Coal is a solid combustible mineral,and coal-bearing strata have important hydrocarbon generation potential and contribute to more than 12%of the global hydrocarbon resources.However,the deposition and hydrocarbon evo...Coal is a solid combustible mineral,and coal-bearing strata have important hydrocarbon generation potential and contribute to more than 12%of the global hydrocarbon resources.However,the deposition and hydrocarbon evolution process of ancient coal-bearing strata is characterized by multiple geological times,leading to obvious distinctions in their hydrocarbon generation potential,geological processes,and production,which affect the evaluation and exploration of hydrocarbon resources derived from coaly source rocks worldwide.This study aimed to identify the differences on oil-generated parent macerals and the production of oil generated from different coaly source rocks and through different oil generation processes.Integrating with the analysis of previous tectonic burial history and hydrocarbon generation history,high-temperature and high-pressure thermal simulation experiments,organic geochemistry,and organic petrology were performed on the Carboniferous-Permian(C-P)coaly source rocks in the Huanghua Depression,Bohai Bay Basin.The oil-generated parent macerals of coal's secondary oil generation process(SOGP)were mainly hydrogen-rich collotelinite,collodetrinite,sporinite,and cutinite,while the oil-generated parent macerals of tertiary oil generation process(TOGP)were the remaining small amount of hydrogen-rich collotelinite,sporinite,and cutinite,as well as dispersed soluble organic matter and unexhausted residual hydrocarbons.Compared with coal,the oil-generated parent macerals of coaly shale SOGP were mostly sporinite and cutinite.And part of hydrogen-poor vitrinite,lacking hydrocarbon-rich macerals,and macerals of the TOGP,in addition to some remaining cutinite and a small amount of crude oil and bitumen from SOGP contributed to the oil yield.The results indicated that the changes in oil yield had a good junction between SOGP and TOGP,both coal and coaly shale had higher SOGP aborted oil yield than TOGP starting yield,and coaly shale TOGP peak oil yield was lower than SOGP peak oil yield.There were significant differences in saturated hydrocarbon and aromatic parameters in coal and coaly shale.Coal SOGP was characterized by a lower Ts/Tm and C31-homohopane22S/(22S+22R)and a higher Pr/n C17compared to coal TOGP,while the aromatic parameter methyl dibenzothiophene ratio(MDR)exhibited coaly shale TOGP was higher than coaly shale SOGP than coaly TOGP than coaly SOGP,and coal trimethylnaphthalene ratio(TNR)was lower than coaly shale TNR.Thus,we established oil generation processes and discriminative plates.In this way,we distinguished the differences between oil generation parent maceral,oil generation time,and oil production of coaly source rocks,and therefore,we provided important support for the evaluation,prediction,and exploration of oil resources from global ancient coaly source rocks.展开更多
Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a ...Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a multi-time scale optimal scheduling strategy based on model predictive control(MPC)is proposed under the consideration of load optimization.First,load optimization is achieved by controlling the charging time of electric vehicles as well as adjusting the air conditioning operation temperature,and the photovoltaic energy storage building system model is constructed to propose a day-ahead scheduling strategy with the lowest daily operation cost.Second,considering inter-day to intra-day source-load prediction error,an intraday rolling optimal scheduling strategy based on MPC is proposed that dynamically corrects the day-ahead dispatch results to stabilize system power fluctuations and promote photovoltaic consumption.Finally,taking an office building on a summer work day as an example,the effectiveness of the proposed scheduling strategy is verified.The results of the example show that the strategy reduces the total operating cost of the photovoltaic energy storage building system by 17.11%,improves the carbon emission reduction by 7.99%,and the photovoltaic consumption rate reaches 98.57%,improving the system’s low-carbon and economic performance.展开更多
