期刊文献+
共找到1,790篇文章
< 1 2 90 >
每页显示 20 50 100
Multi-Time Scale Optimal Scheduling of a Photovoltaic Energy Storage Building System Based on Model Predictive Control
1
作者 Ximin Cao Xinglong Chen +2 位作者 He Huang Yanchi Zhang Qifan Huang 《Energy Engineering》 EI 2024年第4期1067-1089,共23页
Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a ... Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a multi-time scale optimal scheduling strategy based on model predictive control(MPC)is proposed under the consideration of load optimization.First,load optimization is achieved by controlling the charging time of electric vehicles as well as adjusting the air conditioning operation temperature,and the photovoltaic energy storage building system model is constructed to propose a day-ahead scheduling strategy with the lowest daily operation cost.Second,considering inter-day to intra-day source-load prediction error,an intraday rolling optimal scheduling strategy based on MPC is proposed that dynamically corrects the day-ahead dispatch results to stabilize system power fluctuations and promote photovoltaic consumption.Finally,taking an office building on a summer work day as an example,the effectiveness of the proposed scheduling strategy is verified.The results of the example show that the strategy reduces the total operating cost of the photovoltaic energy storage building system by 17.11%,improves the carbon emission reduction by 7.99%,and the photovoltaic consumption rate reaches 98.57%,improving the system’s low-carbon and economic performance. 展开更多
关键词 Load optimization model predictive control multi-time scale optimal scheduling photovoltaic consumption photovoltaic energy storage building
下载PDF
Low-carbon generation expansion planning considering uncertainty of renewable energy at multi-time scales 被引量:14
2
作者 Yuanze Mi Chunyang Liu +2 位作者 Jinye Yang Hengxu Zhang Qiuwei Wu 《Global Energy Interconnection》 EI CAS CSCD 2021年第3期261-272,共12页
With the development of carbon electricity,achieving a low-carbon economy has become a prevailing and inevitable trend.Improving low-carbon expansion generation planning is critical for carbon emission mitigation and ... With the development of carbon electricity,achieving a low-carbon economy has become a prevailing and inevitable trend.Improving low-carbon expansion generation planning is critical for carbon emission mitigation and a lowcarbon economy.In this paper,a two-layer low-carbon expansion generation planning approach considering the uncertainty of renewable energy at multiple time scales is proposed.First,renewable energy sequences considering the uncertainty in multiple time scales are generated based on the Copula function and the probability distribution of renewable energy.Second,a two-layer generation planning model considering carbon trading and carbon capture technology is established.Specifically,the upper layer model optimizes the investment decision considering the uncertainty at a monthly scale,and the lower layer one optimizes the scheduling considering the peak shaving at an hourly scale and the flexibility at a 15-minute scale.Finally,the results of different influence factors on low-carbon generation expansion planning are compared in a provincial power grid,which demonstrate the effectiveness of the proposed model. 展开更多
关键词 Renewable energy multi-time scales UNCERTAINTY Low-carbon Generation planning
下载PDF
Bio-Inspired Optimal Dispatching of Wind Power Consumption Considering Multi-Time Scale Demand Response and High-Energy Load Participation 被引量:1
3
作者 Peng Zhao Yongxin Zhang +2 位作者 Qiaozhi Hua Haipeng Li Zheng Wen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第2期957-979,共23页
Bio-inspired computer modelling brings solutions fromthe living phenomena or biological systems to engineering domains.To overcome the obstruction problem of large-scale wind power consumption in Northwest China,this ... Bio-inspired computer modelling brings solutions fromthe living phenomena or biological systems to engineering domains.To overcome the obstruction problem of large-scale wind power consumption in Northwest China,this paper constructs a bio-inspired computer model.It is an optimal wind power consumption dispatching model of multi-time scale demand response that takes into account the involved high-energy load.First,the principle of wind power obstruction with the