This paper proposes a single-ended fault detection scheme for long transmission lines using support vector machine(SVM)for multi-terminal direct current systems based on modular multilevel converter(MMC-MTDC).The sche...This paper proposes a single-ended fault detection scheme for long transmission lines using support vector machine(SVM)for multi-terminal direct current systems based on modular multilevel converter(MMC-MTDC).The scheme overcomes existing detection difficulties in the protection of long transmission lines resulting from high grounding resistance and attenuation,and also avoids the sophisticated process of threshold value selection.The high-frequency components in the measured voltage extracted by a wavelet transform and the amplitude of the zero-mode set of the positive-sequence voltage are the inputs to a trained SVM.The output of the SVM determines the fault type.A model of a four-terminal DC power grid with overhead transmission lines is built in PSCAD/EMTDC.Simulation results of EMTDC confirm that the proposed scheme achieves 100%accuracy in detecting short-circuit faults with high resistance on long transmission lines.The proposed scheme eliminates mal-operation of DC circuit breakers when faced with power order changes or AC-side faults.Its robustness and time delay are also assessed and shown to have no perceptible effect on the speed and accuracy of the detection scheme,thus ensuring its reliability and stability.展开更多
直流系统的故障隔离是保证直流系统稳定运行的重要技术。针对传统故障隔离策略对直流断路器(direct current circuit breaker, DCCB)的性能要求较高的问题,提出了一种利用柔性限流装置(flexible current limiting device,FCLD)与DCCB协...直流系统的故障隔离是保证直流系统稳定运行的重要技术。针对传统故障隔离策略对直流断路器(direct current circuit breaker, DCCB)的性能要求较高的问题,提出了一种利用柔性限流装置(flexible current limiting device,FCLD)与DCCB协同动作的故障隔离策略。首先,研究了直流系统永久性故障和瞬时性故障情况下FCLD与DCCB的协同作用机理。其次,分析考虑FCLD电流抑制作用下DCCB开断过程的电弧暂态特性。最后,在Matlab/Simulink平台中进行仿真,验证所提协同策略的可行性。结果表明:FCLD可有效抑制DCCB的开断电弧;基于所提故障隔离策略,直流系统可在瞬时故障情况下实现平稳穿越,永久故障情况下实现DCCB的无弧开断。该策略降低了直流系统故障隔离过程中对DCCB的开断要求,提升了直流系统的故障穿越能力。展开更多
分布式一致性控制因其灵活性和协同能力成为多端柔性直流(multi-terminal flexible direct current,MTDC)系统二次频率控制的新选择。然而,分布式控制结构虽提高了MTDC系统调频能力,但也带来了网络攻击的威胁。为此,该文首先研究了常值...分布式一致性控制因其灵活性和协同能力成为多端柔性直流(multi-terminal flexible direct current,MTDC)系统二次频率控制的新选择。然而,分布式控制结构虽提高了MTDC系统调频能力,但也带来了网络攻击的威胁。为此,该文首先研究了常值虚假信息注入(false data injection,FDI)攻击对分布式二次控制器的不利影响,分析表明受FDI攻击的站点会持续存在与攻击向量有关的频率偏差。进而为消除攻击造成的频率偏差,该文利用常值微分为0的特性提出了一种抵御常值FDI攻击的分布式一致性控制策略,并从理论上证明了所提策略能消除FDI攻击引起的偏差。最后基于MATLAB/SIMULINK搭建了四端柔性直流系统仿真模型,分别进行单换流站遭受攻击、全部换流站同时遭受攻击及全部换流站在不同时间遭受攻击的3种攻击场景仿真。仿真结果表明所提控制策略在3种场景下均能消除FDI攻击影响,使MTDC系统实现二次调频。展开更多
With the increasing use of renewable resources and electric vehicles(EVs), the variability and uncertainty in their nature put forward a high requirement for flexibility in AC distribution system incorporating voltage...With the increasing use of renewable resources and electric vehicles(EVs), the variability and uncertainty in their nature put forward a high requirement for flexibility in AC distribution system incorporating voltage source converter(VSC) based multi-terminal direct current(MTDC) grids. In order to improve the capability of distribution systems to cope with uncertainty, the flexibility enhancement of AC-MTDC distribution systems considering aggregated EVs is studied. Firstly, the charging and discharging model of one EV is proposed considering the users' demand difference and traveling needs. Based on this, a vehicle-to-grid(V2G) control strategy for aggregated EVs to participate in the flexibility promotion of distribution systems is provided. After that, an optimal flexible dispatching method is proposed to improve the flexibility of power systems through cooperation of VSCs, controllable distributed generations(CDGs), aggregated EVs, and energy storage systems(ESSs). Finally, a case study of an AC-MTDC distribution system is carried out. Simulation results show that the proposed dispatching method is capable of effectively enhancing the system flexibility, reducing renewable power curtailment, decreasing load abandonment, and cutting down system cost.展开更多