Bio-inspired computer modelling brings solutions fromthe living phenomena or biological systems to engineering domains.To overcome the obstruction problem of large-scale wind power consumption in Northwest China,this ...Bio-inspired computer modelling brings solutions fromthe living phenomena or biological systems to engineering domains.To overcome the obstruction problem of large-scale wind power consumption in Northwest China,this paper constructs a bio-inspired computer model.It is an optimal wind power consumption dispatching model of multi-time scale demand response that takes into account the involved high-energy load.First,the principle of wind power obstruction with the involvement of a high-energy load is examined in this work.In this step,highenergy load model with different regulation characteristics is established.Then,considering the multi-time scale characteristics of high-energy load and other demand-side resources response speed,a multi-time scale model of coordination optimization is built.An improved bio-inspired model incorporating particle swarm optimization is applied to minimize system operation and wind curtailment costs,as well as to find the most optimal energy configurationwithin the system.Lastly,we take an example of regional power grid in Gansu Province for simulation analysis.Results demonstrate that the suggested scheduling strategy can significantly enhance the wind power consumption level and minimize the system’s operational cost.展开更多
The temperature change and rate of CO2 change are correlated with a time lag, as reported in a previous paper. The correlation was investigated by calculating a correlation coefficient r of these changes for selected ...The temperature change and rate of CO2 change are correlated with a time lag, as reported in a previous paper. The correlation was investigated by calculating a correlation coefficient r of these changes for selected ENSO events in this study. Annual periodical increases and decreases in the CO2 concentration were considered, with a regular pattern of minimum values in August and maximum values in May each year. An increased deviation in CO2 and temperature was found in response to the occurrence of El Niño, but the increase in CO2 lagged behind the change in temperature by 5 months. This pattern was not observed for La Niña events. An increase in global CO2 emissions and a subsequent increase in global temperature proposed by IPCC were not observed, but an increase in global temperature, an increase in soil respiration, and a subsequent increase in global CO2 emissions were noticed. This natural process can be clearly detected during periods of increasing temperature specifically during El Niño events. The results cast strong doubts that anthropogenic CO2 is the cause of global warming.展开更多
The field measurements of decay rates and time lags of heat conduction in a building construction taken in Nanjing during the summer of 2001 are presented.The decay rates and time lags are calculated according to the ...The field measurements of decay rates and time lags of heat conduction in a building construction taken in Nanjing during the summer of 2001 are presented.The decay rates and time lags are calculated according to the frequency responses of the heat absorbed by the room's internal surfaces,inside surface temperature,indoor air temperature and outdoor synthetic temperature.The measured results match very well with the theoretical results of the zeroth and the first order values of the decay rates and time lags of heat conduction in the building construction,but the difference between the measured values and the theoretical values for the second order is too great to be accepted.It is therefore difficult to accurately test the second order value.However,it is still advisable to complete the analysis using the zeroth-and the first-orders values of the decay rates and time lags of heat conduction in building construction under field conditions,because in these cases the decay rates of heat conduction reach twenty which meets the requirements of engineering plans.展开更多
With the development of carbon electricity,achieving a low-carbon economy has become a prevailing and inevitable trend.Improving low-carbon expansion generation planning is critical for carbon emission mitigation and ...With the development of carbon electricity,achieving a low-carbon economy has become a prevailing and inevitable trend.Improving low-carbon expansion generation planning is critical for carbon emission mitigation and a lowcarbon economy.In this paper,a two-layer low-carbon expansion generation planning approach considering the uncertainty of renewable energy at multiple time scales is proposed.First,renewable energy sequences considering the uncertainty in multiple time scales are generated based on the Copula function and the probability distribution of renewable energy.Second,a two-layer generation planning model considering carbon trading and carbon capture technology is established.Specifically,the upper layer model optimizes the investment decision considering the uncertainty at a monthly scale,and the lower layer one optimizes the scheduling considering the peak shaving at an hourly scale and the flexibility at a 15-minute scale.Finally,the results of different influence factors on low-carbon generation expansion planning are compared in a provincial power grid,which demonstrate the effectiveness of the proposed model.展开更多
