-task training
下载PDF
Pedestrian Attributes Recognition in Surveillance Scenarios with Hierarchical Multi-Task CNN Models 被引量:2
6
作者 Wenhua Fang Jun Chen Ruimin Hu 《China Communications》 SCIE CSCD 2018年第12期208-219,共12页
Pedestrian attributes recognition is a very important problem in video surveillance and video forensics. Traditional methods assume the pedestrian attributes are independent and design handcraft features for each one.... Pedestrian attributes recognition is a very important problem in video surveillance and video forensics. Traditional methods assume the pedestrian attributes are independent and design handcraft features for each one. In this paper, we propose a joint hierarchical multi-task learning algorithm to learn the relationships among attributes for better recognizing the pedestrian attributes in still images using convolutional neural networks(CNN). We divide the attributes into local and global ones according to spatial and semantic relations, and then consider learning semantic attributes through a hierarchical multi-task CNN model where each CNN in the first layer will predict each group of such local attributes and CNN in the second layer will predict the global attributes. Our multi-task learning framework allows each CNN model to simultaneously share visual knowledge among different groups of attribute categories. Extensive experiments are conducted on two popular and challenging benchmarks in surveillance scenarios, namely, the PETA and RAP pedestrian attributes datasets. On both benchmarks, our framework achieves superior results over the state-of-theart methods by 88.2% on PETA and 83.25% on RAP, respectively. 展开更多
关键词 attributes RECOGNITION CNN multi-task learning
下载PDF
A hybrid discrete particle swarm optimization-genetic algorithm for multi-task scheduling problem in service oriented manufacturing systems 被引量:4
7
作者 武善玉 张平 +2 位作者 李方 古锋 潘毅 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期421-429,共9页
To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was establis... To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was established, and then a hybrid discrete particle swarm optimization-genetic algorithm(HDPSOGA) was proposed. In SOMS, each resource involved in the whole life cycle of a product, whether it is provided by a piece of software or a hardware device, is encapsulated into a service. So, the transportation during production of a task should be taken into account because the hard-services selected are possibly provided by various providers in different areas. In the service allocation optimization mathematical model, multi-task and transportation were considered simultaneously. In the proposed HDPSOGA algorithm, integer coding method was applied to establish the mapping between the particle location matrix and the service allocation scheme. The position updating process was performed according to the cognition part, the social part, and the previous velocity and position while introducing the crossover and mutation idea of genetic algorithm to fit the discrete space. Finally, related simulation experiments were carried out to compare with other two previous algorithms. The results indicate the effectiveness and efficiency of the proposed hybrid algorithm. 展开更多
关键词 service-oriented architecture (SOA) cyber physical systems (CPS) multi-task scheduling service allocation multi-objective optimization particle swarm algorithm
下载PDF
Multi-task Learning of Semantic Segmentation and Height Estimation for Multi-modal Remote Sensing Images 被引量:2
8
作者 Mengyu WANG Zhiyuan YAN +2 位作者 Yingchao FENG Wenhui DIAO Xian SUN 《Journal of Geodesy and Geoinformation Science》 CSCD 2023年第4期27-39,共13页
Deep learning based methods have been successfully applied to semantic segmentation of optical remote sensing images.However,as more and more remote sensing data is available,it is a new challenge to comprehensively u... Deep learning based methods have been successfully applied to semantic segmentation of optical remote sensing images.However,as more and more remote sensing data is available,it is a new challenge to comprehensively utilize multi-modal remote sensing data to break through the performance bottleneck of single-modal interpretation.In addition,semantic segmentation and height estimation in remote sensing data are two tasks with strong correlation,but existing methods usually study individual tasks separately,which leads to high computational resource overhead.To this end,we propose a Multi-Task learning framework for Multi-Modal remote sensing images(MM_MT).Specifically,we design a Cross-Modal Feature Fusion(CMFF)method,which aggregates complementary information of different modalities to improve the accuracy of semantic segmentation and height estimation.Besides,a dual-stream multi-task learning method is introduced for Joint Semantic Segmentation and Height Estimation(JSSHE),extracting common features in a shared network to save time and resources,and then learning task-specific features in two task branches.Experimental results on the public multi-modal remote sensing image dataset Potsdam show that compared to training two tasks independently,multi-task learning saves 20%of training time and achieves competitive performance with mIoU of 83.02%for semantic segmentation and accuracy of 95.26%for height estimation. 展开更多