involvement of a high-energy load is examined in this work.In this step,highenergy load model with different regulation characteristics is established.Then,considering the multi-time scale characteristics of high-energy load and other demand-side resources response speed,a multi-time scale model of coordination optimization is built.An improved bio-inspired model incorporating particle swarm optimization is applied to minimize system operation and wind curtailment costs,as well as to find the most optimal energy configurationwithin the system.Lastly,we take an example of regional power grid in Gansu Province for simulation analysis.Results demonstrate that the suggested scheduling strategy can significantly enhance the wind power consumption level and minimize the system’s operational cost. 展开更多
关键词 Biological system multi-time scale wind power consumption demand response bio-inspired computermodelling particle swarm optimization
下载PDF
Multi-time scale analysis of precipitation variation in Guyuan, China:1957-2005 被引量:1
4
作者 Liu Delin Li Bicheng 《Ecological Economy》 2008年第4期512-518,共7页
Morlet wavelet transformation is used in this paper to analyze the multi time scale characteristics of pre cipitation data series from 1957 to 2005 in Guyuan region.The results showed that(1) the annual precipitation ... Morlet wavelet transformation is used in this paper to analyze the multi time scale characteristics of pre cipitation data series from 1957 to 2005 in Guyuan region.The results showed that(1) the annual precipitation evo lution process had obvious multi time scale variation characteristics of 15 25 years,7 12 years and 3 6 years,and different time scales had different oscillation energy densities;(2) the periods at smaller time scales changed more frequently,which often nested in a biggish quasi periodic oscillations,so the concrete time domain should be ana lyzed if necessary;(3) the precipitation had three main periods(22 year,9 year and 4 year) and the 22 year period was especially outstanding,and the analysis of this main period reveals that the precipitation would be in a relative high water period until about 2012. 展开更多
关键词 Precipitation variation multi-time scale Wavelet analysis Guyuan region Loess Plateau
下载PDF
Research on multi-time scale doubly-fed wind turbine test system based on FPGA+CPU heterogeneous calculation
5
作者 Qing Mu Xing Zhang +3 位作者 Xiaoxin Zhou Xiaowei Fan Yingmei Liu Dongbo Pan 《Global Energy Interconnection》 2019年第1期7-18,共12页
As the proportion of renewable energy increases, the interaction between renewable energy devices and the grid continues to enhance. Therefore, the renewable energy dynamic test in a power system has become more and m... As the proportion of renewable energy increases, the interaction between renewable energy devices and the grid continues to enhance. Therefore, the renewable energy dynamic test in a power system has become more and more important. Traditional dynamic simulation systems and digital-analog hybrid simulation systems are difficult to compromise on the economy, flexibility and accuracy. A multi-time scale test system of doubly fed induction generator based on FPGA+ CPU heterogeneous calculation is proposed in this paper. The proposed test system is based on the ADPSS simulation platform. The power circuit part of the test system is setup up using the EMT(electromagnetic transient simulation) simulation, and the control part uses the actual physical devices. In order to realize the close-loop testing for the physical devices, the power circuit must be simulated in real-time. This paper proposes a multi-time scale simulation algorithm, in which the decoupling component divides the power circuit into a large time scale system and a small time scale system in order to reduce computing effort. This paper also proposes the FPGA+CPU heterogeneous computing architecture for implementing this multitime scale simulation. In FPGA, there is a complete small time-scale EMT engine, which support the flexibly circuit modeling with any topology. Finally, the test system is connected to an DFIG controller based on Labview to verify the feasibility of the test system. 展开更多
关键词 Renewable energy gen erati on DOUBLY fed in duction generator ADPSS simulati on SYSTEM Wind turbine test SYSTEM multi-time scale FPGA+CPU
下载PDF