Flow shop scheduling problem with time lags is a practical scheduling problem and attracts many studies. Permutation problem(PFSP with time lags) is concentrated but non-permutation problem(non-PFSP with time lags...Flow shop scheduling problem with time lags is a practical scheduling problem and attracts many studies. Permutation problem(PFSP with time lags) is concentrated but non-permutation problem(non-PFSP with time lags) seems to be neglected. With the aim to minimize the makespan and satisfy time lag constraints, efficient algo- rithms corresponding to PFSP and non-PFSP problems are proposed, which consist of iterated greedy algorithm for permutation(IGTLP) and iterated greedy algorithm for non-permutation (IGTLNP). The proposed algorithms are verified using well-known simple and complex instances of permutation and non-permutation problems with various time lag ranges. The permutation results indicate that the proposed IGTLP can reach near optimal solution within nearly 11% computational time of traditional GA approach. The non-permutation results indicate that the proposed IG can reach nearly same solution within less than 1% com- putational time compared with traditional GA approach. The proposed research combines PFSP and non-PFSP together with minimal and maximal time lag consideration, which provides an interesting viewpoint for industrial implementation.展开更多
Recently, canopy transpiration (Ec) has been often estimated by xylem sap-flow measurements. However, there is a significant time lag between sap flow measured at the base of the stem and canopy transpiration due to...Recently, canopy transpiration (Ec) has been often estimated by xylem sap-flow measurements. However, there is a significant time lag between sap flow measured at the base of the stem and canopy transpiration due to the capacitive exchange between the transpiration stream and stem water storage. Significant errors will be introduced in canopy conductance (gc) and canopy transpiration estimation if the time lag is neglected. In this study, a cross-correlation analysis was used to quantify the time lag, and the sap flowbased transpiration was measured to pararneterize Jarvistype models of gc and thus to simulate Ec of Populus cathayana using the Penman-Monteith equation. The results indicate that solar radiation (Rs) and vapor pressure deficit (VPD) are not fully coincident with sap flow and have an obvious lag effect; the sap flow lags behind Rs and precedes VPD, and there is a 1-h time shift between Eo and sap flow in the 30-min interval data set. A parameterized Jarvis-type gc model is suitable to predict P. cathayana transpiration and explains more than 80% of the variation observed in go, and the relative error was less than 25%, which shows a preferable simulation effect. The root mean square error (RMSEs) between the predicted and measured Ec were 1.91×10^-3 (with the time lag) and 3.12×10^-3cm h^-1 (without the time lag). More importantly, Ec simulation precision that incorporates time lag is improved by 6% compared to the results without the time lag, with the mean relative error (MRE) of only 8.32% and the mean absolute error (MAE) of 1.48 × 10^-3 cm h^-1.展开更多
Various optimal boundary control problems for linear infinite order distributed hyperbolic systems involving constant time lags are considered. Constraints on controls are imposed. Necessary and sufficient optimality ...Various optimal boundary control problems for linear infinite order distributed hyperbolic systems involving constant time lags are considered. Constraints on controls are imposed. Necessary and sufficient optimality conditions for the Neumann problem with the quadratic performance functional are derived.展开更多
Morlet wavelet transformation is used in this paper to analyze the multi time scale characteristics of pre cipitation data series from 1957 to 2005 in Guyuan region.The results showed that(1) the annual precipitation ...Morlet wavelet transformation is used in this paper to analyze the multi time scale characteristics of pre cipitation data series from 1957 to 2005 in Guyuan region.The results showed that(1) the annual precipitation evo lution process had obvious multi time scale variation characteristics of 15 25 years,7 12 years and 3 6 years,and different time scales had different oscillation energy densities;(2) the periods at smaller time scales changed more frequently,which often nested in a biggish quasi periodic oscillations,so the concrete time domain should be ana lyzed if necessary;(3) the precipitation had three main periods(22 year,9 year and 4 year) and the 22 year period was especially outstanding,and the analysis of this main period reveals that the precipitation would be in a relative high water period until about 2012.展开更多