关键词 MULTI-MODAL multi-task semantic segmentation height estimation convolutional neural network
下载PDF
MMLUP: Multi-Source & Multi-Task Learning for User Profiles in Social Network 被引量:1
9
作者 Dongjie Zhu Yuhua Wang +5 位作者 Chuiju You Jinming Qiu Ning Cao Chenjing Gong Guohua Yang Helen Min Zhou 《Computers, Materials & Continua》 SCIE EI 2019年第9期1105-1115,共11页
With the rapid development of the mobile Internet,users generate massive data in different forms in social network every day,and different characteristics of users are reflected by these social media data.How to integ... With the rapid development of the mobile Internet,users generate massive data in different forms in social network every day,and different characteristics of users are reflected by these social media data.How to integrate multiple heterogeneous information and establish user profiles from multiple perspectives plays an important role in providing personalized services,marketing,and recommendation systems.In this paper,we propose Multi-source&Multi-task Learning for User Profiles in Social Network which integrates multiple social data sources and contains a multi-task learning framework to simultaneously predict various attributes of a user.Firstly,we design their own feature extraction models for multiple heterogeneous data sources.Secondly,we design a shared layer to fuse multiple heterogeneous data sources as general shared representation for multi-task learning.Thirdly,we design each task’s own unique presentation layer for discriminant output of specific-task.Finally,we design a weighted loss function to improve the learning efficiency and prediction accuracy of each task.Our experimental results on more than 5000 Sina Weibo users demonstrate that our approach outperforms state-of-the-art baselines for inferring gender,age and region of social media users. 展开更多
关键词 User profiles MULTI-SOURCE multi-task learning social network
下载PDF
Serial structure multi-task learning method for predicting reservoir parameters 被引量:1
10
作者 Xu Bin-Sen Li Ning +4 位作者 Xiao Li-Zhi Wu Hong-Liang Feng-Zhou Wang Bing Wang Ke-Wen 《Applied Geophysics》 SCIE CSCD 2022年第4期513-527,604,共16页
Buiding data-driven models using machine learning methods has gradually become a common approach for studying reservoir parameters.Among these methods,deep learning methods are highly effective.From the perspective of... Buiding data-driven models using machine learning methods has gradually become a common approach for studying reservoir parameters.Among these methods,deep learning methods are highly effective.From the perspective of multi-task learning,this paper uses six types of logging data—acoustic logging(AC),gamma ray(GR),compensated neutron porosity(CNL),density(DEN),deep and shallow lateral resistivity(LLD)and shallow lateral resistivity(LLS)—that are inputs and three reservoir parameters that are outputs to build a porosity saturation permeability network(PSP-Net)that can predict porosity,saturation,and permeability values simultaneously.These logging data are obtained from 108 training wells in a medium₋low permeability oilfield block in the western district of China.PSP-Net method adopts a serial structure to realize transfer learning of reservoir-parameter characteristics.Compared with other existing methods at the stage of academic exploration to simulating industrial applications,the proposed method overcomes the disadvantages inherent in single-task learning reservoir-parameter prediction models,including easily overfitting and heavy model-training workload.Additionally,the proposed method demonstrates good anti-overfitting and generalization capabilities,integrating professional knowledge and experience.In 37 test wells,compared with the existing method,the proposed method exhibited an average error reduction of 10.44%,27.79%,and 28.83%from porosity,saturation,permeability calculation.The prediction and actual permeabilities are within one order of magnitude.The training on PSP-Net are simpler and more convenient than other single-task learning methods discussed in this paper.Furthermore,the findings of this paper can help in the re-examination of old oilfield wells and the completion of logging data. 展开更多