文摘This paper proposes a single-ended fault detection scheme for long transmission lines using support vector machine(SVM)for multi-terminal direct current systems based on modular multilevel converter(MMC-MTDC).The scheme overcomes existing detection difficulties in the protection of long transmission lines resulting from high grounding resistance and attenuation,and also avoids the sophisticated process of threshold value selection.The high-frequency components in the measured voltage extracted by a wavelet transform and the amplitude of the zero-mode set of the positive-sequence voltage are the inputs to a trained SVM.The output of the SVM determines the fault type.A model of a four-terminal DC power grid with overhead transmission lines is built in PSCAD/EMTDC.Simulation results of EMTDC confirm that the proposed scheme achieves 100%accuracy in detecting short-circuit faults with high resistance on long transmission lines.The proposed scheme eliminates mal-operation of DC circuit breakers when faced with power order changes or AC-side faults.Its robustness and time delay are also assessed and shown to have no perceptible effect on the speed and accuracy of the detection scheme,thus ensuring its reliability and stability.
文摘直流系统的故障隔离是保证直流系统稳定运行的重要技术。针对传统故障隔离策略对直流断路器(direct current circuit breaker, DCCB)的性能要求较高的问题,提出了一种利用柔性限流装置(flexible current limiting device,FCLD)与DCCB协同动作的故障隔离策略。首先,研究了直流系统永久性故障和瞬时性故障情况下FCLD与DCCB的协同作用机理。其次,分析考虑FCLD电流抑制作用下DCCB开断过程的电弧暂态特性。最后,在Matlab/Simulink平台中进行仿真,验证所提协同策略的可行性。结果表明:FCLD可有效抑制DCCB的开断电弧;基于所提故障隔离策略,直流系统可在瞬时故障情况下实现平稳穿越,永久故障情况下实现DCCB的无弧开断。该策略降低了直流系统故障隔离过程中对DCCB的开断要求,提升了直流系统的故障穿越能力。
文摘分布式一致性控制因其灵活性和协同能力成为多端柔性直流(multi-terminal flexible direct current,MTDC)系统二次频率控制的新选择。然而,分布式控制结构虽提高了MTDC系统调频能力,但也带来了网络攻击的威胁。为此,该文首先研究了常值虚假信息注入(false data injection,FDI)攻击对分布式二次控制器的不利影响,分析表明受FDI攻击的站点会持续存在与攻击向量有关的频率偏差。进而为消除攻击造成的频率偏差,该文利用常值微分为0的特性提出了一种抵御常值FDI攻击的分布式一致性控制策略,并从理论上证明了所提策略能消除FDI攻击引起的偏差。最后基于MATLAB/SIMULINK搭建了四端柔性直流系统仿真模型,分别进行单换流站遭受攻击、全部换流站同时遭受攻击及全部换流站在不同时间遭受攻击的3种攻击场景仿真。仿真结果表明所提控制策略在3种场景下均能消除FDI攻击影响,使MTDC系统实现二次调频。
基金supported in part by the National Natural Science Foundation of China (No.U2166202)S&T Program of Hebei (No.20312102D)。
文摘With the increasing use of renewable resources and electric vehicles(EVs), the variability and uncertainty in their nature put forward a high requirement for flexibility in AC distribution system incorporating voltage source converter(VSC) based multi-terminal direct current(MTDC) grids. In order to improve the capability of distribution systems to cope with uncertainty, the flexibility enhancement of AC-MTDC distribution systems considering aggregated EVs is studied. Firstly, the charging and discharging model of one EV is proposed considering the users' demand difference and traveling needs. Based on this, a vehicle-to-grid(V2G) control strategy for aggregated EVs to participate in the flexibility promotion of distribution systems is provided. After that, an optimal flexible dispatching method is proposed to improve the flexibility of power systems through cooperation of VSCs, controllable distributed generations(CDGs), aggregated EVs, and energy storage systems(ESSs). Finally, a case study of an AC-MTDC distribution system is carried out. Simulation results show that the proposed dispatching method is capable of effectively enhancing the system flexibility, reducing renewable power curtailment, decreasing load abandonment, and cutting down system cost.