Recently, lots of smoothing techniques have been presented for maneuvering target tracking. Interacting multiple model-probabilistic data association (IMM-PDA) fixed-lag smoothing algorithm provides an efficient sol...Recently, lots of smoothing techniques have been presented for maneuvering target tracking. Interacting multiple model-probabilistic data association (IMM-PDA) fixed-lag smoothing algorithm provides an efficient solution to track a maneuvering target in a cluttered environment. Whereas, the smoothing lag of each model in a model set is a fixed constant in traditional algorithms. A new approach is developed in this paper. Although this method is still based on IMM-PDA approach to a state augmented system, it adopts different smoothing lag according to diverse degrees of complexity of each model. As a result, the application is more flexible and the computational load is reduced greatly. Some simulations were conducted to track a highly maneuvering target in a cluttered environment using two sensors. The results illustrate the superiority of the proposed algorithm over comparative schemes, both in accuracy of track estimation and the computational load.展开更多
The inconsistency and disharmony in China’s environmental legal system are seriously undermining the authority and effectiveness of environmental laws, making it hard to achieve the national environmental legislative...The inconsistency and disharmony in China’s environmental legal system are seriously undermining the authority and effectiveness of environmental laws, making it hard to achieve the national environmental legislative goals. It is found in this study that at least 18 administrative regulations and rules conflict with the five recently-revised environmental laws. The legislative vacancy rate of province-level environmental laws reaches 27.8%, and that of city-level environmental laws in the major cities reaches 59.7%. Besides, 66% of the local including both province-level and city-level environmental laws have the problem of legislative lags, with an average lag of 2547.8 days. In addition, there are many legal conflicts between national environmental laws and local environmental laws. In order to help China to build a harmonious and unified environmental legal system, some suggestions are proposed in this study, including comprehensively examining the lower-level environmental laws, strengthening the leading role of local people’s congresses in environmental legislation, improving the construction of filing and review mechanism, and optimizing the mechanisms for information disclosure and public participation.展开更多
To solve the different time delays that exist in the control device installed on spatial structures, in this study, discrete analysis using a 2N precise algorithm was selected to solve the multi-time-delay issue for l...To solve the different time delays that exist in the control device installed on spatial structures, in this study, discrete analysis using a 2N precise algorithm was selected to solve the multi-time-delay issue for long-span structures based on the market-based control (MBC) method. The concept of interval mixed energy was introduced from computational structural mechanics and optimal control research areas, and it translates the design of the MBC multi-time-delay controller into a solution for the segment matrix. This approach transforms the serial algorithm in time to parallel computing in space, greatly improving the solving efficiency and numerical stability. The designed controller is able to consider the issue of time delay with a linear controlling force combination and is especially effective for large time-delay conditions. A numerical example of a long-span structure was selected to demonstrate the effectiveness of the presented controller, and the time delay was found to have a significant impact on the results.展开更多
As the proportion of renewable energy increases, the interaction between renewable energy devices and the grid continues to enhance. Therefore, the renewable energy dynamic test in a power system has become more and m...As the proportion of renewable energy increases, the interaction between renewable energy devices and the grid continues to enhance. Therefore, the renewable energy dynamic test in a power system has become more and more important. Traditional dynamic simulation systems and digital-analog hybrid simulation systems are difficult to compromise on the economy, flexibility and accuracy. A multi-time scale test system of doubly fed induction generator based on FPGA+ CPU heterogeneous calculation is proposed in this paper. The proposed test system is based on the ADPSS simulation platform. The power circuit part of the test system is setup up using the EMT(electromagnetic transient simulation) simulation, and the control part uses the actual physical devices. In order to realize the close-loop testing for the physical devices, the power circuit must be simulated in real-time. This paper proposes a multi-time scale simulation algorithm, in which the decoupling component divides the power circuit into a large time scale system and a small time scale system in order to reduce computing effort. This paper also proposes the FPGA+CPU heterogeneous computing architecture for implementing this multitime scale simulation. In FPGA, there is a complete small time-scale EMT engine, which support the flexibly circuit modeling with any topology. Finally, the test system is connected to an DFIG controller based on Labview to verify the feasibility of the test system.展开更多
