High Voltage Direct Current (HVDC) electric power transmission is a promising technology for integrating offshore wind farms and interconnecting power grids in different regions. In order to maintain the DC voltage, d...High Voltage Direct Current (HVDC) electric power transmission is a promising technology for integrating offshore wind farms and interconnecting power grids in different regions. In order to maintain the DC voltage, droop control has been widely used. Transmission line loss constitutes an import part of the total power loss in a multi-terminal HVDC scheme. In this paper, the relation between droop controller design and transmission loss has been investigated. Different MTDC layout configurations are compared to examine the effect of droop controller design on the transmission loss.展开更多
A fault identification scheme for protection and adaptive reclosing is proposed for a hybrid multi-terminal HVDC system to increase the reliability of fault isolation and reclosing.By analyzing the"zero passing&q...A fault identification scheme for protection and adaptive reclosing is proposed for a hybrid multi-terminal HVDC system to increase the reliability of fault isolation and reclosing.By analyzing the"zero passing"characteristic of current at the local end during the converter capacitor discharge stage,the fault identification scheme is proposed.The distributed parameter-based fault location equation,which incorporates fault distance and fault impedance,is developed with the injection signal and the distributed parameter model during the adaptive reclosing stage.The fault distance is determined using a trust region reflection algorithm to identify the permanent fault,and a fault iden-tification scheme for adaptive reclosing is developed.Simulation results show that the proposed scheme is suitable for long-distance transmission lines with strong anti-fault impedance and anti-interference performance.Also,it is less affected by communication delay and DC boundary strength than existing methods.展开更多
风电的大规模并网导致系统等效惯量下降、不确定性增加,给电力系统的负荷频率控制(loadfrequency control,LFC)带来新的挑战。考虑到柔性直流输电系统(voltage source converter based high voltage DC,VSC-HVDC)具有的潜在调频能力,对...风电的大规模并网导致系统等效惯量下降、不确定性增加,给电力系统的负荷频率控制(loadfrequency control,LFC)带来新的挑战。考虑到柔性直流输电系统(voltage source converter based high voltage DC,VSC-HVDC)具有的潜在调频能力,对此展开研究,针对风电场经VSC-HVDC并网的情形提出了一种虚拟同步发电机(virtual synchronous generator,VSG)变参数负荷频率控制策略。首先,在风电场经VSC-HVDC并网的LFC模型及拓扑结构分析基础上,为了提高VSC-HVDC的可控性,对换流器的控制环节进行了VSG控制方法的设计;然后,对VSG控制参数与频率变化的关联性进行分析,并基于分数阶梯度下降法(fractional-order gradient descent method,FOGDM),利用频率的分数阶导数提取频率深层变化特征,以优化VSG控制参数;在此基础上,考虑到系统的不确定性,设计触发机制对VSG变参数优化模式进行调整,以降低VSG参数的变换频次,提高系统频率控制的针对性。仿真结果表明:所提控制方法能有效改善电网负荷频率控制效果,具有良好的适应性。展开更多
随着电网换相型高压直流输电(line commutated converter based high voltage direct current, LCC-HVDC)技术的广泛应用,交直流混联电力系统的交互稳定性问题日益突出。首先基于状态空间平均法建立了考虑非线性换相重叠动态过程的LCC...随着电网换相型高压直流输电(line commutated converter based high voltage direct current, LCC-HVDC)技术的广泛应用,交直流混联电力系统的交互稳定性问题日益突出。首先基于状态空间平均法建立了考虑非线性换相重叠动态过程的LCC换流器传递函数模型。为适应愈加复杂的直流输电系统建模,提出利用模块化思想分别建立LCC-HVDC各子系统小信号模型,并推导了能反映交直流系统和换流器之间电气耦合特性的接口矩阵实现子系统连接,从而模块化建立精确且易于扩展的计及控制链路延时和锁相环输出相位波动的双端LCC-HVDC系统改进小信号模型。最后分析了控制系统参数和控制链路延时对系统小干扰稳定性的影响以及失稳模态的主导因素,揭示了双端LCC-HVDC系统交直流混合谐振机理及送受端交互影响具体过程。研究结果可以为系统参数设计、谐振抑制措施提供理论基础。展开更多
