In this study,a novel hybrid Water Cycle Moth-Flame Optimization(WCMFO)algorithm is proposed for multilevel thresholding brain image segmentation in Magnetic Resonance(MR)image slices.WCMFO constitutes a hybrid betwee...In this study,a novel hybrid Water Cycle Moth-Flame Optimization(WCMFO)algorithm is proposed for multilevel thresholding brain image segmentation in Magnetic Resonance(MR)image slices.WCMFO constitutes a hybrid between the two techniques,comprising the water cycle and moth-flame optimization algorithms.The optimal thresholds are obtained by maximizing the between class variance(Otsu’s function)of the image.To test the performance of threshold searching process,the proposed algorithm has been evaluated on standard benchmark of ten axial T2-weighted brain MR images for image segmentation.The experimental outcomes infer that it produces better optimal threshold values at a greater and quicker convergence rate.In contrast to other state-of-the-art methods,namely Adaptive Wind Driven Optimization(AWDO),Adaptive Bacterial Foraging(ABF)and Particle Swarm Optimization(PSO),the proposed algorithm has been found to be better at producing the best objective function,Peak Signal-to-Noise Ratio(PSNR),Standard Deviation(STD)and lower computational time values.Further,it was observed thatthe segmented image gives greater detail when the threshold level increases.Moreover,the statistical test result confirms that the best and mean values are almost zero and the average difference between best and mean value 1.86 is obtained through the 30 executions of the proposed algorithm.Thus,these images will lead to better segments of gray,white and cerebrospinal fluid that enable better clinical choices and diagnoses using a proposed algorithm.展开更多
In order to improve the global search ability of biogeography-based optimization(BBO)algorithm in multi-threshold image segmentation,a multi-threshold image segmentation based on improved BBO algorithm is proposed.Whe...In order to improve the global search ability of biogeography-based optimization(BBO)algorithm in multi-threshold image segmentation,a multi-threshold image segmentation based on improved BBO algorithm is proposed.When using BBO algorithm to optimize threshold,firstly,the elitist selection operator is used to retain the optimal set of solutions.Secondly,a migration strategy based on fusion of good solution and pending solution is introduced to reduce premature convergence and invalid migration of traditional migration operations.Thirdly,to reduce the blindness of traditional mutation operations,a mutation operation through binary computation is created.Then,it is applied to the multi-threshold image segmentation of two-dimensional cross entropy.Finally,this method is used to segment the typical image and compared with two-dimensional multi-threshold segmentation based on particle swarm optimization algorithm and the two-dimensional multi-threshold image segmentation based on standard BBO algorithm.The experimental results show that the method has good convergence stability,it can effectively shorten the time of iteration,and the optimization performance is better than the standard BBO algorithm.展开更多
Image segmentation is vital when analyzing medical images,especially magnetic resonance(MR)images of the brain.Recently,several image segmentation techniques based on multilevel thresholding have been proposed for med...Image segmentation is vital when analyzing medical images,especially magnetic resonance(MR)images of the brain.Recently,several image segmentation techniques based on multilevel thresholding have been proposed for medical image segmentation;however,the algorithms become trapped in local minima and have low convergence speeds,particularly as the number of threshold levels increases.Consequently,in this paper,we develop a new multilevel thresholding image segmentation technique based on the jellyfish search algorithm(JSA)(an optimizer).We modify the JSA to prevent descents into local minima,and we accelerate convergence toward optimal solutions.The improvement is achieved by applying two novel strategies:Rankingbased updating and an adaptive method.Ranking-based updating is used to replace undesirable solutions with other solutions generated by a novel updating scheme that improves the qualities of the removed solutions.We develop a new adaptive strategy to exploit the ability of the JSA to find a best-so-far solution;we allow a small amount of exploration to avoid descents into local minima.The two strategies are integrated with the JSA to produce an improved JSA(IJSA)that optimally thresholds brain MR images.To compare the performances of the IJSA and JSA,seven brain MR images were segmented at threshold levels of 3,4,5,6,7,8,10,15,20,25,and 30.IJSA was compared with several other recent image segmentation algorithms,including the improved and standard marine predator algorithms,the modified salp and standard salp swarm algorithms,the equilibrium optimizer,and the standard JSA in terms of fitness,the Structured Similarity Index Metric(SSIM),the peak signal-to-noise ratio(PSNR),the standard deviation(SD),and the Features Similarity Index Metric(FSIM).The experimental outcomes and the Wilcoxon rank-sum test demonstrate the superiority of the proposed algorithm in terms of the FSIM,the PSNR,the objective values,and the SD;in terms of the SSIM,IJSA was competitive with the others.展开更多