基金supported by the Certificate of National Science and Technology Major Project of the Ministry of Science and Technology of China(No.2016ZX05006007-004)the National Natural Science Foundation of China(Nos.42172145,42072130)。
文摘Coal is a solid combustible mineral,and coal-bearing strata have important hydrocarbon generation potential and contribute to more than 12%of the global hydrocarbon resources.However,the deposition and hydrocarbon evolution process of ancient coal-bearing strata is characterized by multiple geological times,leading to obvious distinctions in their hydrocarbon generation potential,geological processes,and production,which affect the evaluation and exploration of hydrocarbon resources derived from coaly source rocks worldwide.This study aimed to identify the differences on oil-generated parent macerals and the production of oil generated from different coaly source rocks and through different oil generation processes.Integrating with the analysis of previous tectonic burial history and hydrocarbon generation history,high-temperature and high-pressure thermal simulation experiments,organic geochemistry,and organic petrology were performed on the Carboniferous-Permian(C-P)coaly source rocks in the Huanghua Depression,Bohai Bay Basin.The oil-generated parent macerals of coal's secondary oil generation process(SOGP)were mainly hydrogen-rich collotelinite,collodetrinite,sporinite,and cutinite,while the oil-generated parent macerals of tertiary oil generation process(TOGP)were the remaining small amount of hydrogen-rich collotelinite,sporinite,and cutinite,as well as dispersed soluble organic matter and unexhausted residual hydrocarbons.Compared with coal,the oil-generated parent macerals of coaly shale SOGP were mostly sporinite and cutinite.And part of hydrogen-poor vitrinite,lacking hydrocarbon-rich macerals,and macerals of the TOGP,in addition to some remaining cutinite and a small amount of crude oil and bitumen from SOGP contributed to the oil yield.The results indicated that the changes in oil yield had a good junction between SOGP and TOGP,both coal and coaly shale had higher SOGP aborted oil yield than TOGP starting yield,and coaly shale TOGP peak oil yield was lower than SOGP peak oil yield.There were significant differences in saturated hydrocarbon and aromatic parameters in coal and coaly shale.Coal SOGP was characterized by a lower Ts/Tm and C31-homohopane22S/(22S+22R)and a higher Pr/n C17compared to coal TOGP,while the aromatic parameter methyl dibenzothiophene ratio(MDR)exhibited coaly shale TOGP was higher than coaly shale SOGP than coaly TOGP than coaly SOGP,and coal trimethylnaphthalene ratio(TNR)was lower than coaly shale TNR.Thus,we established oil generation processes and discriminative plates.In this way,we distinguished the differences between oil generation parent maceral,oil generation time,and oil production of coaly source rocks,and therefore,we provided important support for the evaluation,prediction,and exploration of oil resources from global ancient coaly source rocks.
文摘Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a multi-time scale optimal scheduling strategy based on model predictive control(MPC)is proposed under the consideration of load optimization.First,load optimization is achieved by controlling the charging time of electric vehicles as well as adjusting the air conditioning operation temperature,and the photovoltaic energy storage building system model is constructed to propose a day-ahead scheduling strategy with the lowest daily operation cost.Second,considering inter-day to intra-day source-load prediction error,an intraday rolling optimal scheduling strategy based on MPC is proposed that dynamically corrects the day-ahead dispatch results to stabilize system power fluctuations and promote photovoltaic consumption.Finally,taking an office building on a summer work day as an example,the effectiveness of the proposed scheduling strategy is verified.The results of the example show that the strategy reduces the total operating cost of the photovoltaic energy storage building system by 17.11%,improves the carbon emission reduction by 7.99%,and the photovoltaic consumption rate reaches 98.57%,improving the system’s low-carbon and economic performance.
