期刊文献+
共找到2,980篇文章
< 1 2 149 >
每页显示 20 50 100
Unsupervised change detection of man-made objects using coherent and incoherent features of multi-temporal SAR images
1
作者 FENG Hao WU Jianzhong +1 位作者 ZHANG Lu LIAO Mingsheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第4期896-906,共11页
Constrained by complex imaging mechanism and extraordinary visual appearance,change detection with synthetic aperture radar(SAR)images has been a difficult research topic,especially in urban areas.Although existing st... Constrained by complex imaging mechanism and extraordinary visual appearance,change detection with synthetic aperture radar(SAR)images has been a difficult research topic,especially in urban areas.Although existing studies have extended from bi-temporal data pair to multi-temporal datasets to derive more plentiful information,there are still two problems to be solved in practical applications.First,change indicators constructed from incoherent feature only cannot characterize the change objects accurately.Second,the results of pixel-level methods are usually presented in the form of the noisy binary map,making the spatial change not intuitive and the temporal change of a single pixel meaningless.In this study,we propose an unsupervised man-made objects change detection framework using both coherent and incoherent features derived from multi-temporal SAR images.The coefficients of variation in timeseries incoherent features and the man-made object index(MOI)defined with coherent features are first combined to identify the initial change pixels.Afterwards,an improved spatiotemporal clustering algorithm is developed based on density-based spatial clustering of applications with noise(DBSCAN)and dynamic time warping(DTW),which can transform the initial results into noiseless object-level patches,and take the cluster center as a representative of the man-made object to determine the change pattern of each patch.An experiment with a stack of 10 TerraSAR-X images in Stripmap mode demonstrated that this method is effective in urban scenes and has the potential applicability to wide area change detection. 展开更多
关键词 change detection multi-temporal synthetic aperture radar(sar)data coherent and incoherent features CLUSTERING
下载PDF
Mangrove monitoring and extraction based on multi-source remote sensing data:a deep learning method based on SAR and optical image fusion
2
作者 Yiheng Xie Xiaoping Rui +2 位作者 Yarong Zou Heng Tang Ninglei Ouyang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第9期110-121,共12页
Mangroves are indispensable to coastlines,maintaining biodiversity,and mitigating climate change.Therefore,improving the accuracy of mangrove information identification is crucial for their ecological protection.Aimin... Mangroves are indispensable to coastlines,maintaining biodiversity,and mitigating climate change.Therefore,improving the accuracy of mangrove information identification is crucial for their ecological protection.Aiming at the limited morphological information of synthetic aperture radar(SAR)images,which is greatly interfered by noise,and the susceptibility of optical images to weather and lighting conditions,this paper proposes a pixel-level weighted fusion method for SAR and optical images.Image fusion enhanced the target features and made mangrove monitoring more comprehensive and accurate.To address the problem of high similarity between mangrove forests and other forests,this paper is based on the U-Net convolutional neural network,and an attention mechanism is added in the feature extraction stage to make the model pay more attention to the mangrove vegetation area in the image.In order to accelerate the convergence and normalize the input,batch normalization(BN)layer and Dropout layer are added after each convolutional layer.Since mangroves are a minority class in the image,an improved cross-entropy loss function is introduced in this paper to improve the model’s ability to recognize mangroves.The AttU-Net model for mangrove recognition in high similarity environments is thus constructed based on the fused images.Through comparison experiments,the overall accuracy of the improved U-Net model trained from the fused images to recognize the predicted regions is significantly improved.Based on the fused images,the recognition results of the AttU-Net model proposed in this paper are compared with its benchmark model,U-Net,and the Dense-Net,Res-Net,and Seg-Net methods.The AttU-Net model captured mangroves’complex structures and textural features in images more effectively.The average OA,F1-score,and Kappa coefficient in the four tested regions were 94.406%,90.006%,and 84.045%,which were significantly higher than several other methods.This method can provide some technical support for the monitoring and protection of mangrove ecosystems. 展开更多