A Lightweight Convolutional Neural Network with Hierarchical Multi-Scale Feature Fusion for Image Classification
6
作者 Adama Dembele Ronald Waweru Mwangi Ananda Omutokoh Kube 《Journal of Computer and Communications》 2024年第2期173-200,共28页
Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware reso... Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline. 展开更多
关键词 MobileNet Image Classification Lightweight Convolutional Neural Network Depthwise Dilated Separable Convolution Hierarchical Multi-scale Feature fusion
下载PDF
An infrared and visible image fusion method based upon multi-scale and top-hat transforms 被引量:1
7
作者 Gui-Qing He Qi-Qi Zhang +3 位作者 Hai-Xi Zhang Jia-Qi Ji Dan-Dan Dong Jun Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第11期340-348,共9页
The high-frequency components in the traditional multi-scale transform method are approximately sparse, which can represent different information of the details. But in the low-frequency component, the coefficients ar... The high-frequency components in the traditional multi-scale transform method are approximately sparse, which can represent different information of the details. But in the low-frequency component, the coefficients around the zero value are very few, so we cannot sparsely represent low-frequency image information. The low-frequency component contains the main energy of the image and depicts the profile of the image. Direct fusion of the low-frequency component will not be conducive to obtain highly accurate fusion result. Therefore, this paper presents an infrared and visible image fusion method combining the multi-scale and top-hat transforms. On one hand, the new top-hat-transform can effectively extract the salient features of the low-frequency component. On the other hand, the multi-scale transform can extract highfrequency detailed information in multiple scales and from diverse directions. The combination of the two methods is conducive to the acquisition of more characteristics and more accurate fusion results. Among them, for the low-frequency component, a new type of top-hat transform is used to extract low-frequency features, and then different fusion rules are applied to fuse the low-frequency features and low-frequency background; for high-frequency components, the product of characteristics method is used to integrate the detailed information in high-frequency. Experimental results show that the proposed algorithm can obtain more detailed information and clearer infrared target fusion results than the traditional multiscale transform methods. Compared with the state-of-the-art fusion methods based on sparse representation, the proposed algorithm is simple and efficacious, and the time consumption is significantly reduced. 展开更多
关键词 infrared and visible image fusion multi-scale transform mathematical morphology top-hat trans- form
下载PDF
A novel image fusion algorithm based on 2D scale-mixing complex wavelet transform and Bayesian MAP estimation for multimodal medical images
8
作者 Abdallah Bengueddoudj Zoubeida Messali Volodymyr Mosorov 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2017年第3期52-68,共17页
In this paper,we propose a new image fusion algorithm based on two-dimensional Scale-Mixing Complex Wavelet Transform(2D-SMCWT).The fusion of the detail 2D-SMCWT cofficients is performed via a Bayesian Maximum a Poste... In this paper,we propose a new image fusion algorithm based on two-dimensional Scale-Mixing Complex Wavelet Transform(2D-SMCWT).The fusion of the detail 2D-SMCWT cofficients is performed via a Bayesian Maximum a Posteriori(MAP)approach by considering a trivariate statistical model for the local neighboring of 2D-SMCWT coefficients.For the approx imation coefficients,a new fusion rule based on the Principal Component Analysis(PCA)is applied.We conduct several experiments using three different groups of multimodal medical images to evaluate the performance of the proposed method.The obt ained results prove the superiority of the proposed method over the state of the art fusion methods in terms of visual quality and several commonly used metrics.Robustness of the proposed method is further tested against different types of noise.The plots of fusion met rics establish the accuracy of the proposed fusion method. 展开更多
关键词 Medical imaging multimodal medical image fusion scale mixing complex wavelet transform MAP Bayes estimation principal component analysis.