In this paper we first determine three phases of cell images: background, cytoplasm and nucleolus according to the general physical characteristics of cell images, and then develop a variational model, based on these...In this paper we first determine three phases of cell images: background, cytoplasm and nucleolus according to the general physical characteristics of cell images, and then develop a variational model, based on these characteristics, to segment nucleolus and cytoplasm from their relatively complicated backgrounds. In the meantime, the preprocessing obtained information of cell images using the OTSU algorithm is used to initialize the level set function in the model, which can speed up the segmentation and present satisfactory results in cell image processing.展开更多
碎米作为大米加工过程的常见产物,常会对产品的口感、味道产生影响,因此针对整米中碎米的有效筛分尤为重要。针对上述问题,该文建立基于大津法(maximal variance between clusters,OTSU)图像分割算法的逻辑回归模型用以检测整米中的碎...碎米作为大米加工过程的常见产物,常会对产品的口感、味道产生影响,因此针对整米中碎米的有效筛分尤为重要。针对上述问题,该文建立基于大津法(maximal variance between clusters,OTSU)图像分割算法的逻辑回归模型用以检测整米中的碎米。将检测结果与国标法进行对比,结果表明逻辑回归模型的曲线线下面积(area under the curve,AUC)值为0.987,柯尔莫可洛夫-斯米洛夫(Kolmogorov-Smirnov,KS)值为0.909,0.5为最佳阈值;而国标法的AUC值为0.922,KS值为0.669,21为最佳阈值。该文所建立的逻辑回归模型的准确率、精确率、召回率及F1分数均高于国标法。此外,逻辑回归模型的AUC值比国标法的AUC值更接近于1,KS值也更高,表明逻辑回归模型能够更好地区分碎米与整米。长轴(x_(1))、面积(x_(2))、短轴(x_(3))与长短轴比(x_(4))4个特征参数都是模型中具有显著影响的因素,对应的线性关系为z=-139.97-5.35x_(1)+10.93x_(2)+2.86x_(3)+34.59x_(4)。展开更多
文摘In this study,a novel hybrid Water Cycle Moth-Flame Optimization(WCMFO)algorithm is proposed for multilevel thresholding brain image segmentation in Magnetic Resonance(MR)image slices.WCMFO constitutes a hybrid between the two techniques,comprising the water cycle and moth-flame optimization algorithms.The optimal thresholds are obtained by maximizing the between class variance(Otsu’s function)of the image.To test the performance of threshold searching process,the proposed algorithm has been evaluated on standard benchmark of ten axial T2-weighted brain MR images for image segmentation.The experimental outcomes infer that it produces better optimal threshold values at a greater and quicker convergence rate.In contrast to other state-of-the-art methods,namely Adaptive Wind Driven Optimization(AWDO),Adaptive Bacterial Foraging(ABF)and Particle Swarm Optimization(PSO),the proposed algorithm has been found to be better at producing the best objective function,Peak Signal-to-Noise Ratio(PSNR),Standard Deviation(STD)and lower computational time values.Further,it was observed thatthe segmented image gives greater detail when the threshold level increases.Moreover,the statistical test result confirms that the best and mean values are almost zero and the average difference between best and mean value 1.86 is obtained through the 30 executions of the proposed algorithm.Thus,these images will lead to better segments of gray,white and cerebrospinal fluid that enable better clinical choices and diagnoses using a proposed algorithm.
基金Science and Technology Plan of Gansu Province(No.144NKCA040)
文摘In order to improve the global search ability of biogeography-based optimization(BBO)algorithm in multi-threshold image segmentation,a multi-threshold image segmentation based on improved BBO algorithm is proposed.When using BBO algorithm to optimize threshold,firstly,the elitist selection operator is used to retain the optimal set of solutions.Secondly,a migration strategy based on fusion of good solution and pending solution is introduced to reduce premature convergence and invalid migration of traditional migration operations.Thirdly,to reduce the blindness of traditional mutation operations,a mutation operation through binary computation is created.Then,it is applied to the multi-threshold image segmentation of two-dimensional cross entropy.Finally,this method is used to segment the typical image and compared with two-dimensional multi-threshold segmentation based on particle swarm optimization algorithm and the two-dimensional multi-threshold image segmentation based on standard BBO algorithm.The experimental results show that the method has good convergence stability,it can effectively shorten the time of iteration,and the optimization performance is better than the standard BBO algorithm.