关键词 image fusion sar image optical image MANGROVE deep learning attention mechanism
下载PDF
Novel method for extraction of ship target with overlaps in SAR image via EM algorithm
3
作者 CAO Rui WANG Yong 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期874-887,共14页
The quality of synthetic aperture radar(SAR)image degrades in the case of multiple imaging projection planes(IPPs)and multiple overlapping ship targets,and then the performance of target classification and recognition... The quality of synthetic aperture radar(SAR)image degrades in the case of multiple imaging projection planes(IPPs)and multiple overlapping ship targets,and then the performance of target classification and recognition can be influenced.For addressing this issue,a method for extracting ship targets with overlaps via the expectation maximization(EM)algorithm is pro-posed.First,the scatterers of ship targets are obtained via the target detection technique.Then,the EM algorithm is applied to extract the scatterers of a single ship target with a single IPP.Afterwards,a novel image amplitude estimation approach is pro-posed,with which the radar image of a single target with a sin-gle IPP can be generated.The proposed method can accom-plish IPP selection and targets separation in the image domain,which can improve the image quality and reserve the target information most possibly.Results of simulated and real mea-sured data demonstrate the effectiveness of the proposed method. 展开更多
关键词 expectation maximization(EM)algorithm image processing imaging projection plane(IPP) overlapping ship tar-get synthetic aperture radar(sar)
下载PDF
Power of SAR Imagery and Machine Learning in Monitoring Ulva prolifera:A Case Study of Sentinel-1 and Random Forest
4
作者 ZHENG Longxiao WU Mengquan +5 位作者 XUE Mingyue WU Hao LIANG Feng LI Xiangpeng HOU Shimin LIU Jiayan 《Chinese Geographical Science》 SCIE CSCD 2024年第6期1134-1143,共10页
Automatically detecting Ulva prolifera(U.prolifera)in rainy and cloudy weather using remote sensing imagery has been a long-standing problem.Here,we address this challenge by combining high-resolution Synthetic Apertu... Automatically detecting Ulva prolifera(U.prolifera)in rainy and cloudy weather using remote sensing imagery has been a long-standing problem.Here,we address this challenge by combining high-resolution Synthetic Aperture Radar(SAR)imagery with the machine learning,and detect the U.prolifera of the South Yellow Sea of China(SYS)in 2021.The findings indicate that the Random Forest model can accurately and robustly detect U.prolifera,even in the presence of complex ocean backgrounds and speckle noise.Visual inspection confirmed that the method successfully identified the majority of pixels containing U.prolifera without misidentify-ing noise pixels or seawater pixels as U.prolifera.Additionally,the method demonstrated consistent performance across different im-ages,with an average Area Under Curve(AUC)of 0.930(+0.028).The analysis yielded an overall accuracy of over 96%,with an aver-age Kappa coefficient of 0.941(+0.038).Compared to the traditional thresholding method,Random Forest model has a lower estima-tion error of 14.81%.Practical application indicates that this method can be used in the detection of unprecedented U.prolifera in 2021 to derive continuous spatiotemporal changes.This study provides a potential new method to detect U.prolifera and enhances our under-standing of macroalgal outbreaks in the marine environment. 展开更多
关键词 Ulva prolifera Random Forest Sentinel-1 Synthetic Aperture Radar(sar)image machine learning remote sensing Google Earth Engine South Yellow Sea of China
下载PDF
Characterization of land cover types in Xilin River Basin using multi-temporal Landsat images 被引量:2
5
作者 CHENSiqing LIUJiyuan +1 位作者 ZHUANGDafang XIAOXiangming 《Journal of Geographical Sciences》 SCIE CSCD 2003年第2期131-138,共8页