下载PDF
DS-TransFusion:基于改进Swin Transformer的视网膜血管自动分割
9
作者 杨本臣 王建宇 金海波 《工程科学学报》 EI CSCD 北大核心 2024年第10期1889-1898,共10页
视网膜血管的准确分割在辅助筛查各种疾病方面具有重大意义.然而,当前流行的模型仍存在细小血管的分割不清晰,以及眼底血管分支末端与背景的对比度较低等问题.针对这些问题,本文提出了一种全新的视网膜血管分割模型,命名为Dual Swin Tra... 视网膜血管的准确分割在辅助筛查各种疾病方面具有重大意义.然而,当前流行的模型仍存在细小血管的分割不清晰,以及眼底血管分支末端与背景的对比度较低等问题.针对这些问题,本文提出了一种全新的视网膜血管分割模型,命名为Dual Swin Transformer Fusion(DS-TransFusion).首先,DS-TransFusion采用基于Swin Transformer的双尺度编码器子网络,以提取视网膜血管的粗粒度和细粒度特征.其次,在跳跃连接处引入了Transformer交互融合注意力(TIFA)模块,用于丰富跨视图上下文建模和语义依赖,同时捕获来自不同图像视图的数据之间的长期相关性.最后,在编码器和解码器之间,DS-TransFusion采用了多尺度注意力(MA),用于收集多尺度特征表示的全局对应关系,进一步优化模型的分割效果.实验结果表明,DS-TransFusion在公共数据集STARE、CHASEDB1和DRIVE上表现出色,准确率分别达到了96.50%、97.22%和97.80%,灵敏度达到84.10%、84.55%和83.17%.实验表明DS-TransFusion能有效提高视网膜血管分割的精度,准确分割出细小血管.对视网膜血管分割的准确度、灵敏度和特异性都有大幅提高,与现有的SOTA方法相比具有更好的分割性能. 展开更多
关键词 视网膜血管分割 眼底图像 多尺度注意力 特征融合 Swin TRANSFORMER
下载PDF
融合Multi-scale CNN和Bi-LSTM的人脸表情识别研究 被引量:3
10
作者 李军 李明 《北京联合大学学报》 CAS 2021年第1期35-39,44,共6页
为了有效改善现有人脸表情识别模型中存在信息丢失严重、特征信息之间联系不密切的问题,提出一种融合多尺度卷积神经网络(Multi-scale CNN)和双向长短期记忆(Bi-LSTM)的模型。Bi-LSTM可以增强特征信息间的联系与信息的维持,在Multi-scal... 为了有效改善现有人脸表情识别模型中存在信息丢失严重、特征信息之间联系不密切的问题,提出一种融合多尺度卷积神经网络(Multi-scale CNN)和双向长短期记忆(Bi-LSTM)的模型。Bi-LSTM可以增强特征信息间的联系与信息的维持,在Multi-scale CNN中通过不同尺度的卷积核可以提取到更加丰富的特征信息,并通过加入批标准化(BN)层与特征融合处理,从而加快网络的收敛速度,有利于特征信息的重利用,再将两者提取到的特征信息进行融合,最后将改进的正则化方法应用到目标函数中,减小网络复杂度和过拟合。在JAFFE和FER-2013公开数据集上进行实验,准确率分别达到了95.455%和74.115%,由此证明所提算法的有效性和先进性。 展开更多
关键词 多尺度卷积神经网络 双向长短期记忆 特征融合 批标准化层 正则化
下载PDF
Triple Multimodal Cyclic Fusion and Self-Adaptive Balancing for Video Q&A Systems
11
作者 Xiliang Zhang Jin Liu +2 位作者 Yue Li Zhongdai Wu Y.Ken Wang 《Computers, Materials & Continua》 SCIE EI 2022年第12期6407-6424,共18页
Performance of Video Question and Answer(VQA)systems relies on capturing key information of both visual images and natural language in the context to generate relevant questions’answers.However,traditional linear com... Performance of Video Question and Answer(VQA)systems relies on capturing key information of both visual images and natural language in the context to generate relevant questions’answers.However,traditional linear combinations of multimodal features focus only on shallow feature interactions,fall far short of the need of deep feature fusion.Attention mechanisms were used to perform deep fusion,but most of them can only process weight assignment of single-modal information,leading to attention imbalance for different modalities.To address above problems,we propose a novel VQA model based on Triple