Multi-terminal hybrid high-voltage direct current(HVDC)systems have been developed quickly in recent years in power transmission area.However,for voltage-source converter(VSC)stations in hybrid HVDC systems,no direct ...Multi-terminal hybrid high-voltage direct current(HVDC)systems have been developed quickly in recent years in power transmission area.However,for voltage-source converter(VSC)stations in hybrid HVDC systems,no direct current(DC)filters are required.In addition,the DC reactor is also not installed at the line end because the DC fault can be limited by the converter itself.This means that the boundary element at the line end is absent,and the single-ended protections used in line commutated converter(LCC)based HVDC(LCC-HVDC)systems or VSC-HVDC systems cannot distinguish the fault line in multi-terminal hybrid HVDC systems.This paper proposes a novel singleended DC protection strategy suitable for the multi-terminal hybrid HVDC system,which mainly applies the transient information and active injection concept to detect and distinguish the fault line.Compared with the single-ended protections used in LCC-HVDC and VSC-HVDC systems,the proposed protection strategy is not dependent on the line boundary element and is thus suitable for the multiterminal hybrid HVDC system.The corresponding simulation cases based on power systems computer aided design(PSCAD)/electromagnetic transients including DC(EMTDC)are carried out to verify the superiority of the proposed protection.展开更多
The hybrid dc circuit breaker(HCB)has the advantages of fast action speed and low operating loss,which is an idealmethod for fault isolation ofmulti-terminal dc grids.Formulti-terminal dc grids that transmit power thr...The hybrid dc circuit breaker(HCB)has the advantages of fast action speed and low operating loss,which is an idealmethod for fault isolation ofmulti-terminal dc grids.Formulti-terminal dc grids that transmit power through overhead lines,HCBs are required to have reclosing capability due to the high fault probability and the fact that most of the faults are temporary faults.To avoid the secondary fault strike and equipment damage that may be caused by the reclosing of the HCB when the permanent fault occurs,an adaptive reclosing scheme based on traveling wave injection is proposed in this paper.The scheme injects traveling wave signal into the fault dc line through the additionally configured auxiliary discharge branch in the HCB,and then uses the reflection characteristic of the traveling wave signal on the dc line to identify temporary and permanent faults,to be able to realize fast reclosing when the temporary fault occurs and reliably avoid reclosing after the permanent fault occurs.The test results in the simulation model of the four-terminal dc grid show that the proposed adaptive reclosing scheme can quickly and reliably identify temporary and permanent faults,greatly shorten the power outage time of temporary faults.In addition,it has the advantages of easiness to implement,high reliability,robustness to high-resistance fault and no dead zone,etc.展开更多
直流输电工程在长期发展中形成相对固定的控制策略,完善该策略对提高交直流混联电网的稳定性有重要意义。近年来,使用机电–电磁混合仿真技术进行稳定分析,在大电网交流侧某些严重故障下,多条基于电网换相换流器的特高压直流(ultra-high...直流输电工程在长期发展中形成相对固定的控制策略,完善该策略对提高交直流混联电网的稳定性有重要意义。近年来,使用机电–电磁混合仿真技术进行稳定分析,在大电网交流侧某些严重故障下,多条基于电网换相换流器的特高压直流(ultra-highvoltageDCbasedonline commutatedconverter,LCC-UHVDC)工程均出现了持续大幅度功率振荡,表明现有控制策略需要一步完善。该文介绍了各UHVDC工程中出现的相似功率振荡现象,并以某工程为例,深入分析直流控制器中换相裕度面积计算(commutation margin area calculation module,AMINCALC)、设置最大熄弧角输出(maximumarcanglelimiteddirect outputmodule,GAMMA0)及低压限流(voltagedependent current order limiter,VDCOL)等多个控制环节共同诱发功率振荡的机理;研究抑制该类直流振荡可能的控制措施及实用的控制优化方案。实际电网的仿真证明了该方案的有效性。展开更多
A fault identification scheme for protection and adaptive reclosing is proposed for a hybrid multi-terminal HVDC system to increase the reliability of fault isolation and reclosing.By analyzing the"zero passing&q...A fault identification scheme for protection and adaptive reclosing is proposed for a hybrid multi-terminal HVDC system to increase the reliability of fault isolation and reclosing.By analyzing the"zero passing"characteristic of current at the local end during the converter capacitor discharge stage,the fault identification scheme is proposed.The distributed parameter-based fault location equation,which incorporates fault distance and fault impedance,is developed with the injection signal and the distributed parameter model during the adaptive reclosing stage.The fault distance is determined using a trust region reflection algorithm to identify the permanent fault,and a fault iden-tification scheme for adaptive reclosing is developed.Simulation results show that the proposed scheme is suitable for long-distance transmission lines with strong anti-fault impedance and anti-interference performance.Also,it is less affected by communication delay and DC boundary strength than existing methods.展开更多