关键词 Deep learning multi-task learning Reservoir-parameter prediction
下载PDF
Algorithm Design of CPCI Backboard's Interrupts Management Based on VxWorks'Multi-Tasks 被引量:1
11
作者 程敬原 安琪 杨俊峰 《Plasma Science and Technology》 SCIE EI CAS CSCD 2006年第5期614-617,共4页
This paper begins with a brief introduction of the embedded real-time operating system VxWorks and CompactPCI standard, then gives the programming interfaces of Peripheral Controller Interface (PCI) configuring, int... This paper begins with a brief introduction of the embedded real-time operating system VxWorks and CompactPCI standard, then gives the programming interfaces of Peripheral Controller Interface (PCI) configuring, interrupts handling and multi-tasks programming interface under VxWorks, and then emphasis is placed on the software frameworks of CPCI interrupt management based on multi-tasks. This method is sound in design and easy to adapt, ensures that all possible interrupts are handled in time, which makes it suitable for data acquisition systems with multi-channels, a high data rate, and hard real-time high energy physics. 展开更多
关键词 VXWORKS PCI multi-tasks backcard's interrupt handling
下载PDF
MTC: A Multi-Task Model for Encrypted Network Traffic Classification Based on Transformer and 1D-CNN 被引量:1
12
作者 Kaiyue Wang Jian Gao Xinyan Lei 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期619-638,共20页
Traffic characterization(e.g.,chat,video)and application identifi-cation(e.g.,FTP,Facebook)are two of the more crucial jobs in encrypted network traffic classification.These two activities are typically carried out se... Traffic characterization(e.g.,chat,video)and application identifi-cation(e.g.,FTP,Facebook)are two of the more crucial jobs in encrypted network traffic classification.These two activities are typically carried out separately by existing systems using separate models,significantly adding to the difficulty of network administration.Convolutional Neural Network(CNN)and Transformer are deep learning-based approaches for network traf-fic classification.CNN is good at extracting local features while ignoring long-distance information from the network traffic sequence,and Transformer can capture long-distance feature dependencies while ignoring local details.Based on these characteristics,a multi-task learning model that combines Transformer and 1D-CNN for encrypted traffic classification is proposed(MTC).In order to make up for the Transformer’s lack of local detail feature extraction capability and the 1D-CNN’s shortcoming of ignoring long-distance correlation information when processing traffic sequences,the model uses a parallel structure to fuse the features generated by the Transformer block and the 1D-CNN block with each other using a feature fusion block.This structure improved the representation of traffic features by both blocks and allows the model to perform well with both long and short length sequences.The model simultaneously handles multiple tasks,which lowers the cost of training.Experiments reveal that on the ISCX VPN-nonVPN dataset,the model achieves an average F1 score of 98.25%and an average recall of 98.30%for the task of identifying applications,and an average F1 score of 97.94%,and an average recall of 97.54%for the task of traffic characterization.When advanced models on the same dataset are chosen for comparison,the model produces the best results.To prove the generalization,we applied MTC to CICIDS2017 dataset,and our model also achieved good results. 展开更多
关键词 Encrypted traffic classification multi-task learning feature fusion TRANSFORMER 1D-CNN
下载PDF
Trace-Norm Regularized Multi-Task Learning for Sea State Bias Estimation 被引量:1
13
作者 ZHONG Guoqiang QU Jianzhang +5 位作者 WANG Haizhen LIU Benxiu JIAO Wencong FAN Zhenlin MIAO Hongli HEDJAM Rachid 《Journal of Ocean University of China》 SCIE CAS CSCD 2020年第6期1292-1298,共7页
Sea state bias(SSB)is an important component of errors for the radar altimeter measurements of sea surface height(SSH).However,existing SSB estimation methods are almost all based on single-task learning(STL),where on... Sea state bias(SSB)is an important component of errors for the radar altimeter measurements of sea surface height(SSH).However,existing SSB estimation methods are almost all based on single-task learning(STL),where one model is built on the data from only one radar altimeter.In this paper,taking account of the data from multiple radar altimeters available,we introduced a multi-task learning method,called trace-norm regularized multi-task learning(TNR-MTL),for SSB estimation.Corresponding to each individual task,TNR-MLT involves only