Multimodal feature Cyclic Fusion(TMCF)and Self-AdaptiveMultimodal Balancing Mechanism(SAMB).Our model is designed to enhance complex feature interactions among multimodal features with cross-modal information balancing.In addition,TMCF and SAMB can be used as an extensible plug-in for exploring new feature combinations in the visual image domain.Extensive experiments were conducted on MSVDQA and MSRVTT-QA datasets.The results confirm the advantages of our approach in handling multimodal tasks.Besides,we also provide analyses for ablation studies to verify the effectiveness of each proposed component. 展开更多
关键词 Video question and answer systems feature fusion scaling matrix attention mechanism
下载PDF
Lumbar spine localisation method based on feature fusion
12
作者 Yonghong Zhang Ning Hu +7 位作者 Zhuofu Li Xuquan Ji Shanshan Liu Youyang Sha Xiongkang Song Jian Zhang Lei Hu Weishi Li 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第3期931-945,共15页
To eliminate unnecessary background information,such as soft tissues in original CT images and the adverse impact of the similarity of adjacent spines on lumbar image segmentation and surgical path planning,a two‐sta... To eliminate unnecessary background information,such as soft tissues in original CT images and the adverse impact of the similarity of adjacent spines on lumbar image segmentation and surgical path planning,a two‐stage approach for localising lumbar segments is proposed.First,based on the multi‐scale feature fusion technology,a non‐linear regression method is used to achieve accurate localisation of the overall spatial region of the lumbar spine,effectively eliminating useless background information,such as soft tissues.In the second stage,we directly realised the precise positioning of each segment in the lumbar spine space region based on the non‐linear regression method,thus effectively eliminating the interference caused by the adjacent spine.The 3D Intersection over Union(3D_IOU)is used as the main evaluation indicator for the positioning accuracy.On an open dataset,3D_IOU values of 0.8339�0.0990 and 0.8559�0.0332 in the first and second stages,respectively is achieved.In addition,the average time required for the proposed method in the two stages is 0.3274 and 0.2105 s respectively.Therefore,the proposed method performs very well in terms of both pre-cision and speed and can effectively improve the accuracy of lumbar image segmentation and the effect of surgical path planning. 展开更多