Solar PV is expected to become the most cost-competitive renewable energy owing to the rapidly decreasing cost of the system. On the other hand, hydropower is a high-quality and reliable regulating power source that c...Solar PV is expected to become the most cost-competitive renewable energy owing to the rapidly decreasing cost of the system. On the other hand, hydropower is a high-quality and reliable regulating power source that can be bundled with solar PV to improve the economic feasibility of long-distance transmitted power. In this paper, a quantification model is established taking into account the regulating capacity of the reservoir, the characteristics of solar generation, and cost of hydro and solar PV with long-distance transmission based on the installed capacity ratio of hydro–solar hybrid power. Results indicate that for hydropower stations with high regulating capacity and generation factor of approximately 0.5, a hydro–solar installed capacity ratio of 1:1 will yield overall optimal economic performance, whereas for hydropower stations with daily regulating capacity reservoir and capacity factor of approximately 0.65, the optimal hydro–solar installed capacity ratio is approximately 1:0.3. In addition, the accuracy of the approach used in this study is verified through operation simulation of a hydro–solar hybrid system including ultra high-voltage direct current(UHVDC) transmission using two case studies in Africa.展开更多
A hybrid of line commutated converters(LCCs)and modular multi-level converters(MMCs)can provide the advantages of both the technologies.However,the commutation failure still exists if the LCC operates as an inverter i...A hybrid of line commutated converters(LCCs)and modular multi-level converters(MMCs)can provide the advantages of both the technologies.However,the commutation failure still exists if the LCC operates as an inverter in a hybrid LCC/MMC system.In this paper,the system behavior during a commutation failure is investigated.Both halfbridge and full-bridge MMCs are considered.Control strategies are examined through simulations conducted in PSCAD/EMTDC.Additionally,commutation failure protection strategies for multi-terminal hybrid LCC/MMC systems with AC and DC circuit breakers are studied.This paper can contribute to the protection design of future hybrid LCC/MMC systems against commutation failures.展开更多
With the development of power system, the level of short circuit current will increase accordingly. In general, the influence of the HVDC system and the new energy source is not considered in the calculation of the sh...With the development of power system, the level of short circuit current will increase accordingly. In general, the influence of the HVDC system and the new energy source is not considered in the calculation of the short circuit current. For the power grid that short circuit current level closes to the interrupting capacity of circuit breaker, it’s necessary to fully consider all kinds of influence factors, careful checking, so as to obtain more accurate calculation results of short circuit current. In 2018, two ±800 kV high-power Ultra High Voltage Direct Current (UHVDC) transmission projects will be connected with Shaanxi power grid, accompanied by a lot of concomitant fossil-fuel generating plants as power resource, and also a large number of new energy source, includes wind power generation and photovoltaic power generation. Around one of the UHVDC converter stations, short circuit current may exceed the withstand limit of some certain circuit breakers. In order to get more accurate short circuit current calculation results, three measures are used: 1) contrastive calculation and analysis by algorithm based on schemes and algorithm based on power flow;2) analysis the influence of UHVDC by electromagnetic transient and electromechanical transient hybrid simulation;3) considered