现有电网换相换流器型高压直流输电(line commutated converter based HVDC,LCC-HVDC)输电系统动态等值计算依赖于送受端电压同步实时量测,无法实现经LCC-HVDC输电送出系统的单端暂态等值计算。论文基于直流系统动态相量等值计算框架,...现有电网换相换流器型高压直流输电(line commutated converter based HVDC,LCC-HVDC)输电系统动态等值计算依赖于送受端电压同步实时量测,无法实现经LCC-HVDC输电送出系统的单端暂态等值计算。论文基于直流系统动态相量等值计算框架,提出仅基于逆变侧单端交流电压信息的经LCC-HVDC直流输电送出系统的等值计算方案,论证整流侧准稳态模型+逆变侧动态相量模型的混合等值计算框架的可行性,解决换相失败准确判别等关键问题,仿真对比分析了多场景故障,证明所提出的计算框架在送端交流系统信息缺失的情况下,能实现受端交流线路故障暂态大扰动下经LCC-HVDC输电送出系统响应的准确实时计算。展开更多
基于二极管整流器的高压直流DR-HVDC(diode-rectifer-based high voltage direct current)输电系统是一种很有前景的海上风电低成本接入方案,它可将风能从偏远的海上风电场输送到陆上电力系统。然而随着海上DR-HVDC系统的不断增多,可能...基于二极管整流器的高压直流DR-HVDC(diode-rectifer-based high voltage direct current)输电系统是一种很有前景的海上风电低成本接入方案,它可将风能从偏远的海上风电场输送到陆上电力系统。然而随着海上DR-HVDC系统的不断增多,可能会导致风机WT(wind turbine)的变流器控制难度增大,系统稳定性变差。基于此,提出了一种适用于DR-HVDC连接海上WT变流器的新型电网形成控制方法。该方法采用2个正序控制回路来调节WTs的输出有功功率,并维持海上交流电网的频率和电压,其中第一个控制器可将每台WT的有功功率误差调节为电压角偏差,从而造成系统频率偏差;第二个控制器通过调整WT的交流电压幅值以抵消频率偏差。变流器内部电流控制回路用于限制故障电流,并消除系统中的高频谐振。最后,通过故障穿越、WT功率变化、无功扰动和WTs停机4个方面的电磁暂态仿真,验证了所提控制方法的有效性和优越性。展开更多
Multi-terminal hybrid high-voltage direct current(HVDC)systems have been developed quickly in recent years in power transmission area.However,for voltage-source converter(VSC)stations in hybrid HVDC systems,no direct ...Multi-terminal hybrid high-voltage direct current(HVDC)systems have been developed quickly in recent years in power transmission area.However,for voltage-source converter(VSC)stations in hybrid HVDC systems,no direct current(DC)filters are required.In addition,the DC reactor is also not installed at the line end because the DC fault can be limited by the converter itself.This means that the boundary element at the line end is absent,and the single-ended protections used in line commutated converter(LCC)based HVDC(LCC-HVDC)systems or VSC-HVDC systems cannot distinguish the fault line in multi-terminal hybrid HVDC systems.This paper proposes a novel singleended DC protection strategy suitable for the multi-terminal hybrid HVDC system,which mainly applies the transient information and active injection concept to detect and distinguish the fault line.Compared with the single-ended protections used in LCC-HVDC and VSC-HVDC systems,the proposed protection strategy is not dependent on the line boundary element and is thus suitable for the multiterminal hybrid HVDC system.The corresponding simulation cases based on power systems computer aided design(PSCAD)/electromagnetic transients including DC(EMTDC)are carried out to verify the superiority of the proposed protection.展开更多