three parameters.Hence,it is easy to implement.More importantly,the convergence of TNR-MLT is theoretically guaranteed.Compared with the commonly used STL models,TNR-MTL can effectively utilize the shared information between data from multiple altimeters.During the training of TNR-MTL,we used the JASON-2 and JASON-3 cycle data to solve two correlated SSB estimation tasks.Then the optimal model was selected to estimate SSB on the JASON-2 and the HY-270-71 cycle intersection data.For the JSAON-2 cycle intersection data,the corrected variance(M)has been reduced by 0.60 cm^2 compared to the geophysical data records(GDR);while for the HY-2 cycle intersection data,M has been reduced by 1.30 cm^2 compared to GDR.Therefore,TNR-MTL is proved to be effective for the SSB estimation tasks. 展开更多
关键词 sea state bias(SSB) radar altimeter geophysical data records(GDR) trace-norm multi-task learning
下载PDF
Vision-based multi-level synthetical evaluation of seismic damage for RC structural components: a multi-task learning approach 被引量:1
14
作者 Xu Yang Qiao Weidong +2 位作者 Zhao Jin Zhang Qiangqiang Li Hui 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第1期69-85,共17页
Recent studies for computer vision and deep learning-based,post-earthquake inspections on RC structures mainly perform well for specific tasks,while the trained models must be fine-tuned and re-trained when facing new... Recent studies for computer vision and deep learning-based,post-earthquake inspections on RC structures mainly perform well for specific tasks,while the trained models must be fine-tuned and re-trained when facing new tasks and datasets,which is inevitably time-consuming.This study proposes a multi-task learning approach that simultaneously accomplishes the semantic segmentation of seven-type structural components,three-type seismic damage,and four-type deterioration states.The proposed method contains a CNN-based encoder-decoder backbone subnetwork with skip-connection modules and a multi-head,task-specific recognition subnetwork.The backbone subnetwork is designed to extract multi-level features of post-earthquake RC structures.The multi-head,task-specific recognition subnetwork consists of three individual self-attention pipelines,each of which utilizes extracted multi-level features from the backbone network as a mutual guidance for the individual segmentation task.A synthetical loss function is designed with real-time adaptive coefficients to balance multi-task losses and focus on the most unstably fluctuating one.Ablation experiments and comparative studies are further conducted to demonstrate their effectiveness and necessity.The results show that the proposed method can simultaneously recognize different structural components,seismic damage,and deterioration states,and that the overall performance of the three-task learning models gains general improvement when compared to all single-task and dual-task models. 展开更多
关键词 post-earthquake evaluation multi-task learning computer vision structural component segmentation seismic damage recognition deterioration state assessment
下载PDF
Spatio-Temporal Cellular Network Traffic Prediction Using Multi-Task Deep Learning for AI-Enabled 6G 被引量:1
15
作者 Xiaochuan Sun Biao Wei +3 位作者 Jiahui Gao Difei Cao Zhigang Li Yingqi Li 《Journal of Beijing Institute of Technology》 EI CAS 2022年第5期441-453,共13页
Spatio-temporal cellular network traffic prediction at wide-area level plays an important role in resource reconfiguration,traffic scheduling and intrusion detection,thus potentially supporting connected intelligence ... Spatio-temporal cellular network traffic prediction at wide-area level plays an important role in resource reconfiguration,traffic scheduling and intrusion detection,thus potentially supporting connected intelligence of the sixth generation of mobile communications technology(6G).However,the existing studies just focus on the spatio-temporal modeling of traffic data of single network service,such as short message,call,or Internet.It is not conducive to accurate prediction of traffic data,characterised by diverse network service,spatio-temporality and supersize volume.To address this issue,a novel multi-task deep learning framework is developed for citywide cellular network traffic prediction.Functionally,this framework mainly consists of a dual modular feature sharing layer and a multi-task learning layer(DMFS-MT).The former aims at mining long-term spatio-temporal dependencies and local spatio-temporal fluctuation trends in data,respectively,via a new combination of convolutional gated recurrent unit(ConvGRU)and 3-dimensional convolutional neural network(3D-CNN).For the latter,each task is performed for predicting service-specific traffic data based on a fully connected network.On the real-world Telecom Italia dataset,simulation results demonstrate the effectiveness of our proposal through prediction performance measure,spatial pattern comparison and statistical distribution verification. 展开更多