a detailed model of Doubly Fed Induction Generator (DFIG) with low voltage ride through characteristics. The calculation results shows that: in the typical operation mode of Shaanxi power grid of 2018, the original calculation results by conventional calculation method are coincident with the results by considering the influence of algorithms, UHVDC and DFIG in large, in which: the results of the algorithm based on power flow are smaller than that of the algorithm based on schemes about 2 - 8 kA;the steady values of the short circuit current provided by UHVDC converterstation (includes rectifiers and smoothing capacitors) are about 0 - 3 kA;the steady values of the short circuit current provided by DFIG are about 0 - 5 kA. The calculation results can provide reference for the selection of the circuit breaker, and it can be verified by fault recording data in the future.展开更多
文摘Multi-terminal hybrid high-voltage direct current(HVDC)systems have been developed quickly in recent years in power transmission area.However,for voltage-source converter(VSC)stations in hybrid HVDC systems,no direct current(DC)filters are required.In addition,the DC reactor is also not installed at the line end because the DC fault can be limited by the converter itself.This means that the boundary element at the line end is absent,and the single-ended protections used in line commutated converter(LCC)based HVDC(LCC-HVDC)systems or VSC-HVDC systems cannot distinguish the fault line in multi-terminal hybrid HVDC systems.This paper proposes a novel singleended DC protection strategy suitable for the multi-terminal hybrid HVDC system,which mainly applies the transient information and active injection concept to detect and distinguish the fault line.Compared with the single-ended protections used in LCC-HVDC and VSC-HVDC systems,the proposed protection strategy is not dependent on the line boundary element and is thus suitable for the multiterminal hybrid HVDC system.The corresponding simulation cases based on power systems computer aided design(PSCAD)/electromagnetic transients including DC(EMTDC)are carried out to verify the superiority of the proposed protection.
基金supported by the Science and Technology Project of State Grid Corporation of China under Grant 520201210025。
文摘The hybrid dc circuit breaker(HCB)has the advantages of fast action speed and low operating loss,which is an idealmethod for fault isolation ofmulti-terminal dc grids.Formulti-terminal dc grids that transmit power through overhead lines,HCBs are required to have reclosing capability due to the high fault probability and the fact that most of the faults are temporary faults.To avoid the secondary fault strike and equipment damage that may be caused by the reclosing of the HCB when the permanent fault occurs,an adaptive reclosing scheme based on traveling wave injection is proposed in this paper.The scheme injects traveling wave signal into the fault dc line through the additionally configured auxiliary discharge branch in the HCB,and then uses the reflection characteristic of the traveling wave signal on the dc line to identify temporary and permanent faults,to be able to realize fast reclosing when the temporary fault occurs and reliably avoid reclosing after the permanent fault occurs.The test results in the simulation model of the four-terminal dc grid show that the proposed adaptive reclosing scheme can quickly and reliably identify temporary and permanent faults,greatly shorten the power outage time of temporary faults.In addition,it has the advantages of easiness to implement,high reliability,robustness to high-resistance fault and no dead zone,etc.
文摘直流输电工程在长期发展中形成相对固定的控制策略,完善该策略对提高交直流混联电网的稳定性有重要意义。近年来,使用机电–电磁混合仿真技术进行稳定分析,在大电网交流侧某些严重故障下,多条基于电网换相换流器的特高压直流(ultra-highvoltageDCbasedonline commutatedconverter,LCC-UHVDC)工程均出现了持续大幅度功率振荡,表明现有控制策略需要一步完善。该文介绍了各UHVDC工程中出现的相似功率振荡现象,并以某工程为例,深入分析直流控制器中换相裕度面积计算(commutation margin area calculation module,AMINCALC)、设置最大熄弧角输出(maximumarcanglelimiteddirect outputmodule,GAMMA0)及低压限流(voltagedependent current order limiter,VDCOL)等多个控制环节共同诱发功率振荡的机理;研究抑制该类直流振荡可能的控制措施及实用的控制优化方案。实际电网的仿真证明了该方案的有效性。
基金supported by the Technology Projects of Southern Power Grid Electric Power Research Institute of China(SEPRI-K22B055)National Nature Science Foundation project(2021YFB1507000,2021YFB1507004)the Natural Science Foundation of Xinjiang Uygur Autonomous Region(2022D01C662).
