Creation of a spectral signature reflectance data, which aids in the identification of the crops is important in determining size and location crop fields. Therefore, we developed a spectral signature reflectance for ...Creation of a spectral signature reflectance data, which aids in the identification of the crops is important in determining size and location crop fields. Therefore, we developed a spectral signature reflectance for the vegetative stage of the green gram (Vigna. radiata L.) over 5 years (2020, 2018, 2017, 2015, and 2013) for agroecological zone IV and V in Kenya. The years chosen were those whose satellite resolution data was available for the vegetative stage of crop growth in the short rain season (October, November, December (OND)). We used Landsat 8 OLI satellite imagery in this study. Cropping pattern data for the study area were evaluated by calculating the Top of Atmosphere reflectance. Farms geo-referencing, along with field data collection, was undertaken to extract Top of Atmosphere reflectance for bands 2, 3, 4 and 7. We also carried a spectral similarity assessment on the various cropping patterns. The spectral reflectance ranged from 0.07696 - 0.09632, 0.07466 - 0.09467, 0.0704047 - 0.12188,0.19822 - 0.24387, 0.19269 - 0.26900, and 0.11354 - 0.20815 for bands 2, 3, 4, 5, 6, and 7 for green gram, respectively. The results showed a dissimilarity among the various cropping patterns. The lowest dissimilarity index was 0.027 for the maize (Zea mays L.) bean (Phaseolus vulgaris) versus the maize-pigeon pea (Cajanus cajan) crop, while the highest dissimilarity index was 0.443 for the maize bean versus the maize bean and cowpea cropping patterns. High crop dissimilarities experienced across the cropping pattern through these spectral reflectance values confirm that the green gram was potentially identifiable. The results can be used in crop type identification in agroecological lower midland zone IV and V for mung bean management. This study therefore suggests that use of reflectance data in remote sensing of agricultural ecosystems would aid in planning, management, and crop allocation to different ecozones.展开更多
碎屑流是我国山区最危险的地质灾害之一,山区桥墩常受到碎屑流冲击而开裂、倾斜甚至倒塌,给山区桥梁建设、运营带来严重的安全隐患。采用离散元方法(discrete element method,DEM)和有限元方法(finite element method,FEM)耦合的三维数...碎屑流是我国山区最危险的地质灾害之一,山区桥墩常受到碎屑流冲击而开裂、倾斜甚至倒塌,给山区桥梁建设、运营带来严重的安全隐患。采用离散元方法(discrete element method,DEM)和有限元方法(finite element method,FEM)耦合的三维数值模拟方法模拟了碎屑流对双柱式桥墩的冲击效应,并结合斜槽试验,验证了耦合方法的准确性,进一步分析了碎屑流冲击坡度、距离和体积密度对桥墩冲击力的影响规律。结果表明,最大冲击力与碎屑流冲击坡度、距离和体积密度分别呈幂函数(指数大于1)、幂函数(指数小于1)和线性正相关。冲击坡度、距离和体积密度对最大冲击力的敏感度值分别为3.012、0.202、0.804,在桥梁碎屑流灾害防治时需重视冲击坡度和体积密度的影响。将冲击力的数值模拟值与流体动力学模型预测值对比分析表明,流体动力学模型理论公式能较好地预测桥墩所受的最大冲击力,最大预测误差低于23.6%。相关研究结果可为山区桥梁碎屑流灾害防治与设计提供一定的参考依据。展开更多