This study conducted computer-aided image analysis of land use and land cover in Xilin River Basin, Inner Mongolia, using 4 sets of Landsat TM/ETM+ images acquired on July 31, 1987, August 11, 1991, Sep... This study conducted computer-aided image analysis of land use and land cover in Xilin River Basin, Inner Mongolia, using 4 sets of Landsat TM/ETM+ images acquired on July 31, 1987, August 11, 1991, September 27, 1997 and May 23, 2000, respectively. Primarily, 17 sub-class land cover types were recognized, including nine grassland types at community level: F.sibiricum steppe, S.baicalensis steppe, A.chinensis+ forbs steppe, A.chinensis+ bunchgrass steppe, A.chinensis+ Ar.frigida steppe, S.grandis+ A.chinensis steppe, S.grandis+ bunchgrass steppe, S.krylavii steppe, Ar.frigida steppe and eight non-grassland types: active cropland, harvested cropland, urban area, wetland, desertified land, saline and alkaline land, cloud, water body + cloud shadow. To eliminate the classification error existing among different sub-types of the same gross type, the 17 sub-class land cover types were grouped into five gross types: meadow grassland, temperate grassland, desert grassland, cropland and non-grassland. The overall classification accuracy of the five land cover types was 81.0% for 1987, 81.7% for 1991, 80.1% for 1997 and 78.2% for 2000. 展开更多
关键词 land-use/land cover classification multi-temporal Landsat images Xilin River Basin CLC number:F301.24 TP79
下载PDF
Study of Forest Cover Change Dynamics between 2000 and 2015 in the Ikongo District of Madagascar Using Multi-Temporal Landsat Satellite Images 被引量:1
6
作者 Aimé Richard Hajalalaina Arisetra Razafinimaro Nicolas Ratolotriniaina 《Advances in Remote Sensing》 2021年第3期78-91,共14页
Satellite images are considered reliable data that preserve land cover information. In the field of remote sensing, these images allow relevant analyses of changes in space over time through the use of computer tools.... Satellite images are considered reliable data that preserve land cover information. In the field of remote sensing, these images allow relevant analyses of changes in space over time through the use of computer tools. In this study, we have applied the “discriminant” change detection algorithm. In this, we have verified its effectiveness in multi-temporal studies. Also, we have determined the change in forest dynamics in the Ikongo district of Madagascar between 2000 and 2015. During the treatments, we have used the Landsat TM satellite images for the years 2000, 2005 and 2010 as well as ETM+ for 2015. Thus, analyses carried out have allowed us to note that between 2000-2005, 1.4% of natural forest disappeared. And, between 2005-2010, forests degradation<span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">was 1.8%. Also, between 2010-2015, about 0.5% of the natural forest conserved in 2010 disappeared. Furthermore, we have found that the discriminant algorithm is considerably efficient in terms of monitoring the dynamics of forest cover change.</span></span></span> 展开更多
关键词 Remote Sensing image Processing Change Detect multi-temporal LANDSAT Forest Covert
下载PDF
SAR IMAGE RECOGNITION BASED ON MULTI-ASPECT OF SHADOW INFORMATION 被引量:2
7
作者 杨露菁 郝威 王德石 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第4期320-326,共7页
The traditional synthetic aperture radar(SAR) image recognition techniques focus on the electro magnetic (EM) scattering centers, ignoring the important role of the shadow information on the SAR image recognition.... The traditional synthetic aperture radar(SAR) image recognition techniques focus on the electro magnetic (EM) scattering centers, ignoring the important role of the shadow information on the SAR image recognition. It is difficult to classify targets by the shadow information independently, because the shadow shape is dependent on the radar aspect angle, the depression angle and the resolution. Moreover, the shadow shapes of different targets are similar. When the multiple SAR images of one target from different aspects are available, the performance of the target recognition can be improved. Aimed at the problem, a multi-aspect SAR image recognition technique based on the shadow information is developed. It extracts shadow profiles from SAR images, and takes chain codes as the feature vectors of targets. Then, feature vectors on multiple aspects of the same target are combined with feature sequences, and the hidden Markov model (HMM) is applied to the feature sequences for the target recognition. The simulation result shows the effectiveness of the method. 展开更多
