For a future carbon-neutral society,it is a great challenge to coordinate between the demand and supply sides of a power grid with high penetration of renewable energy sources.In this paper,a general power distributio...For a future carbon-neutral society,it is a great challenge to coordinate between the demand and supply sides of a power grid with high penetration of renewable energy sources.In this paper,a general power distribution system of buildings,namely,PEDF(photovoltaics,energy storage,direct current,flexibility),is proposed to provide an effective solution from the demand side.A PEDF system integrates distributed photovoltaics,energy storages(including traditional and virtual energy storage),and a direct current distribution system into a building to provide flexible services for the external power grid.System topology and control strategies at the grid,building,and device levels are introduced and analyzed.We select representative work about key technologies of the PEDF system in recent years,analyze research focuses,and summarize their major challenges&future opportunities.Then,we introduce three real application cases of the PEDF system.On-site measurement results demonstrate its feasibility and advantages.With the rapid growth of renewable power production and electric vehicles,the PEDF system is a potential and promising approach for largescale integration of renewable energy in a carbon-neutral future.展开更多
This paper proposes a single-ended fault detection scheme for long transmission lines using support vector machine(SVM)for multi-terminal direct current systems based on modular multilevel converter(MMC-MTDC).The sche...This paper proposes a single-ended fault detection scheme for long transmission lines using support vector machine(SVM)for multi-terminal direct current systems based on modular multilevel converter(MMC-MTDC).The scheme overcomes existing detection difficulties in the protection of long transmission lines resulting from high grounding resistance and attenuation,and also avoids the sophisticated process of threshold value selection.The high-frequency components in the measured voltage extracted by a wavelet transform and the amplitude of the zero-mode set of the positive-sequence voltage are the inputs to a trained SVM.The output of the SVM determines the fault type.A model of a four-terminal DC power grid with overhead transmission lines is built in PSCAD/EMTDC.Simulation results of EMTDC confirm that the proposed scheme achieves 100%accuracy in detecting short-circuit faults with high resistance on long transmission lines.The proposed scheme eliminates mal-operation of DC circuit breakers when faced with power order changes or AC-side faults.Its robustness and time delay are also assessed and shown to have no perceptible effect on the speed and accuracy of the detection scheme,thus ensuring its reliability and stability.展开更多
直流系统的故障隔离是保证直流系统稳定运行的重要技术。针对传统故障隔离策略对直流断路器(direct current circuit breaker, DCCB)的性能要求较高的问题,提出了一种利用柔性限流装置(flexible current limiting device,FCLD)与DCCB协...直流系统的故障隔离是保证直流系统稳定运行的重要技术。针对传统故障隔离策略对直流断路器(direct current circuit breaker, DCCB)的性能要求较高的问题,提出了一种利用柔性限流装置(flexible current limiting device,FCLD)与DCCB协同动作的故障隔离策略。首先,研究了直流系统永久性故障和瞬时性故障情况下FCLD与DCCB的协同作用机理。其次,分析考虑FCLD电流抑制作用下DCCB开断过程的电弧暂态特性。最后,在Matlab/Simulink平台中进行仿真,验证所提协同策略的可行性。结果表明:FCLD可有效抑制DCCB的开断电弧;基于所提故障隔离策略,直流系统可在瞬时故障情况下实现平稳穿越,永久故障情况下实现DCCB的无弧开断。该策略降低了直流系统故障隔离过程中对DCCB的开断要求,提升了直流系统的故障穿越能力。展开更多
In order to overcome the problems of power flow control and fault current limiting in multi-terminal high voltage direct current(MTDC)grids,this paper proposes a modular multi-terminal DC power flow controller(MM-DCPF...In order to overcome the problems of power flow control and fault current limiting in multi-terminal high voltage direct current(MTDC)grids,this paper proposes a modular multi-terminal DC power flow controller(MM-DCPFC)with fault current limiting function.The topology structure,operation principle,and equivalent circuit of MM-DCPFC are introduced,and such a structure has the advantages of modularity and scalability.The power balance mechanism is studied and a hierarchical power balance control strategy is proposed.The results show that MM-DCPFC can achieve internal power exchange,which avoids the use of external power supply.The fault characteristics of MM-DCPFC are analyzed,fault current limiting and self-protection methods are proposed,and the factors affecting the current limiting capability are studied.The simulation models are established in PLECS,and the simulation results verify the effectiveness of MM-DCPFC in power flow control,fault current limiting,and scalability.In addition,a prototype is developed to validate the function and control method of MM-DCPFC.展开更多
基金supported in part by the National Natural Science Foundation of China(No.52208112)the major consulting project of the Chinese Academy of Engineering(52021-HYZD-16)+1 种基金the Energy Foundation(No.G-2209-34123),the China Postdoctoral Science Foundation(2021M701935)the Shuimu Tsinghua Scholar Program of Tsinghua University(2021SM001).