为研究混凝土运输车搅拌筒内的混凝土与骨料颗粒的真实运动情况,采用CFD-DEM耦合的方法,考虑混凝土的非牛顿流体特性及骨料颗粒间的相互作用,对混凝土进料、搅拌、出料过程的混凝土及颗粒运动规律进行数值模拟。通过将出料时间和出料速...为研究混凝土运输车搅拌筒内的混凝土与骨料颗粒的真实运动情况,采用CFD-DEM耦合的方法,考虑混凝土的非牛顿流体特性及骨料颗粒间的相互作用,对混凝土进料、搅拌、出料过程的混凝土及颗粒运动规律进行数值模拟。通过将出料时间和出料速率数值仿真结果与实验对比,验证了CFD-DEM耦合方法的可行性。将计算流体动力学(Computational Fluid Dynamics,CFD)和离散元(Discrete Element Method,DEM)仿真结果导入ABAQUS中对叶片结构强度进行了分析,结果表明:叶片所受应力远小于材料的许用应力,最大节点位移满足刚度设计要求。最后对叶片的磨损情况进行了分析。展开更多
文摘Creation of a spectral signature reflectance data, which aids in the identification of the crops is important in determining size and location crop fields. Therefore, we developed a spectral signature reflectance for the vegetative stage of the green gram (Vigna. radiata L.) over 5 years (2020, 2018, 2017, 2015, and 2013) for agroecological zone IV and V in Kenya. The years chosen were those whose satellite resolution data was available for the vegetative stage of crop growth in the short rain season (October, November, December (OND)). We used Landsat 8 OLI satellite imagery in this study. Cropping pattern data for the study area were evaluated by calculating the Top of Atmosphere reflectance. Farms geo-referencing, along with field data collection, was undertaken to extract Top of Atmosphere reflectance for bands 2, 3, 4 and 7. We also carried a spectral similarity assessment on the various cropping patterns. The spectral reflectance ranged from 0.07696 - 0.09632, 0.07466 - 0.09467, 0.0704047 - 0.12188,0.19822 - 0.24387, 0.19269 - 0.26900, and 0.11354 - 0.20815 for bands 2, 3, 4, 5, 6, and 7 for green gram, respectively. The results showed a dissimilarity among the various cropping patterns. The lowest dissimilarity index was 0.027 for the maize (Zea mays L.) bean (Phaseolus vulgaris) versus the maize-pigeon pea (Cajanus cajan) crop, while the highest dissimilarity index was 0.443 for the maize bean versus the maize bean and cowpea cropping patterns. High crop dissimilarities experienced across the cropping pattern through these spectral reflectance values confirm that the green gram was potentially identifiable. The results can be used in crop type identification in agroecological lower midland zone IV and V for mung bean management. This study therefore suggests that use of reflectance data in remote sensing of agricultural ecosystems would aid in planning, management, and crop allocation to different ecozones.
文摘碎屑流是我国山区最危险的地质灾害之一,山区桥墩常受到碎屑流冲击而开裂、倾斜甚至倒塌,给山区桥梁建设、运营带来严重的安全隐患。采用离散元方法(discrete element method,DEM)和有限元方法(finite element method,FEM)耦合的三维数值模拟方法模拟了碎屑流对双柱式桥墩的冲击效应,并结合斜槽试验,验证了耦合方法的准确性,进一步分析了碎屑流冲击坡度、距离和体积密度对桥墩冲击力的影响规律。结果表明,最大冲击力与碎屑流冲击坡度、距离和体积密度分别呈幂函数(指数大于1)、幂函数(指数小于1)和线性正相关。冲击坡度、距离和体积密度对最大冲击力的敏感度值分别为3.012、0.202、0.804,在桥梁碎屑流灾害防治时需重视冲击坡度和体积密度的影响。将冲击力的数值模拟值与流体动力学模型预测值对比分析表明,流体动力学模型理论公式能较好地预测桥墩所受的最大冲击力,最大预测误差低于23.6%。相关研究结果可为山区桥梁碎屑流灾害防治与设计提供一定的参考依据。
文摘为研究混凝土运输车搅拌筒内的混凝土与骨料颗粒的真实运动情况,采用CFD-DEM耦合的方法,考虑混凝土的非牛顿流体特性及骨料颗粒间的相互作用,对混凝土进料、搅拌、出料过程的混凝土及颗粒运动规律进行数值模拟。通过将出料时间和出料速率数值仿真结果与实验对比,验证了CFD-DEM耦合方法的可行性。将计算流体动力学(Computational Fluid Dynamics,CFD)和离散元(Discrete Element Method,DEM)仿真结果导入ABAQUS中对叶片结构强度进行了分析,结果表明:叶片所受应力远小于材料的许用应力,最大节点位移满足刚度设计要求。最后对叶片的磨损情况进行了分析。