文摘A fault identification scheme for protection and adaptive reclosing is proposed for a hybrid multi-terminal HVDC system to increase the reliability of fault isolation and reclosing.By analyzing the"zero passing"characteristic of current at the local end during the converter capacitor discharge stage,the fault identification scheme is proposed.The distributed parameter-based fault location equation,which incorporates fault distance and fault impedance,is developed with the injection signal and the distributed parameter model during the adaptive reclosing stage.The fault distance is determined using a trust region reflection algorithm to identify the permanent fault,and a fault iden-tification scheme for adaptive reclosing is developed.Simulation results show that the proposed scheme is suitable for long-distance transmission lines with strong anti-fault impedance and anti-interference performance.Also,it is less affected by communication delay and DC boundary strength than existing methods.
基金supported by the Global Energy Interconnection Group’s Science & Technology Project “Global Clean Energy Potential Estimating Model: Methodology and Application” (524500180011)
文摘Solar PV is expected to become the most cost-competitive renewable energy owing to the rapidly decreasing cost of the system. On the other hand, hydropower is a high-quality and reliable regulating power source that can be bundled with solar PV to improve the economic feasibility of long-distance transmitted power. In this paper, a quantification model is established taking into account the regulating capacity of the reservoir, the characteristics of solar generation, and cost of hydro and solar PV with long-distance transmission based on the installed capacity ratio of hydro–solar hybrid power. Results indicate that for hydropower stations with high regulating capacity and generation factor of approximately 0.5, a hydro–solar installed capacity ratio of 1:1 will yield overall optimal economic performance, whereas for hydropower stations with daily regulating capacity reservoir and capacity factor of approximately 0.65, the optimal hydro–solar installed capacity ratio is approximately 1:0.3. In addition, the accuracy of the approach used in this study is verified through operation simulation of a hydro–solar hybrid system including ultra high-voltage direct current(UHVDC) transmission using two case studies in Africa.
基金supported by the Science and Technology Project of the State Grid Corporation of China,HVDC Systems/Grids for Transnational Interconnections(Project number:SGTYHT/16-JS-198).
文摘A hybrid of line commutated converters(LCCs)and modular multi-level converters(MMCs)can provide the advantages of both the technologies.However,the commutation failure still exists if the LCC operates as an inverter in a hybrid LCC/MMC system.In this paper,the system behavior during a commutation failure is investigated.Both halfbridge and full-bridge MMCs are considered.Control strategies are examined through simulations conducted in PSCAD/EMTDC.Additionally,commutation failure protection strategies for multi-terminal hybrid LCC/MMC systems with AC and DC circuit breakers are studied.This paper can contribute to the protection design of future hybrid LCC/MMC systems against commutation failures.
文摘With the development of power system, the level of short circuit current will increase accordingly. In general, the influence of the HVDC system and the new energy source is not considered in the calculation of the short circuit current. For the power grid that short circuit current level closes to the interrupting capacity of circuit breaker, it’s necessary to fully consider all kinds of influence factors, careful checking, so as to obtain more accurate calculation results of short circuit current. In 2018, two ±800 kV high-power Ultra High Voltage Direct Current (UHVDC) transmission projects will be connected with Shaanxi power grid, accompanied by a lot of concomitant fossil-fuel generating plants as power resource, and also a large number of new energy source, includes wind power generation and photovoltaic power generation. Around one of the UHVDC converter stations, short circuit current may exceed the withstand limit of some certain circuit breakers. In order to get more accurate short circuit current calculation results, three measures are used: 1) contrastive calculation and analysis by algorithm based on schemes and algorithm based on power flow;2) analysis the influence of UHVDC by electromagnetic transient and electromechanical transient hybrid simulation;3) considered a detailed model of Doubly Fed Induction Generator (DFIG) with low voltage ride through characteristics. The calculation results shows that: in the typical operation mode of Shaanxi power grid of 2018, the original calculation results by conventional calculation method are coincident with the results by considering the influence of algorithms, UHVDC and DFIG in large, in which: the results of the algorithm based on power flow are smaller than that of the algorithm based on schemes about 2 - 8 kA;the steady values of the short circuit current provided by UHVDC converterstation (includes rectifiers and smoothing capacitors) are about 0 - 3 kA;the steady values of the short circuit current provided by DFIG are about 0 - 5 kA. The calculation results can provide reference for the selection of the circuit breaker, and it can be verified by fault recording data in the future.