基金This research was supported by the Korea Institute for Advancement of Technology(KIAT)grant funded by the Korea Government(MOTIE)(P0012724,The Competency Development Program for Industry Specialist)and the Soonchunhyang University Research Fund.
文摘Image segmentation is vital when analyzing medical images,especially magnetic resonance(MR)images of the brain.Recently,several image segmentation techniques based on multilevel thresholding have been proposed for medical image segmentation;however,the algorithms become trapped in local minima and have low convergence speeds,particularly as the number of threshold levels increases.Consequently,in this paper,we develop a new multilevel thresholding image segmentation technique based on the jellyfish search algorithm(JSA)(an optimizer).We modify the JSA to prevent descents into local minima,and we accelerate convergence toward optimal solutions.The improvement is achieved by applying two novel strategies:Rankingbased updating and an adaptive method.Ranking-based updating is used to replace undesirable solutions with other solutions generated by a novel updating scheme that improves the qualities of the removed solutions.We develop a new adaptive strategy to exploit the ability of the JSA to find a best-so-far solution;we allow a small amount of exploration to avoid descents into local minima.The two strategies are integrated with the JSA to produce an improved JSA(IJSA)that optimally thresholds brain MR images.To compare the performances of the IJSA and JSA,seven brain MR images were segmented at threshold levels of 3,4,5,6,7,8,10,15,20,25,and 30.IJSA was compared with several other recent image segmentation algorithms,including the improved and standard marine predator algorithms,the modified salp and standard salp swarm algorithms,the equilibrium optimizer,and the standard JSA in terms of fitness,the Structured Similarity Index Metric(SSIM),the peak signal-to-noise ratio(PSNR),the standard deviation(SD),and the Features Similarity Index Metric(FSIM).The experimental outcomes and the Wilcoxon rank-sum test demonstrate the superiority of the proposed algorithm in terms of the FSIM,the PSNR,the objective values,and the SD;in terms of the SSIM,IJSA was competitive with the others.
基金supported by the National Basic Research Program of China (Grant No. 2011CB707701)the National Natural Science Foundation of China (Grant No. 60873124)+2 种基金the Joint Research Foundation of Beijing Education Committee (GrantNo. JD100010607)the International Science and Technology Supporting Programme (Grant No. 2008BAH26B00)the Zhejiang Service Robot Key Laboratory (Grant No. 2008E10004)
文摘In this paper we first determine three phases of cell images: background, cytoplasm and nucleolus according to the general physical characteristics of cell images, and then develop a variational model, based on these characteristics, to segment nucleolus and cytoplasm from their relatively complicated backgrounds. In the meantime, the preprocessing obtained information of cell images using the OTSU algorithm is used to initialize the level set function in the model, which can speed up the segmentation and present satisfactory results in cell image processing.
文摘碎米作为大米加工过程的常见产物,常会对产品的口感、味道产生影响,因此针对整米中碎米的有效筛分尤为重要。针对上述问题,该文建立基于大津法(maximal variance between clusters,OTSU)图像分割算法的逻辑回归模型用以检测整米中的碎米。将检测结果与国标法进行对比,结果表明逻辑回归模型的曲线线下面积(area under the curve,AUC)值为0.987,柯尔莫可洛夫-斯米洛夫(Kolmogorov-Smirnov,KS)值为0.909,0.5为最佳阈值;而国标法的AUC值为0.922,KS值为0.669,21为最佳阈值。该文所建立的逻辑回归模型的准确率、精确率、召回率及F1分数均高于国标法。此外,逻辑回归模型的AUC值比国标法的AUC值更接近于1,KS值也更高,表明逻辑回归模型能够更好地区分碎米与整米。长轴(x_(1))、面积(x_(2))、短轴(x_(3))与长短轴比(x_(4))4个特征参数都是模型中具有显著影响的因素,对应的线性关系为z=-139.97-5.35x_(1)+10.93x_(2)+2.86x_(3)+34.59x_(4)。