关键词 the sixth generation of mobile communications technology(6G) cellular network traffic multi-task deep learning spatio-temporality
下载PDF
Gender-Specific Multi-Task Micro-Expression Recognition Using Pyramid CGBP-TOP Feature
16
作者 Chunlong Hu Jianjun Chen +3 位作者 Xin Zuo Haitao Zou Xing Deng Yucheng Shu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第3期547-559,共13页
Micro-expression recognition has attracted growing research interests in the field of compute vision.However,micro-expression usually lasts a few seconds,thus it is difficult to detect.This paper presents a new framew... Micro-expression recognition has attracted growing research interests in the field of compute vision.However,micro-expression usually lasts a few seconds,thus it is difficult to detect.This paper presents a new framework to recognize micro-expression using pyramid histogram of Centralized Gabor Binary Pattern from Three Orthogonal Panels(CGBP-TOP)which is an extension of Local Gabor Binary Pattern from Three Orthogonal Panels feature.CGBP-TOP performs spatial and temporal analysis to capture the local facial characteristics of micro-expression image sequences.In order to keep more local information of the face,CGBP-TOP is extracted based on pyramid subregions of the micro-expression video frame.The combination of CGBP-TOP and spatial pyramid can represent well and truly the facial movements of the micro-expression image sequences.However,the dimension of our pyramid CGBP-TOP tends to be very high,which may lead to high data redundancy problem.In addition,it is clear that people of different genders usually have different ways of micro-expression.Therefore,in this paper,in order to select the relevant features of micro-expression,the gender-specific sparse multi-task learning method with adaptive regularization term is adopted to learn a compact subset of pyramid CGBP-TOP feature for micro-expression classification of different sexes.Finally,extensive experiments on widely used CASME II and SMIC databases demonstrate that our method can efficiently extract micro-expression motion features in the micro-expression video clip.Moreover,our proposed approach achieves comparable results with the state-of-the-art methods. 展开更多
关键词 Micro-expression recognition FEATURE extraction spatial PYRAMID multi-task learning REGULARIZATION
下载PDF
Robust multi-task distributed estimation based on generalized maximum correntropy criterion
17
作者 胡倩 陈枫 叶明 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期705-715,共11页
False data injection(FDI) attacks are common in the distributed estimation of multi-task network environments, so an attack detection strategy is designed by combining the generalized maximum correntropy criterion. Ba... False data injection(FDI) attacks are common in the distributed estimation of multi-task network environments, so an attack detection strategy is designed by combining the generalized maximum correntropy criterion. Based on this, we propose a diffusion least-mean-square algorithm based on the generalized maximum correntropy criterion(GMCC-DLMS)for multi-task networks. The algorithm achieves gratifying estimation results. Even more, compared to the related work,it has better robustness when the number of attacked nodes increases. Moreover, the assumption about the number of attacked nodes is relaxed, which is applicable to multi-task environments. In addition, the performance of the proposed GMCC-DLMS algorithm is analyzed in the mean and mean-square senses. Finally, simulation experiments confirm the performance and effectiveness against FDI attacks of the algorithm. 展开更多
关键词 distributed estimation generalized correntropy multi-task networks adaptive filtering
下载PDF
The Entity Relationship Extraction Method Using Improved RoBERTa and Multi-Task Learning
18
作者 Chaoyu Fan 《Computers, Materials & Continua》 SCIE EI 2023年第11期1719-1738,共20页