文摘For a future carbon-neutral society,it is a great challenge to coordinate between the demand and supply sides of a power grid with high penetration of renewable energy sources.In this paper,a general power distribution system of buildings,namely,PEDF(photovoltaics,energy storage,direct current,flexibility),is proposed to provide an effective solution from the demand side.A PEDF system integrates distributed photovoltaics,energy storages(including traditional and virtual energy storage),and a direct current distribution system into a building to provide flexible services for the external power grid.System topology and control strategies at the grid,building,and device levels are introduced and analyzed.We select representative work about key technologies of the PEDF system in recent years,analyze research focuses,and summarize their major challenges&future opportunities.Then,we introduce three real application cases of the PEDF system.On-site measurement results demonstrate its feasibility and advantages.With the rapid growth of renewable power production and electric vehicles,the PEDF system is a potential and promising approach for largescale integration of renewable energy in a carbon-neutral future.
文摘This paper proposes a single-ended fault detection scheme for long transmission lines using support vector machine(SVM)for multi-terminal direct current systems based on modular multilevel converter(MMC-MTDC).The scheme overcomes existing detection difficulties in the protection of long transmission lines resulting from high grounding resistance and attenuation,and also avoids the sophisticated process of threshold value selection.The high-frequency components in the measured voltage extracted by a wavelet transform and the amplitude of the zero-mode set of the positive-sequence voltage are the inputs to a trained SVM.The output of the SVM determines the fault type.A model of a four-terminal DC power grid with overhead transmission lines is built in PSCAD/EMTDC.Simulation results of EMTDC confirm that the proposed scheme achieves 100%accuracy in detecting short-circuit faults with high resistance on long transmission lines.The proposed scheme eliminates mal-operation of DC circuit breakers when faced with power order changes or AC-side faults.Its robustness and time delay are also assessed and shown to have no perceptible effect on the speed and accuracy of the detection scheme,thus ensuring its reliability and stability.
文摘直流系统的故障隔离是保证直流系统稳定运行的重要技术。针对传统故障隔离策略对直流断路器(direct current circuit breaker, DCCB)的性能要求较高的问题,提出了一种利用柔性限流装置(flexible current limiting device,FCLD)与DCCB协同动作的故障隔离策略。首先,研究了直流系统永久性故障和瞬时性故障情况下FCLD与DCCB的协同作用机理。其次,分析考虑FCLD电流抑制作用下DCCB开断过程的电弧暂态特性。最后,在Matlab/Simulink平台中进行仿真,验证所提协同策略的可行性。结果表明:FCLD可有效抑制DCCB的开断电弧;基于所提故障隔离策略,直流系统可在瞬时故障情况下实现平稳穿越,永久故障情况下实现DCCB的无弧开断。该策略降低了直流系统故障隔离过程中对DCCB的开断要求,提升了直流系统的故障穿越能力。
基金supported in part by National Key R&D Program of China(No.2018YFB0904600)National Natural Science Foundation of China(No.51807053)。
文摘In order to overcome the problems of power flow control and fault current limiting in multi-terminal high voltage direct current(MTDC)grids,this paper proposes a modular multi-terminal DC power flow controller(MM-DCPFC)with fault current limiting function.The topology structure,operation principle,and equivalent circuit of MM-DCPFC are introduced,and such a structure has the advantages of modularity and scalability.The power balance mechanism is studied and a hierarchical power balance control strategy is proposed.The results show that MM-DCPFC can achieve internal power exchange,which avoids the use of external power supply.The fault characteristics of MM-DCPFC are analyzed,fault current limiting and self-protection methods are proposed,and the factors affecting the current limiting capability are studied.The simulation models are established in PLECS,and the simulation results verify the effectiveness of MM-DCPFC in power flow control,fault current limiting,and scalability.In addition,a prototype is developed to validate the function and control method of MM-DCPFC.