关键词 image recognition synthetic aperture radar sar shadow information chain code
下载PDF
基于CxImage库的SAR图像Speckle噪声抑制 被引量:1
8
作者 陈海花 张亮 陈鹏 《电子科技》 2013年第7期54-58,共5页
合成孔径雷达图像的相干斑噪声抑制是SAR信息处理中的一个重要环节。经典的Speckle噪声抑制通常作为一个处理模块集成在软件中,但现有软件代码封装无法二次开发。针对文中提出了一种基于开源图像库CxImage的空间域自适应Speckle噪声抑... 合成孔径雷达图像的相干斑噪声抑制是SAR信息处理中的一个重要环节。经典的Speckle噪声抑制通常作为一个处理模块集成在软件中,但现有软件代码封装无法二次开发。针对文中提出了一种基于开源图像库CxImage的空间域自适应Speckle噪声抑制算法的应用与集成。将CxImage图像库链接入MFC应用程序框架中,利用其图像管理、维护、处理功能对SAR图像进行维护管理,集成多种经典的空间域自适应滤波方法,并以ERS-2卫星的PRISAR数据为例,进行Speckle噪声滤波处理,选取适当的滤波效果评价参数,对滤波结果进行比较,最终得出各滤波算法应用于SAR图像滤波的优劣。 展开更多
关键词 遥感信息处理 sar Speckle噪声 Cximage
下载PDF
Suppression of Speckle in SAR Images Using Wavelet-Based HMM
9
作者 张志明 王越 +1 位作者 陶然 周思永 《Journal of Beijing Institute of Technology》 EI CAS 2001年第1期86-92,共7页
In order to suppress the speckle appearing in synthesis aperture radar (SAR) images, a novel speckle reduction method based on wavelet domain hidden Markov tree (HMT) was proposed. First, the image was logarithmic tra... In order to suppress the speckle appearing in synthesis aperture radar (SAR) images, a novel speckle reduction method based on wavelet domain hidden Markov tree (HMT) was proposed. First, the image was logarithmic transformed to change the statistical property of the speckles. Then an HMT was constructed in the correspondent wavelet domain. Based on this model, the image signal was restored by maximum likelihood estimation and speckle noise was suppressed. Simulating SAR images had shown that the performance of the filter is satisfactory for both speckle smoothing and edges presentation, and for generating visually natural images as well. 展开更多
关键词 synthetic aperture radar (sar) WAVELET hidden Markov model(HMM) noise suppression image processing
下载PDF
PCA-based sea-ice image fusion of optical data by HIS transform and SAR data by wavelet transform 被引量:12
10
作者 LIU Meijie DAI Yongshou +3 位作者 ZHANG Jie ZHANG Xi MENG Junmin XIE Qinchuan 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2015年第3期59-67,共9页
Sea ice as a disaster has recently attracted a great deal of attention in China. Its monitoring has become a routine task for the maritime sector. Remote sensing, which depends mainly on SAR and optical sensors, has b... Sea ice as a disaster has recently attracted a great deal of attention in China. Its monitoring has become a routine task for the maritime sector. Remote sensing, which depends mainly on SAR and optical sensors, has become the primary means for sea-ice research. Optical images contain abundant sea-ice multi-spectral in-formation, whereas SAR images contain rich sea-ice texture information. If the characteristic advantages of SAR and optical images could be combined for sea-ice study, the ability of sea-ice monitoring would be im-proved. In this study, in accordance with the characteristics of sea-ice SAR and optical images, the transfor-mation and fusion methods for these images were chosen. Also, a fusion method of optical and SAR images was proposed in order to improve sea-ice identification. Texture information can play an important role in sea-ice classification. Haar wavelet transformation was found to be suitable for the sea-ice SAR images, and the texture information of the sea-ice SAR image from Advanced Synthetic Aperture Radar (ASAR) loaded on ENVISAT was documented. The results of our studies showed that, the optical images in the hue-intensi-ty-saturation (HIS) space could reflect the spectral characteristics of the sea-ice types more efficiently than in the red-green-blue (RGB) space, and the optical image from the China-Brazil Earth Resources Satellite (CBERS-02B) was transferred from the RGB space to the HIS space. The principal component analysis (PCA) method could potentially contain the maximum information of the sea-ice images by fusing the HIS and texture images. The fusion image was obtained by a PCA method, which included the advantages of both the sea-ice SAR image and the optical image. To validate the fusion method, three methods were used to evaluate the fused image, i.e., objective, subjective, and comprehensive evaluations. It was concluded that the fusion method proposed could improve the ability of image interpretation and sea-ice identification. 展开更多