Multi-terminal direct current(MTDC)grids provide the possibility of meshed interconnections between regional power systems and various renewable energy resources to boost supply reliability and economy.The modular mul...Multi-terminal direct current(MTDC)grids provide the possibility of meshed interconnections between regional power systems and various renewable energy resources to boost supply reliability and economy.The modular multilevel converter(MMC)has become the basic building block for MTDC and DC grids due to its salient features,i.e.,modularity and scalability.Therefore,the MMC-based MTDC systems should be pervasively embedded into the present power system to improve system performance.However,several technical challenges hamper their practical applications and deployment,including modeling,control,and protection of the MMC-MTDC grids.This paper presents a comprehensive investigation and reference in modeling,control,and protection of the MMC-MTDC grids.A general overview of state-of-the-art modeling techniques of the MMC along with their performance in simulation analysis for MTDC applications is provided.A review of control strategies of the MMC-MTDC grids which provide AC system support is presented.State-of-the art protection techniques of the MMCMTDC systems are also investigated.Finally,the associated research challenges and trends are highlighted.展开更多
基于模块化多电平换流器MMC(modular multilevel converter)的高压直流输电HVDC(high voltage direct current transmission)因具有无源网络支撑等优势而被广泛应用于大容量新能源外送消纳。受电力电子设备交互作用等因素影响,送端系统...基于模块化多电平换流器MMC(modular multilevel converter)的高压直流输电HVDC(high voltage direct current transmission)因具有无源网络支撑等优势而被广泛应用于大容量新能源外送消纳。受电力电子设备交互作用等因素影响,送端系统易发生振荡失稳现象。首先,建立了直驱风电场经MMC-HVDC并网送端系统的小扰动线性化模型,分析了风场有功输出对系统稳定性的影响。然后,建立了MMC及风机并网变流器交流侧dq阻抗模型,从阻抗角度揭示了送端系统振荡失稳机理。进一步,提出了基于MMC交流电压控制外环q轴附加阻尼的振荡抑制策略,可满足系统满功率范围内的运行稳定性要求。最后,基于全比例模型的仿真结果验证了所提振荡抑制策略的有效性。展开更多
针对新能源基地经电网换相换流器型高压直流(line commutated converter-based high voltage direct current,LCC-HVDC)送出系统次/超同步振荡问题,现有研究主要通过新能源侧阻抗重塑设计实现振荡抑制,考虑到实际系统并网台数多、机型...针对新能源基地经电网换相换流器型高压直流(line commutated converter-based high voltage direct current,LCC-HVDC)送出系统次/超同步振荡问题,现有研究主要通过新能源侧阻抗重塑设计实现振荡抑制,考虑到实际系统并网台数多、机型繁杂、故障穿越性能等因素制约,其设计裕度受到限制。该文通过LCC-HVDC阻抗重塑实现系统次/超同步振荡抑制。首先,提出送端换流站定触发角控制、受端换流站定直流电流控制的LCC-HVDC阻抗重塑控制策略,建立计及阻抗重塑的LCC-HVDC阻抗解析模型,并验证阻抗模型的准确性。然后,对比分析重塑前后阻抗特性变化,阐述阻抗重塑控制策略的作用机理,消除原有送端换流站直流电流环与功率电路重叠效应所产生的负阻尼。进一步,基于LCC-HVDC阻抗重塑,优化新能源并网点系统阻抗特性,提升直驱风机(permanent magnet synchronous generator,PMSG)、双馈风机(doubly-fed induction generator,DFIG)以及光伏(photovoltaic,PV)不同类型新能源基地经LCC-HVDC送出系统稳定裕度,消除系统次/超同步振荡风险。最后,不同类型新能源基地经LCC-HVDC送出系统仿真结果验证了该文提出的基于LCC-HVDC阻抗重塑振荡抑制策略的有效性。展开更多
The hybrid dc circuit breaker(HCB)has the advantages of fast action speed and low operating loss,which is an idealmethod for fault isolation ofmulti-terminal dc grids.Formulti-terminal dc grids that transmit power thr...The hybrid dc circuit breaker(HCB)has the advantages of fast action speed and low operating loss,which is an idealmethod for fault isolation ofmulti-terminal dc grids.Formulti-terminal dc grids that transmit power through overhead lines,HCBs are required to have reclosing capability due to the high fault probability and the fact that most of the faults are temporary faults.To avoid the