关键词 CT image lumbar spatial orientation multi‐scale information fusion
下载PDF
Maintenance time of sedative effects after an intravenous infusion of diazepam: A guide for endoscopy using diazepam
13
作者 Mitsushige Sugimoto Takahisa Furuta +8 位作者 Akiko Nakamura Naohito Shirai Mutsuhiro Ikuma Shingen Misaka Shinya Uchida Hiroshi Watanabe Kyoichi Ohashi Takashi Ishizaki Akira Hishida 《World Journal of Gastroenterology》 SCIE CAS CSCD 2008年第33期5197-5203,共7页
AIM: To examine whether the sedative effects assessed by psychomotor tests would depend on the cytochrome P450 (CYP ) 2C19 genotypes after an infusion regimen of diazepam commonly used forgastrointestinal endoscopy in... AIM: To examine whether the sedative effects assessed by psychomotor tests would depend on the cytochrome P450 (CYP ) 2C19 genotypes after an infusion regimen of diazepam commonly used forgastrointestinal endoscopy in Japan. METHODS: Fifteen healthy Japanese volunteers consisting of three different CYP2C19 genotype groups underwent a critical ? icker fusion test, an eye movement analysis and a postural sway test as a test for physical sedative effects, and a visual analog scale (VAS) symptom assessment method as a test for mental sedative effects during the 336 h period after the intravenous infusion of diazepam (5 mg). RESULTS: The physical sedative effects assessed by the critical flicker test continued for 1 h (t values of 5 min, 30 min and 60 min later: 4.35, 5.00 and 3.19, respectively) and those by the moving radial area of a postural sway test continued for 3 h (t values of 5 h, 30 h, 60 min and 3 h later: -4.05, -3.42, -2.17 and -2.58, respectively), which changed significantly compared with the baseline level before infusion (P < 0.05). On the other hand, the mental sedative effects by the VAS method improved within 1 h. The CYP2C19 genotype-dependent differences in the postinfusion sedative effects were not observed in any of the four psychomotor function tests. CONCLUSION: With the psychomotor tests, the objective sedative effects of diazepam continued for 1 h to 3 h irrespective of CYP2C19 genotype status and the subjective sedative symptoms improved within 1 h. Up to 3 h of clinical care appears to be required after the infusion of diazepam, although patients feel subjectively improved. 展开更多
关键词 DIAZEPAM SEDATION cytochrome P450(CYP) 2C19 ENDOSCOPY Complication Critical flicker fusion test Eye movement analysis Postural sway test Visual analog scale
下载PDF
基于多尺度特征信息融合的时间序列异常检测 被引量:2
14