关键词 sea ice optical remote sensing image sar remote sensing image HIS transform wavelet transform PCA method
下载PDF
Underwater topography detection of Shuangzi Reefs with SAR images acquired in different time 被引量:6
11
作者 YANG Jungang ZHANG Jie MENG Junmin 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2007年第1期48-54,共7页
Imaging mechanism of underwater topography by SAR and a underwater topography SAR detection model built on the theory of underwater topography detection with SAR image presented by Yuan Yeli are used to detect the und... Imaging mechanism of underwater topography by SAR and a underwater topography SAR detection model built on the theory of underwater topography detection with SAR image presented by Yuan Yeli are used to detect the underwater topography of Shuangzi Reefs in the Nansha Islands with three scenes of SAR images acquired in different time. Detection results of three SAR images are compared with the chart topography and the detection errors are analyzed. Underwater topography detection experiments of Shuangzi Reefs show that the detection model is practicable. The detection results indicate that SAR images acquired in different time also can be used to detect the underwater topography, and the detection results are affected by the ocean conditions in the SAR acquiring time. 展开更多
关键词 Shuangzi Reefs underwater topography sar image topography detection
下载PDF
Optimum selection of common master image for ground deformation monitoring based on PS-DInSAR technique 被引量:6
12
作者 Zhu Zhengwei Zhou Jianjiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第6期1213-1220,共8页
Considering the joint effects of various factors such as temporal baseline, spatial baseline, thermal noise, the difference of Doppler centroid frequency and the error of data processing on the interference correlatio... Considering the joint effects of various factors such as temporal baseline, spatial baseline, thermal noise, the difference of Doppler centroid frequency and the error of data processing on the interference correlation, an optimum selection method of common master images for ground deformation monitoring based on the permanent scatterer and differential SAR interferometry (PS-DInSAR) technique is proposed, in which the joint correlation coeficient is used as the evaluation function. The principle and realization method of PS-DInSAR technology is introduced, the factors affecting the DInSAR correlation are analysed, and the joint correlation function model and its solution are presented. Finally an experiment for the optimum selection of common master images is performed by using 25 SAR images over Shanghai taken by the ERS-1/2 as test data. The results indicate that the optimum selection method for PS-DInSAR common master images is effective and reliable. 展开更多
关键词 remote sensing ground deformation monitoring differential sar interferometry common master image permanent scatterer synthetic aperture radar image analysis.
下载PDF
Fast segmentation approach for SAR image based on simple Markov random field 被引量:8
13
作者 Xiaogang Lei Ying Li Na Zhao Yanning Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第1期31-36,共6页
Traditional image segmentation methods based on MRF converge slowly and require pre-defined weight. These disadvantages are addressed, and a fast segmentation approach based on simple Markov random field (MRF) for S... Traditional image segmentation methods based on MRF converge slowly and require pre-defined weight. These disadvantages are addressed, and a fast segmentation approach based on simple Markov random field (MRF) for SAR image is proposed. The approach is firstly used to perform coarse segmentation in blocks. Then the image is modeled with simple MRF and adaptive variable weighting forms are applied in homogeneous and heterogeneous regions. As a result, the convergent speed is accelerated while the segmentation results in homogeneous regions and boarders are improved. Simulations with synthetic and real SAR images demonstrate the effectiveness of the proposed approach. 展开更多
关键词 sar image segmentation simple Markov random field coarse segmentation maximum a posterior iterated condition mode.