secondary fault strike and equipment damage that may be caused by the reclosing of the HCB when the permanent fault occurs,an adaptive reclosing scheme based on traveling wave injection is proposed in this paper.The scheme injects traveling wave signal into the fault dc line through the additionally configured auxiliary discharge branch in the HCB,and then uses the reflection characteristic of the traveling wave signal on the dc line to identify temporary and permanent faults,to be able to realize fast reclosing when the temporary fault occurs and reliably avoid reclosing after the permanent fault occurs.The test results in the simulation model of the four-terminal dc grid show that the proposed adaptive reclosing scheme can quickly and reliably identify temporary and permanent faults,greatly shorten the power outage time of temporary faults.In addition,it has the advantages of easiness to implement,high reliability,robustness to high-resistance fault and no dead zone,etc.展开更多
随着广东电网负荷中心柔性互联工程的实施,电网分区间的交流联系变弱,大容量常规高压直流馈入的局部电网动态无功支撑能力下降,在逆变站近区严重交流故障冲击下可能暂态电压失稳。结合穗东换流站近区的暂态电压稳定问题,提出了优化直流...随着广东电网负荷中心柔性互联工程的实施,电网分区间的交流联系变弱,大容量常规高压直流馈入的局部电网动态无功支撑能力下降,在逆变站近区严重交流故障冲击下可能暂态电压失稳。结合穗东换流站近区的暂态电压稳定问题,提出了优化直流低压限流控制(voltage dependent current order limiter,VDCOL)参数并附加限制直流功率上升速率的优化控制策略,设计了基于逆变站交流母线电压特征的控制策略自适应切换逻辑,有效减少了直流恢复过程中的无功消耗,达到以最小的控制代价实现最优控制效果的目的;基于实际电网运行方式和直流控制保护系统,仿真验证了所设计方案能显著提升换流站近区的暂态电压稳定性,并在一定程度上可减少交流系统故障后的直流换相失败。相关技术方案已在多个直流工程投入实际应用。展开更多
在弱交流系统下对于附带有STATCOM的电网换相换流器高压直流输电(Line Commutated Converter based High Voltage Direct Current, LCC-HVDC)系统,存在着LCC逆变站与STATCOM之间耦合导致LCC-HVDC系统的稳定裕度下降问题,这会减弱LCC-HVD...在弱交流系统下对于附带有STATCOM的电网换相换流器高压直流输电(Line Commutated Converter based High Voltage Direct Current, LCC-HVDC)系统,存在着LCC逆变站与STATCOM之间耦合导致LCC-HVDC系统的稳定裕度下降问题,这会减弱LCC-HVDC抑制换相失败的能力。此外,HVDC控制环节之中的电压指令电流控制(voltage dependent current order limiter, VDCOL)环节的输出电流指令大幅剧烈波动还有几率会导致HVDC系统在首次换相失败之后发生后续换相失败。针对上述问题提出了一种“改进参考电压”的思想,对STATCOM和VDCOL的参考电压与输入电压分别进行修正。首先在STATCOM原本的参考电压经过一个“虚拟电抗”之后得到一个新的参考电压,通过这个改进参考电压弱化了STATCOM电压外环控制模块与LCC逆变站的耦合,减小了交流系统等效阻抗的大小,提升了系统对干扰的抵抗能力。然后对VDCOL的输入电压进行改进,新的改进输入电压改善了故障后VDCOL输出电流指令的大幅剧烈波动情况。最后通过三个层次的对照试验,验证了所提方法的有效性。展开更多
文摘High Voltage Direct Current (HVDC) electric power transmission is a promising technology for integrating offshore wind farms and interconnecting power grids in different regions. In order to maintain the DC voltage, droop control has been widely used. Transmission line loss constitutes an import part of the total power loss in a multi-terminal HVDC scheme. In this paper, the relation between droop controller design and transmission loss has been investigated. Different MTDC layout configurations are compared to examine the effect of droop controller design on the transmission loss.
基金supported by the Technology Projects of Southern Power Grid Electric Power Research Institute of China(SEPRI-K22B055)National Nature Science Foundation project(2021YFB1507000,2021YFB1507004)the Natural Science Foundation of Xinjiang Uygur Autonomous Region(2022D01C662).