基金supported by the Program for Innovative Research Team(in Science and Technology)in University of Henan Province(No.22IRTSTHN016)the Hubei Natural Science Foundation(No.2021CFB156)the Japan Society for the Promotion of Science(JSPS)Grants-in-Aid for Scientific Research(KAKENHI)(No.JP21K17737).
文摘Bio-inspired computer modelling brings solutions fromthe living phenomena or biological systems to engineering domains.To overcome the obstruction problem of large-scale wind power consumption in Northwest China,this paper constructs a bio-inspired computer model.It is an optimal wind power consumption dispatching model of multi-time scale demand response that takes into account the involved high-energy load.First,the principle of wind power obstruction with the involvement of a high-energy load is examined in this work.In this step,highenergy load model with different regulation characteristics is established.Then,considering the multi-time scale characteristics of high-energy load and other demand-side resources response speed,a multi-time scale model of coordination optimization is built.An improved bio-inspired model incorporating particle swarm optimization is applied to minimize system operation and wind curtailment costs,as well as to find the most optimal energy configurationwithin the system.Lastly,we take an example of regional power grid in Gansu Province for simulation analysis.Results demonstrate that the suggested scheduling strategy can significantly enhance the wind power consumption level and minimize the system’s operational cost.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences[grant numbers XDA23090102]the National Natural Science Foundation of China[grant numbers 42175078 and 42075040]+1 种基金the Health Meteorological Project of Hebei Province[grant number FW202150]the National Key Research and Development Program of China[grant number 2018YFA0606203].
文摘The temperature change and rate of CO2 change are correlated with a time lag, as reported in a previous paper. The correlation was investigated by calculating a correlation coefficient r of these changes for selected ENSO events in this study. Annual periodical increases and decreases in the CO2 concentration were considered, with a regular pattern of minimum values in August and maximum values in May each year. An increased deviation in CO2 and temperature was found in response to the occurrence of El Niño, but the increase in CO2 lagged behind the change in temperature by 5 months. This pattern was not observed for La Niña events. An increase in global CO2 emissions and a subsequent increase in global temperature proposed by IPCC were not observed, but an increase in global temperature, an increase in soil respiration, and a subsequent increase in global CO2 emissions were noticed. This natural process can be clearly detected during periods of increasing temperature specifically during El Niño events. The results cast strong doubts that anthropogenic CO2 is the cause of global warming.
基金The Advance Research Projects of Southeast Universityfor the National Natural Science Foundation of China(No.XJ0701262)the National Key Technologies R&D Program of China during the 11th Five-Year Plan Period(No.2008BAJ12B04,2008BAJ12B05,2006BAJ03A04)
文摘The field measurements of decay rates and time lags of heat conduction in a building construction taken in Nanjing during the summer of 2001 are presented.The decay rates and time lags are calculated according to the frequency responses of the heat absorbed by the room's internal surfaces,inside surface temperature,indoor air temperature and outdoor synthetic temperature.The measured results match very well with the theoretical results of the zeroth and the first order values of the decay rates and time lags of heat conduction in the building construction,but the difference between the measured values and the theoretical values for the second order is too great to be accepted.It is therefore difficult to accurately test the second order value.However,it is still advisable to complete the analysis using the zeroth-and the first-orders values of the decay rates and time lags of heat conduction in building construction under field conditions,because in these cases the decay rates of heat conduction reach twenty which meets the requirements of engineering plans.
基金supported partly by the National Key R&D Program of China(2018YFA0702200)the Science and Technology Project of State Grid Shandong Electric Power Company(520604190002)。
文摘With the development of carbon electricity,achieving a low-carbon economy has become a prevailing and inevitable trend.Improving low-carbon expansion generation planning is critical for carbon emission mitigation and a lowcarbon economy.In this paper,a two-layer low-carbon expansion generation planning approach considering the uncertainty of renewable energy at multiple time scales is proposed.First,renewable energy sequences considering the uncertainty in multiple time scales are generated based on the Copula function and the probability distribution of renewable energy.Second,a two-layer generation planning model considering carbon trading and carbon capture technology is established.Specifically,the upper layer model optimizes the investment decision considering the uncertainty at a monthly scale,and the lower layer one optimizes the scheduling considering the peak shaving at an hourly scale and the flexibility at a 15-minute scale.Finally,the results of different influence factors on low-carbon generation expansion planning are compared in a provincial power grid,which demonstrate the effectiveness of the proposed model.