下载PDF
Edge Detection of River in SAR Image Based on Contourlet Modulus Maxima and Improved Mathematical Morphology 被引量:5
14
作者 吴一全 朱丽 +2 位作者 郝亚冰 李立 卢文平 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第5期478-483,共6页
To cope with the problems that edge detection operators are liable to make the detected edges too blurry for synthetic aperture radar(SAR)images,an edge detection method for detecting river in SAR images is proposed b... To cope with the problems that edge detection operators are liable to make the detected edges too blurry for synthetic aperture radar(SAR)images,an edge detection method for detecting river in SAR images is proposed based on contourlet modulus maxima and improved mathematical morphology.The SAR image is firstly transformed to a contourlet domain.According to the directional information and gradient information of directional subband of contourlet transform,the modulus maximum and the improved mathematical morphology are used to detect high frequency and low frequency sub-image edges,respectively.Subsequently,the edges of river in SAR image are obtained after fusing the high frequency sub-image and the low frequency sub-image.Experimental results demonstrate that the proposed edge detection method can obtain more accurate edge location and reduce false edges,compared with the Canny method,the method based on wavelet and Canny,the method based on contourlet modulus maxima,and the method based on improved(ROEWA).The obtained river edges are complete and clear. 展开更多
关键词 synthetic aperture radar(sar) image river detection edge detection contourlet transform modulus maxima
下载PDF
A detection model of underwater topography with a series of SAR images acquired at different time 被引量:3
15
作者 YANG Jungang ZHANG Jie MENG Junmin 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2010年第4期28-37,共10页
underwater topography is one of oceanic features detected by Synthetic Aperture Radar.Underwater topography SAR imaging mechanism shows that tidal current is the important factor for underwater topography SAR imaging.... underwater topography is one of oceanic features detected by Synthetic Aperture Radar.Underwater topography SAR imaging mechanism shows that tidal current is the important factor for underwater topography SAR imaging.Thus under the same wind field condition,SAR images for the same area acquired at different time include different information of the underwater topography.To utilize synchronously SAR images acquired at different time for the underwater topography SAR detection and improve the precision of detection,based on the detection model of underwater topography with single SAR image and the periodicity of tidal current,a detection model of underwater topography with a series of SAR images acquired at different time is developed by combing with tide and tidal current numerical simulation.To testify the feasibility of the presented model,Taiwan Shoal located at the south outlet of Taiwan Strait is selected as study area and three SAR images are used in the underwater topography detection.The detection results are compared with the field observation data of water depth carried out by R/V Dongfanghong 2,and the errors of the detection are compared with those of the single SAR image.All comparisons show that the detection model presented in the paper improves the precision of underwater topography SAR detection,and the presented model is feasible. 展开更多
关键词 underwater topography sar image Taiwan Shoal tide and tidal current
下载PDF
SAR Images Despeckling Based on Bayesian Estimation and Fuzzy Shrinkage in Wavelet Domains 被引量:3
16
作者 吴艳 王霞 廖桂生 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第4期326-333,共8页
An efficient despeclding algorithm is proposed based on stationary wavelet transform (SWT) for synthetic aperture radar (SAR) images. The statistical model of wavelet coefficients is analyzed and its performance i... An efficient despeclding algorithm is proposed based on stationary wavelet transform (SWT) for synthetic aperture radar (SAR) images. The statistical model of wavelet coefficients is analyzed and its performance is modeled with a mixture density of two zero-mean Gaussian distributions. A fuzzy shrinkage factor is derived based on the minimum mean square error (MMSE) criteria with Bayesian estimation. In the case above, the ideas of region division and fuzzy shrinkage arc adopted according to the interscale dependencies among wavelet coefficients. The noise-free wavelet coefficients are estimated accurately. Experimental results show that the algorithm proposed is superior to the refined Lee filter, wavelet soft thresbolding shrinkage and SWT shrinkage algorithms in terms of smoothing effects and edges preservation. 展开更多
关键词 sar image despeclding fuzzy shrinkage factor MMSE region division. Bayesian estimation SWT
下载PDF
Airport automatic detection in large space-borne SAR imagery 被引量:5
17
作者 Shaoming Zhang Yi Lin Xiaohu Zhang Yingying Chen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第3期390-396,共7页
A method to detect airports in large space-borne synthetic aperture radar(SAR) imagery is studied.First,the large SAR imagery is segmented according to amplitude characteristics using maximum a posteriori(MAP) est... A method to detect airports in large space-borne synthetic aperture radar(SAR) imagery is studied.First,the large SAR imagery is segmented according to amplitude characteristics using maximum a posteriori(MAP) estimator based on the heavytailed Rayleigh model.The attention is then paid on the object of interest(OOI) extracted from the large images.The minimumarea enclosing rectangle(MER) of OOI is created via a rotating calipers algorithm.The projection histogram(PH) of MER for OOI is then computed and the scale and rotation invariant feature for OOI are extracted from the statistical characteristics of PH.A support vector machine(SVM) classifier is trained using those feature parameters and the airport is detected by the SVM classifier and Hough transform.The application in space-borne SAR images demonstrates the effectiveness of the proposed method. 展开更多
关键词 synthetic aperture radar(sar imagery airport detection image segmentation minimum-area enclosing rectangle support vector machine(SVM).