There is a growing amount of data uploaded to the internet every day and it is important to understand the volume of those data to find a better scheme to process them.However,the volume of internet data is beyond the... There is a growing amount of data uploaded to the internet every day and it is important to understand the volume of those data to find a better scheme to process them.However,the volume of internet data is beyond the processing capabilities of the current internet infrastructure.Therefore,engineering works using technology to organize and analyze information and extract useful information are interesting in both industry and academia.The goal of this paper is to explore the entity relationship based on deep learning,introduce semantic knowledge by using the prepared language model,develop an advanced entity relationship information extraction method by combining Robustly Optimized BERT Approach(RoBERTa)and multi-task learning,and combine the intelligent characters in the field of linguistic,called Robustly Optimized BERT Approach+Multi-Task Learning(RoBERTa+MTL).To improve the effectiveness of model interaction,multi-task teaching is used to implement the observation information of auxiliary tasks.Experimental results show that our method has achieved an accuracy of 88.95 entity relationship extraction,and a further it has achieved 86.35%of accuracy after being combined with multi-task learning. 展开更多
关键词 Entity relationship extraction multi-task Learning RoBERTa
下载PDF
Multi-Task Timing Assignment Algorithm for Intelligent Production of Vegetables in Open Field
19
作者 Huarui Wu Huaji Zhu +3 位作者 Jingqiu Gu Wei Guo Ning Zhang Xiao Han 《Journal of Beijing Institute of Technology》 EI CAS 2023年第3期352-362,共11页
Vegetable production in the open field involves many tasks,such as soil preparation,ridging,and transplanting/sowing.Different tasks require agricultural machinery equipped with different agricultural tools to meet th... Vegetable production in the open field involves many tasks,such as soil preparation,ridging,and transplanting/sowing.Different tasks require agricultural machinery equipped with different agricultural tools to meet the needs of the operation.Aiming at the coupling multi-task in the intelligent production of vegetables in the open field,the task assignment method for multiple unmanned tractors based on consistency alliance is studied.Firstly,unmanned vegetable production in the open field is abstracted as a multi-task assignment model with constraints of task demand,task sequence,and the distance traveled by an unmanned tractor.The tight time constraints between associated tasks are transformed into time windows.Based on the driving distance of the unmanned tractor and the replacement cost of the tools,an expanded task cost function is innovatively established.The task assignment model of multiple unmanned tractors is optimized by the consensus based bundle algorithm(CBBA)with time windows.Experiments show that the method can effectively solve task conflict in unmanned production and optimize task allocation.A basic model is provided for the cooperative task of multiple unmanned tractors for vegetable production in the open field. 展开更多
关键词 VEGETABLE unmanned tractor multi-task allocation task collaboration
下载PDF
Multi-Task Deep Learning with Task Attention for Post-Click Conversion Rate Prediction
20
作者 Hongxin Luo Xiaobing Zhou +1 位作者 Haiyan Ding Liqing Wang 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期3583-3593,共11页
Online advertising has gained much attention on various platforms as a hugely lucrative market.In promoting content and advertisements in real life,the acquisition of user target actions is usually a multi-step proces... Online advertising has gained much attention on various platforms as a hugely lucrative market.In promoting content and advertisements in real life,the acquisition of user target actions is usually a multi-step process,such as impres-sion→click→conversion,which means the process from the delivery of the recommended item to the user’s click to the final conversion.Due to data sparsity or sample selection bias,it is difficult for the trained model to achieve the business goal of the target campaign.Multi-task learning,a classical solution to this pro-blem,aims to generalize better on the original task given several related tasks by exploiting the knowledge between tasks to share the same feature and label space.Adaptively learned task relations bring better performance to make full use of the correlation between tasks.We train a general model capable of captur-ing the relationships between various tasks on all existing active tasks from a meta-learning perspective.In addition,this paper proposes a Multi-task Attention Network(MAN)to identify commonalities and differences between tasks in the feature space.The model performance is improved by explicitly learning the stacking of task relationships in the label space.To illustrate the effectiveness of our method,experiments are conducted on Alibaba Click and Conversion Pre-diction(Ali-CCP)dataset.Experimental results show that the method outperforms the state-of-the-art multi-task learning methods. 展开更多
关键词 multi-task learning recommend system ATTENTION META-LEARNING
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部