基金Supported by National Natural Science Foundation of China(Grant No.71301008)Beijing Municipal Natural Science Foundation of China(Grant No.9144030)
文摘Flow shop scheduling problem with time lags is a practical scheduling problem and attracts many studies. Permutation problem(PFSP with time lags) is concentrated but non-permutation problem(non-PFSP with time lags) seems to be neglected. With the aim to minimize the makespan and satisfy time lag constraints, efficient algo- rithms corresponding to PFSP and non-PFSP problems are proposed, which consist of iterated greedy algorithm for permutation(IGTLP) and iterated greedy algorithm for non-permutation (IGTLNP). The proposed algorithms are verified using well-known simple and complex instances of permutation and non-permutation problems with various time lag ranges. The permutation results indicate that the proposed IGTLP can reach near optimal solution within nearly 11% computational time of traditional GA approach. The non-permutation results indicate that the proposed IG can reach nearly same solution within less than 1% com- putational time compared with traditional GA approach. The proposed research combines PFSP and non-PFSP together with minimal and maximal time lag consideration, which provides an interesting viewpoint for industrial implementation.
基金supported by the Qinghai province natural science foundation project(2015-ZJ-902)the Qinghai province science and technology plan program(2014-NK-A4-4)
文摘Recently, canopy transpiration (Ec) has been often estimated by xylem sap-flow measurements. However, there is a significant time lag between sap flow measured at the base of the stem and canopy transpiration due to the capacitive exchange between the transpiration stream and stem water storage. Significant errors will be introduced in canopy conductance (gc) and canopy transpiration estimation if the time lag is neglected. In this study, a cross-correlation analysis was used to quantify the time lag, and the sap flowbased transpiration was measured to pararneterize Jarvistype models of gc and thus to simulate Ec of Populus cathayana using the Penman-Monteith equation. The results indicate that solar radiation (Rs) and vapor pressure deficit (VPD) are not fully coincident with sap flow and have an obvious lag effect; the sap flow lags behind Rs and precedes VPD, and there is a 1-h time shift between Eo and sap flow in the 30-min interval data set. A parameterized Jarvis-type gc model is suitable to predict P. cathayana transpiration and explains more than 80% of the variation observed in go, and the relative error was less than 25%, which shows a preferable simulation effect. The root mean square error (RMSEs) between the predicted and measured Ec were 1.91×10^-3 (with the time lag) and 3.12×10^-3cm h^-1 (without the time lag). More importantly, Ec simulation precision that incorporates time lag is improved by 6% compared to the results without the time lag, with the mean relative error (MRE) of only 8.32% and the mean absolute error (MAE) of 1.48 × 10^-3 cm h^-1.
文摘Various optimal boundary control problems for linear infinite order distributed hyperbolic systems involving constant time lags are considered. Constraints on controls are imposed. Necessary and sufficient optimality conditions for the Neumann problem with the quadratic performance functional are derived.
基金National Key Project of ScientificTechnical Supporting Programs Funded by Ministry of Science & Technology of China during the 11th Five-Year Plan Period (Grant No. 2006BCA01A07-2).
文摘Morlet wavelet transformation is used in this paper to analyze the multi time scale characteristics of pre cipitation data series from 1957 to 2005 in Guyuan region.The results showed that(1) the annual precipitation evo lution process had obvious multi time scale variation characteristics of 15 25 years,7 12 years and 3 6 years,and different time scales had different oscillation energy densities;(2) the periods at smaller time scales changed more frequently,which often nested in a biggish quasi periodic oscillations,so the concrete time domain should be ana lyzed if necessary;(3) the precipitation had three main periods(22 year,9 year and 4 year) and the 22 year period was especially outstanding,and the analysis of this main period reveals that the precipitation would be in a relative high water period until about 2012.