文摘A fault identification scheme for protection and adaptive reclosing is proposed for a hybrid multi-terminal HVDC system to increase the reliability of fault isolation and reclosing.By analyzing the"zero passing"characteristic of current at the local end during the converter capacitor discharge stage,the fault identification scheme is proposed.The distributed parameter-based fault location equation,which incorporates fault distance and fault impedance,is developed with the injection signal and the distributed parameter model during the adaptive reclosing stage.The fault distance is determined using a trust region reflection algorithm to identify the permanent fault,and a fault iden-tification scheme for adaptive reclosing is developed.Simulation results show that the proposed scheme is suitable for long-distance transmission lines with strong anti-fault impedance and anti-interference performance.Also,it is less affected by communication delay and DC boundary strength than existing methods.
文摘风电的大规模并网导致系统等效惯量下降、不确定性增加,给电力系统的负荷频率控制(loadfrequency control,LFC)带来新的挑战。考虑到柔性直流输电系统(voltage source converter based high voltage DC,VSC-HVDC)具有的潜在调频能力,对此展开研究,针对风电场经VSC-HVDC并网的情形提出了一种虚拟同步发电机(virtual synchronous generator,VSG)变参数负荷频率控制策略。首先,在风电场经VSC-HVDC并网的LFC模型及拓扑结构分析基础上,为了提高VSC-HVDC的可控性,对换流器的控制环节进行了VSG控制方法的设计;然后,对VSG控制参数与频率变化的关联性进行分析,并基于分数阶梯度下降法(fractional-order gradient descent method,FOGDM),利用频率的分数阶导数提取频率深层变化特征,以优化VSG控制参数;在此基础上,考虑到系统的不确定性,设计触发机制对VSG变参数优化模式进行调整,以降低VSG参数的变换频次,提高系统频率控制的针对性。仿真结果表明:所提控制方法能有效改善电网负荷频率控制效果,具有良好的适应性。
文摘随着电网换相型高压直流输电(line commutated converter based high voltage direct current, LCC-HVDC)技术的广泛应用,交直流混联电力系统的交互稳定性问题日益突出。首先基于状态空间平均法建立了考虑非线性换相重叠动态过程的LCC换流器传递函数模型。为适应愈加复杂的直流输电系统建模,提出利用模块化思想分别建立LCC-HVDC各子系统小信号模型,并推导了能反映交直流系统和换流器之间电气耦合特性的接口矩阵实现子系统连接,从而模块化建立精确且易于扩展的计及控制链路延时和锁相环输出相位波动的双端LCC-HVDC系统改进小信号模型。最后分析了控制系统参数和控制链路延时对系统小干扰稳定性的影响以及失稳模态的主导因素,揭示了双端LCC-HVDC系统交直流混合谐振机理及送受端交互影响具体过程。研究结果可以为系统参数设计、谐振抑制措施提供理论基础。
文摘现有电网换相换流器型高压直流输电(line commutated converter based HVDC,LCC-HVDC)输电系统动态等值计算依赖于送受端电压同步实时量测,无法实现经LCC-HVDC输电送出系统的单端暂态等值计算。论文基于直流系统动态相量等值计算框架,提出仅基于逆变侧单端交流电压信息的经LCC-HVDC直流输电送出系统的等值计算方案,论证整流侧准稳态模型+逆变侧动态相量模型的混合等值计算框架的可行性,解决换相失败准确判别等关键问题,仿真对比分析了多场景故障,证明所提出的计算框架在送端交流系统信息缺失的情况下,能实现受端交流线路故障暂态大扰动下经LCC-HVDC输电送出系统响应的准确实时计算。
文摘基于二极管整流器的高压直流DR-HVDC(diode-rectifer-based high voltage direct current)输电系统是一种很有前景的海上风电低成本接入方案,它可将风能从偏远的海上风电场输送到陆上电力系统。然而随着海上DR-HVDC系统的不断增多,可能会导致风机WT(wind turbine)的变流器控制难度增大,系统稳定性变差。基于此,提出了一种适用于DR-HVDC连接海上WT变流器的新型电网形成控制方法。该方法采用2个正序控制回路来调节WTs的输出有功功率,并维持海上交流电网的频率和电压,其中第一个控制器可将每台WT的有功功率误差调节为电压角偏差,从而造成系统频率偏差;第二个控制器通过调整WT的交流电压幅值以抵消频率偏差。变流器内部电流控制回路用于限制故障电流,并消除系统中的高频谐振。最后,通过故障穿越、WT功率变化、无功扰动和WTs停机4个方面的电磁暂态仿真,验证了所提控制方法的有效性和优越性。