作者 衡红军 喻龙威 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2024年第3期203-214,共12页
目前大多数的时间序列都缺少相应的异常标签,且现有基于重构的异常检测算法不能很好地捕获到多维数据间复杂的潜在相关性和时间依赖性,为了构建特征丰富的时间序列,提出一种多尺度特征信息融合的异常检测模型。该模型首先通过卷积神经... 目前大多数的时间序列都缺少相应的异常标签,且现有基于重构的异常检测算法不能很好地捕获到多维数据间复杂的潜在相关性和时间依赖性,为了构建特征丰富的时间序列,提出一种多尺度特征信息融合的异常检测模型。该模型首先通过卷积神经网络对滑动窗口内的不同序列进行特征卷积来获取不同尺度下的局部上下文信息。然后,利用Transformer中的位置编码对卷积后的时间序列窗口进行位置嵌入,增强滑动窗口中每一个时间序列和邻近序列之间的位置联系,并引入时间注意力获取数据在时间维度上的自相关性,并进一步通过多头自注意力自适应地为窗口内不同时间序列分配不同的权重。最后,对反卷积过程中上采样得到的窗口数据与不同尺度下得到的局部特征和时间上下文信息进行逐步融合,从而准确重构原始时间序列,并将重构误差作为最终的异常得分进行异常判定。实验结果表明,所构建模型在SWaT和SMD数据集上与基线模型相比F1分数均有所提升。在数据维度高且均衡性较差的WADI数据集上与GDN模型相比F1分数降低了1.66%。 展开更多
关键词 异常检测 多尺度信息融合 卷积神经网络 TRANSFORMER 多维时间序列 自编码器
下载PDF
基于改进DETR的机器人铆接缺陷检测方法研究 被引量:2
15
作者 李宗刚 宋秋凡 +1 位作者 杜亚江 陈引娟 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第4期1690-1700,共11页
铆接作为铁道车辆结构件的主要连接方式,合格的铆接质量是车辆安全稳定运行的重要保证。针对现有铆接缺陷检测方法存在检测精度低、检测点位少、检测智能化水平不高等问题,提出一种基于改进DETR的机器人铆接缺陷检测方法。首先,搭建铆... 铆接作为铁道车辆结构件的主要连接方式,合格的铆接质量是车辆安全稳定运行的重要保证。针对现有铆接缺陷检测方法存在检测精度低、检测点位少、检测智能化水平不高等问题,提出一种基于改进DETR的机器人铆接缺陷检测方法。首先,搭建铆接缺陷检测系统,依次采集工件尺寸大、铆钉尺寸小工况下的铆接缺陷图像。其次,为了增强DETR模型在小目标中的图像特征提取能力和检测性能,以EfficientNet作为DETR中的主干特征提取网络,并将3-D权重注意力机制SimAM引入EfficientNet网络,从而有效保留图像特征层的镦头形态信息和铆点区域的空间信息。然后,在颈部网络中引入加权双向特征金字塔模块,以EfficientNet网络的输出作为特征融合模块的输入对各尺度特征信息进行聚合,增大不同铆接缺陷的类间差异。最后,利用Smooth L1和DIoU的线性组合改进原模型预测网络的回归损失函数,提高模型的检测精度和收敛速度。结果表明,改进模型表现出较高的检测性能,对于铆接缺陷的平均检测精度mAP为97.12%,检测速度FPS为25.4帧/s,与Faster RCNN、YOLOX等其他主流检测模型相比,在检测精度和检测速度方面均具有较大优势。研究结果能够满足实际工况中大型铆接件的小尺寸铆钉铆接缺陷实时在线检测的需求,为视觉检测技术在铆接工艺中的应用提供一定的参考价值。 展开更多
关键词 铆接缺陷检测 DETR EfficientNet 3-D注意力机制 多尺度加权特征融合
下载PDF
三维成矿预测关键问题 被引量:1
16
作者 袁峰 李晓晖 +5 位作者 田卫东 周官群 汪金菊 葛粲 国显正 郑超杰 《地学前缘》 EI CAS CSCD 北大核心 2024年第4期119-128,共10页
三维成矿预测是当前深部找矿预测和勘查的重要方法和手段,其方法体系和实践应用均已取得大量成果,但同时存在若干关键科学技术问题,导致其进一步发展受到制约。本文从多尺度三维成矿预测方法体系不完善、不确定性分析与优化研究薄弱、... 三维成矿预测是当前深部找矿预测和勘查的重要方法和手段,其方法体系和实践应用均已取得大量成果,但同时存在若干关键科学技术问题,导致其进一步发展受到制约。本文从多尺度三维成矿预测方法体系不完善、不确定性分析与优化研究薄弱、三维成矿预测要素挖掘存在瓶颈、缺少针对三维成矿预测的三维深度学习模型和方法等关键问题出发,对目前三维成矿预测领域相关方面的研究进展进行综合分析,并提出针对上述关键问题可能的解决方案和研究方向。预期未来三维成矿预测领域的研究工作将创新发展出多种方法,实现对三维预测信息的深度挖掘;构建形成适用的三维深度学习模型和训练方法,有效增强三维成矿预测结果的预测能力;通过系统性地开展三维成矿预测不确定性研究,进一步优化预测过程和结果,有效提高三维成矿预测方法的可靠性和准确性;形成面向多尺度三维成矿预测的方法体系,更有效地指导矿集区-矿田-勘查区块(矿床)等不同级别的深部矿产资源找矿勘查工作。相关关键问题的解决将进一步深化和完善三维成矿预测理论和方法体系,促进三维成矿预测理论方法的实践应用,显著提升深部找矿预测和勘查工作的效率与水平,助力深部找矿突破。 展开更多
关键词 三维成矿预测 关键问题 多尺度 预测信息发掘 不确定性 数据融合
下载PDF
一种时频尺度下的多元短期电力负荷组合预测方法 被引量:1
17
作者 李楠 姜涛 +1 位作者 隋想 胡禹先 《电力系统保护与控制》 EI CSCD 北大核心 2024年第13期47-58,共12页