下载PDF
Detection of ocean internal waves based on Faster R-CNN in SAR images 被引量:4
18
作者 BAO Sude MENG Junmin +1 位作者 SUN Lina LIU Yongxin 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2020年第1期55-63,共9页
Ocean internal waves appear as irregular bright and dark stripes on synthetic aperture radar(SAR)remote sensing images.Ocean internal waves detection in SAR images consequently constituted a difficult and popular rese... Ocean internal waves appear as irregular bright and dark stripes on synthetic aperture radar(SAR)remote sensing images.Ocean internal waves detection in SAR images consequently constituted a difficult and popular research topic.In this paper,ocean internal waves are detected in SAR images by employing the faster regions with convolutional neural network features(Faster R-CNN)framework;for this purpose,888 internal wave samples are utilized to train the convolutional network and identify internal waves.The experimental results demonstrate a 94.78%recognition rate for internal waves,and the average detection speed is 0.22 s/image.In addition,the detection results of internal wave samples under different conditions are analyzed.This paper lays a foundation for detecting ocean internal waves using convolutional neural networks. 展开更多
关键词 ocean internal waves FASTER regions with convolutional NEURAL NETWORK features (Faster R-CNN) convolutional NEURAL NETWORK synthetic APERTURE radar (sar) image region proposal NETWORK (RPN)
下载PDF
Three-dimensional positions of scattering centers reconstruction from multiple SAR images based on radargrammetry 被引量:3
19
作者 钟金荣 文贡坚 +1 位作者 回丙伟 李德仁 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1776-1789,共14页
A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of... A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of targets are extracted from 2D SAR images. Secondly, similarity measure is developed based on 2D attributed scatter centers' location, type, and radargrammetry principle between multiple SAR images. By this similarity, we can associate 2D scatter centers and then obtain candidate 3D scattering centers. Thirdly, these candidate scattering centers are clustered in 3D space to reconstruct final 3D positions. Compared with presented methods, the proposed method has a capability of describing distributed scattering center, reduces false and missing 3D scattering centers, and has fewer restrictionson modeling data. Finally, results of experiments have demonstrated the effectiveness of the proposed method. 展开更多
关键词 multiple synthetic aperture radar(sar) images three-dimensional scattering center position reconstruction radargrammetry
下载PDF
Case study on the extraction of land cover information from the SAR image of a coal mining area 被引量:11
20
作者 HU Zhao-ling LI Hai-quan DU Pei-jun 《Mining Science and Technology》 EI CAS 2009年第6期829-834,共6页
In this study,analyses are conducted on the information features of a construction site,a cornfield and subsidence seeper land in a coal mining area with a synthetic aperture radar (SAR) image of medium resolution. Ba... In this study,analyses are conducted on the information features of a construction site,a cornfield and subsidence seeper land in a coal mining area with a synthetic aperture radar (SAR) image of medium resolution. Based on features of land cover of the coal mining area,on texture feature extraction and a selection method of a gray-level co-occurrence matrix (GLCM) of the SAR image,we propose in this study that the optimum window size for computing the GLCM is an appropriate sized window that can effectively distinguish different types of land cover. Next,a band combination was carried out over the text feature images and the band-filtered SAR image to secure a new multi-band image. After the transformation of the new image with principal component analysis,a classification is conducted selectively on three principal component bands with the most information. Finally,through training and experimenting with the samples,a better three-layered BP neural network was established to classify the SAR image. The results show that,assisted by texture information,the neural network classification improved the accuracy of SAR image classification by 14.6%,compared with a classification by maximum likelihood estimation without texture information. 展开更多
关键词 sar image gray-level co-occurrence matrix texture feature neural network classification coal mining area
下载PDF
上一页 1 2 149 下一页 到第
使用帮助 返回顶部