文摘Multi-terminal hybrid high-voltage direct current(HVDC)systems have been developed quickly in recent years in power transmission area.However,for voltage-source converter(VSC)stations in hybrid HVDC systems,no direct current(DC)filters are required.In addition,the DC reactor is also not installed at the line end because the DC fault can be limited by the converter itself.This means that the boundary element at the line end is absent,and the single-ended protections used in line commutated converter(LCC)based HVDC(LCC-HVDC)systems or VSC-HVDC systems cannot distinguish the fault line in multi-terminal hybrid HVDC systems.This paper proposes a novel singleended DC protection strategy suitable for the multi-terminal hybrid HVDC system,which mainly applies the transient information and active injection concept to detect and distinguish the fault line.Compared with the single-ended protections used in LCC-HVDC and VSC-HVDC systems,the proposed protection strategy is not dependent on the line boundary element and is thus suitable for the multiterminal hybrid HVDC system.The corresponding simulation cases based on power systems computer aided design(PSCAD)/electromagnetic transients including DC(EMTDC)are carried out to verify the superiority of the proposed protection.
基金funded by SGCC Science and Technology Program under project Research on Electromagnetic Transient Simulation Technology for Large-scale MMC-HVDC Systems.
文摘Multi-terminal direct current(MTDC)grids provide the possibility of meshed interconnections between regional power systems and various renewable energy resources to boost supply reliability and economy.The modular multilevel converter(MMC)has become the basic building block for MTDC and DC grids due to its salient features,i.e.,modularity and scalability.Therefore,the MMC-based MTDC systems should be pervasively embedded into the present power system to improve system performance.However,several technical challenges hamper their practical applications and deployment,including modeling,control,and protection of the MMC-MTDC grids.This paper presents a comprehensive investigation and reference in modeling,control,and protection of the MMC-MTDC grids.A general overview of state-of-the-art modeling techniques of the MMC along with their performance in simulation analysis for MTDC applications is provided.A review of control strategies of the MMC-MTDC grids which provide AC system support is presented.State-of-the art protection techniques of the MMCMTDC systems are also investigated.Finally,the associated research challenges and trends are highlighted.
文摘基于模块化多电平换流器MMC(modular multilevel converter)的高压直流输电HVDC(high voltage direct current transmission)因具有无源网络支撑等优势而被广泛应用于大容量新能源外送消纳。受电力电子设备交互作用等因素影响,送端系统易发生振荡失稳现象。首先,建立了直驱风电场经MMC-HVDC并网送端系统的小扰动线性化模型,分析了风场有功输出对系统稳定性的影响。然后,建立了MMC及风机并网变流器交流侧dq阻抗模型,从阻抗角度揭示了送端系统振荡失稳机理。进一步,提出了基于MMC交流电压控制外环q轴附加阻尼的振荡抑制策略,可满足系统满功率范围内的运行稳定性要求。最后,基于全比例模型的仿真结果验证了所提振荡抑制策略的有效性。