随机因素的增加导致电力负荷数据成分日渐复杂,使短期负荷预测的难度逐渐增大。针对该问题,提出一种时频尺度下的时间卷积网络与多元线性回归相融合的组合预测模型。利用自适应噪声完备集合经验模态分解(complete ensemble empirical mo... 随机因素的增加导致电力负荷数据成分日渐复杂,使短期负荷预测的难度逐渐增大。针对该问题,提出一种时频尺度下的时间卷积网络与多元线性回归相融合的组合预测模型。利用自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)在时频域上将负荷数据分解为若干个频率特征不同的本征模态分量,在模糊熵准则下聚类为随机项和趋势项。采用皮尔逊系数从诸多影响因素中筛选出与电力负荷高度相关的特征,鉴于小时间尺度分析更易于挖掘局部细节特征,分别构建了随机项与趋势项的细颗粒度特征集。利用具有强非线性处理能力的时间卷积网络(temporal convolutional network,TCN)去预测随机项,利用结构简单及线性拟合效果好的多元线性回归(multiplelinearregression,MLR)去预测趋势项,将二者的预测结果进行叠加重构后获得最终预测值。在新加坡和比利时两组数据集上的实验结果证明:所提模型具有较高的预测精度、较好的泛化性能及鲁棒性。 展开更多
关键词 短期电力负荷预测 时频尺度 分解算法 模糊熵 模型融合
下载PDF
多尺度融合与动态自适应图的公交客流预测模型 被引量:1
18
作者 郭翔宇 彭莉兰 +1 位作者 李崇寿 李天瑞 《计算机科学与探索》 CSCD 北大核心 2024年第7期1879-1888,共10页
公交客流预测是公共交通规划和管理中的重要问题。虽然时空图卷积在地铁客流预测任务中获得了很好的预测效果,但是面对公交更复杂的线路、大规模的节点数据,现有的基于图卷积的空间建模方法将带来巨大的空间内存消耗。同时,公交客流量... 公交客流预测是公共交通规划和管理中的重要问题。虽然时空图卷积在地铁客流预测任务中获得了很好的预测效果,但是面对公交更复杂的线路、大规模的节点数据,现有的基于图卷积的空间建模方法将带来巨大的空间内存消耗。同时,公交客流量短时间范围内更可能受到瞬时交通状况的影响。为了解决这些挑战,提出了一种多尺度融合和动态自适应图的公交客流预测模型(MFDAG)。该模型融合客流、时刻和周信息以增加数据的特征维度,用动态自适应图的方法来学习不同站点之间的关系。进一步提出了一种多尺度融合传播的方法来表示复杂的空间依赖关系,同时设计了一种多尺度卷积传播的方法来学习不同尺度的时间依赖关系。在两个真实的客流数据集上进行了实验,并与其他交通预测方法进行了比较。实验结果表明,所提出的多尺度融合和动态自适应图的公交客流预测方法具有更高的预测准确度。 展开更多
关键词 公交客流预测 图采样 动态自适应图 多尺度融合
下载PDF
时频域多尺度交叉注意力融合的时间序列分类方法
19
作者 王美 苏雪松 +2 位作者 刘佳 殷若南 黄珊 《计算机应用》 CSCD 北大核心 2024年第6期1842-1847,共6页
针对时间序列子序列间的潜在信息交互不足导致分类准确率低的问题,提出时频域多尺度交叉注意力融合的时间序列分类方法TFFormer(Time-Frequency Transformer)。首先,将原始时间序列的时频域谱分别划分为等长子序列,经线性投影后加入位... 针对时间序列子序列间的潜在信息交互不足导致分类准确率低的问题,提出时频域多尺度交叉注意力融合的时间序列分类方法TFFormer(Time-Frequency Transformer)。首先,将原始时间序列的时频域谱分别划分为等长子序列,经线性投影后加入位置信息解决时间序列的点值耦合问题;其次,通过改进的多头自注意力(IMHA)模块使模型关注更重要的序列特征,解决长时间序列的前后依赖问题;最后,构造多尺度时频域交叉注意力(CMA)模块增强时间序列在时域和频域之间的信息交互,使模型进一步挖掘序列的频域信息。实验结果表明,在Trace、StarLightCurves和UWaveGestureLibraryAll数据集上,相较于全卷积网络(FCN),所提方法的分类准确率分别提高了0.3、0.9和1.4个百分点,验证了通过增强时间序列时域和频域间的信息交互,可以提高模型收敛速度和分类精度。 展开更多
关键词 时间序列 注意力机制 位置编码 深度神经网络 多尺度融合
下载PDF
基于改进的YOLOv5安全帽佩戴检测算法 被引量:1
20
作者 雷建云 李志兵 +1 位作者 夏梦 田望 《湖北大学学报(自然科学版)》 CAS 2024年第1期1-13,共13页
针对安全帽佩戴检测中存在的误检和漏检的问题,提出一种基于YOLOv5模型改进的安全帽佩戴检测算法。改进模型引入多尺度加权特征融合网络,即在YOLOv5的网络结构中增加一个浅层检测尺度,并引入特征权重进行加权融合,构成新的四尺检测结构... 针对安全帽佩戴检测中存在的误检和漏检的问题,提出一种基于YOLOv5模型改进的安全帽佩戴检测算法。改进模型引入多尺度加权特征融合网络,即在YOLOv5的网络结构中增加一个浅层检测尺度,并引入特征权重进行加权融合,构成新的四尺检测结构,有效地提升图像浅层特征的提取及融合能力;在YOLOv5的Neck网络的BottleneckCSP结构中加入SENet模块,使模型更多地关注目标信息忽略背景信息;针对大分辨率的图像,添加图像切割层,避免多倍下采样造成的小目标特征信息大量丢失。对YOLOv5模型进行改进之后,通过自制的安全帽数据集进行训练检测,mAP和召回率分别达到97.06%、92.54%,与YOLOv5相比较分别提升了4.74%和4.31%。实验结果表明:改进的YOLOv5算法可有效提升安全帽佩戴的检测性能,能够准确识别施工人员的安全帽佩戴情况,从而大大降低施工现场的安全风险。 展开更多
关键词 目标检测 多尺度加权特征融合 注意力机制 图像切割
下载PDF
上一页 1 2 90 下一页 到第
使用帮助 返回顶部