基金This work is supported by the Projects of the State Key Fundamental Research (No. 2001CB309403)
文摘Recently, lots of smoothing techniques have been presented for maneuvering target tracking. Interacting multiple model-probabilistic data association (IMM-PDA) fixed-lag smoothing algorithm provides an efficient solution to track a maneuvering target in a cluttered environment. Whereas, the smoothing lag of each model in a model set is a fixed constant in traditional algorithms. A new approach is developed in this paper. Although this method is still based on IMM-PDA approach to a state augmented system, it adopts different smoothing lag according to diverse degrees of complexity of each model. As a result, the application is more flexible and the computational load is reduced greatly. Some simulations were conducted to track a highly maneuvering target in a cluttered environment using two sensors. The results illustrate the superiority of the proposed algorithm over comparative schemes, both in accuracy of track estimation and the computational load.
文摘The inconsistency and disharmony in China’s environmental legal system are seriously undermining the authority and effectiveness of environmental laws, making it hard to achieve the national environmental legislative goals. It is found in this study that at least 18 administrative regulations and rules conflict with the five recently-revised environmental laws. The legislative vacancy rate of province-level environmental laws reaches 27.8%, and that of city-level environmental laws in the major cities reaches 59.7%. Besides, 66% of the local including both province-level and city-level environmental laws have the problem of legislative lags, with an average lag of 2547.8 days. In addition, there are many legal conflicts between national environmental laws and local environmental laws. In order to help China to build a harmonious and unified environmental legal system, some suggestions are proposed in this study, including comprehensively examining the lower-level environmental laws, strengthening the leading role of local people’s congresses in environmental legislation, improving the construction of filing and review mechanism, and optimizing the mechanisms for information disclosure and public participation.
基金provided by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China under Grant Nos.51261120375 and 51421064
文摘To solve the different time delays that exist in the control device installed on spatial structures, in this study, discrete analysis using a 2N precise algorithm was selected to solve the multi-time-delay issue for long-span structures based on the market-based control (MBC) method. The concept of interval mixed energy was introduced from computational structural mechanics and optimal control research areas, and it translates the design of the MBC multi-time-delay controller into a solution for the segment matrix. This approach transforms the serial algorithm in time to parallel computing in space, greatly improving the solving efficiency and numerical stability. The designed controller is able to consider the issue of time delay with a linear controlling force combination and is especially effective for large time-delay conditions. A numerical example of a long-span structure was selected to demonstrate the effectiveness of the presented controller, and the time delay was found to have a significant impact on the results.
基金supported by the State Grid Science and Technology Project (Title: Technology Research On Large Scale EMT Real-time simulation customized platform, FX71-17-001)
文摘As the proportion of renewable energy increases, the interaction between renewable energy devices and the grid continues to enhance. Therefore, the renewable energy dynamic test in a power system has become more and more important. Traditional dynamic simulation systems and digital-analog hybrid simulation systems are difficult to compromise on the economy, flexibility and accuracy. A multi-time scale test system of doubly fed induction generator based on FPGA+ CPU heterogeneous calculation is proposed in this paper. The proposed test system is based on the ADPSS simulation platform. The power circuit part of the test system is setup up using the EMT(electromagnetic transient simulation) simulation, and the control part uses the actual physical devices. In order to realize the close-loop testing for the physical devices, the power circuit must be simulated in real-time. This paper proposes a multi-time scale simulation algorithm, in which the decoupling component divides the power circuit into a large time scale system and a small time scale system in order to reduce computing effort. This paper also proposes the FPGA+CPU heterogeneous computing architecture for implementing this multitime scale simulation. In FPGA, there is a complete small time-scale EMT engine, which support the flexibly circuit modeling with any topology. Finally, the test system is connected to an DFIG controller based on Labview to verify the feasibility of the test system.