文摘针对新能源基地经电网换相换流器型高压直流(line commutated converter-based high voltage direct current,LCC-HVDC)送出系统次/超同步振荡问题,现有研究主要通过新能源侧阻抗重塑设计实现振荡抑制,考虑到实际系统并网台数多、机型繁杂、故障穿越性能等因素制约,其设计裕度受到限制。该文通过LCC-HVDC阻抗重塑实现系统次/超同步振荡抑制。首先,提出送端换流站定触发角控制、受端换流站定直流电流控制的LCC-HVDC阻抗重塑控制策略,建立计及阻抗重塑的LCC-HVDC阻抗解析模型,并验证阻抗模型的准确性。然后,对比分析重塑前后阻抗特性变化,阐述阻抗重塑控制策略的作用机理,消除原有送端换流站直流电流环与功率电路重叠效应所产生的负阻尼。进一步,基于LCC-HVDC阻抗重塑,优化新能源并网点系统阻抗特性,提升直驱风机(permanent magnet synchronous generator,PMSG)、双馈风机(doubly-fed induction generator,DFIG)以及光伏(photovoltaic,PV)不同类型新能源基地经LCC-HVDC送出系统稳定裕度,消除系统次/超同步振荡风险。最后,不同类型新能源基地经LCC-HVDC送出系统仿真结果验证了该文提出的基于LCC-HVDC阻抗重塑振荡抑制策略的有效性。
基金supported by the Science and Technology Project of State Grid Corporation of China under Grant 520201210025。
文摘The hybrid dc circuit breaker(HCB)has the advantages of fast action speed and low operating loss,which is an idealmethod for fault isolation ofmulti-terminal dc grids.Formulti-terminal dc grids that transmit power through overhead lines,HCBs are required to have reclosing capability due to the high fault probability and the fact that most of the faults are temporary faults.To avoid the secondary fault strike and equipment damage that may be caused by the reclosing of the HCB when the permanent fault occurs,an adaptive reclosing scheme based on traveling wave injection is proposed in this paper.The scheme injects traveling wave signal into the fault dc line through the additionally configured auxiliary discharge branch in the HCB,and then uses the reflection characteristic of the traveling wave signal on the dc line to identify temporary and permanent faults,to be able to realize fast reclosing when the temporary fault occurs and reliably avoid reclosing after the permanent fault occurs.The test results in the simulation model of the four-terminal dc grid show that the proposed adaptive reclosing scheme can quickly and reliably identify temporary and permanent faults,greatly shorten the power outage time of temporary faults.In addition,it has the advantages of easiness to implement,high reliability,robustness to high-resistance fault and no dead zone,etc.
文摘随着广东电网负荷中心柔性互联工程的实施,电网分区间的交流联系变弱,大容量常规高压直流馈入的局部电网动态无功支撑能力下降,在逆变站近区严重交流故障冲击下可能暂态电压失稳。结合穗东换流站近区的暂态电压稳定问题,提出了优化直流低压限流控制(voltage dependent current order limiter,VDCOL)参数并附加限制直流功率上升速率的优化控制策略,设计了基于逆变站交流母线电压特征的控制策略自适应切换逻辑,有效减少了直流恢复过程中的无功消耗,达到以最小的控制代价实现最优控制效果的目的;基于实际电网运行方式和直流控制保护系统,仿真验证了所设计方案能显著提升换流站近区的暂态电压稳定性,并在一定程度上可减少交流系统故障后的直流换相失败。相关技术方案已在多个直流工程投入实际应用。
文摘在弱交流系统下对于附带有STATCOM的电网换相换流器高压直流输电(Line Commutated Converter based High Voltage Direct Current, LCC-HVDC)系统,存在着LCC逆变站与STATCOM之间耦合导致LCC-HVDC系统的稳定裕度下降问题,这会减弱LCC-HVDC抑制换相失败的能力。此外,HVDC控制环节之中的电压指令电流控制(voltage dependent current order limiter, VDCOL)环节的输出电流指令大幅剧烈波动还有几率会导致HVDC系统在首次换相失败之后发生后续换相失败。针对上述问题提出了一种“改进参考电压”的思想,对STATCOM和VDCOL的参考电压与输入电压分别进行修正。首先在STATCOM原本的参考电压经过一个“虚拟电抗”之后得到一个新的参考电压,通过这个改进参考电压弱化了STATCOM电压外环控制模块与LCC逆变站的耦合,减小了交流系统等效阻抗的大小,提升了系统对干扰的抵抗能力。然后对VDCOL的输入电压进行改进,新的改进输入电压改善了故障后VDCOL输出电流指令的大幅剧烈波动情况。最后通过三个层次的对照试验,验证了所提方法的有效性。