In recent decades, many additives with different characteristics have been applied to strengthen and toughen Al2O3-based ceramic cutting tool materials. Among them, SiC whiskers and SiC nanoparticles showed excellent ...In recent decades, many additives with different characteristics have been applied to strengthen and toughen Al2O3-based ceramic cutting tool materials. Among them, SiC whiskers and SiC nanoparticles showed excellent performance in improving the material properties. While no attempts have been made to add SiC whiskers and SiC nanoparticles together into the ceramic matrix and the synergistically toughening effects of them have not been studied. An Al2O3-SiCw-SiC np advanced ceramic cutting tool material is fabricated by adding both one-dimensional SiC whiskers and zero-dimensional SiC nanoparticles into the Al2O3 matrix with an effective dispersing and mixing process. The composites with 25 vol% SiC whiskers and 25 vol% SiC nanoparticles alone are also investegated for comparison purposes. Results show that the Al2O3-SiCw-SiCnp composite with both 20 vo1% SiC whiskers and 5 vol% SiC nanoparticles additives have much improved mechanical properties. The flexural strength of Al2O3-SiCw-SiCnp is 730+ 95 MPa and fracture toughness is 5.6 ± 0.6 MPa.m1/2. The toughening and strengthening mechanisms of SiC whiskers and nanoparticles are studied when they are added either individually or in combination. It is indicated that when SiC whiskers and nanoparticles are added together, the grains are further refined and homogenized, so that the microstructure and fracture mode ratio is modified. The SiC nanoparticles are found helpful to enhance the toughening effects of the SiC whiskers. The proposed research helps to enrich the types of ceramic cutting tool and is benefit to expand the application range of ceramic cutting tool.展开更多
The development and application of coated cemented carbide made in China are pres-ented. Three aspects of the coated carbide tool's performance: cutting forces, surface finish and toollife are studied. Furthermore...The development and application of coated cemented carbide made in China are pres-ented. Three aspects of the coated carbide tool's performance: cutting forces, surface finish and toollife are studied. Furthermore speed-correcting coefficients of the tool are given. On the basis of thework, a data base for coated carbide tools has been built on a microcomputer. It consists of fivemodules. essential data base, tools' comparison and inquiry, recommending cutting regimes, exper.imental curve base and an expert system for tool selection.展开更多
To solve the different time delays that exist in the control device installed on spatial structures, in this study, discrete analysis using a 2N precise algorithm was selected to solve the multi-time-delay issue for l...To solve the different time delays that exist in the control device installed on spatial structures, in this study, discrete analysis using a 2N precise algorithm was selected to solve the multi-time-delay issue for long-span structures based on the market-based control (MBC) method. The concept of interval mixed energy was introduced from computational structural mechanics and optimal control research areas, and it translates the design of the MBC multi-time-delay controller into a solution for the segment matrix. This approach transforms the serial algorithm in time to parallel computing in space, greatly improving the solving efficiency and numerical stability. The designed controller is able to consider the issue of time delay with a linear controlling force combination and is especially effective for large time-delay conditions. A numerical example of a long-span structure was selected to demonstrate the effectiveness of the presented controller, and the time delay was found to have a significant impact on the results.展开更多
In this paper, an improved cut-based recursive decomposition algorithm is proposed for lifeline networks. First, a complementary structural function is established and three theorems are presented as a premise of the ...In this paper, an improved cut-based recursive decomposition algorithm is proposed for lifeline networks. First, a complementary structural function is established and three theorems are presented as a premise of the proposed algorithm. Taking the minimal cut of a network as decomposition policy, the proposed algorithm constructs a recursive decomposition process. During the decomposition, both the disjoint minimal cut set and the disjoint minimal path set are simultaneously enumerated. Therefore, in addition to obtaining an accurate value after decomposing all disjoint minimal cuts and disjoint minimal paths, the algorithm provides approximate results which satisfy a prescribed error bound using a probabilistic inequality. Two example networks, including a large urban gas system, are analyzed using the proposed algorithm. Meanwhile, a part of the results are compared with the results obtained by a path-based recursive decomposition algorithm. These results show that the proposed algorithm provides a useful probabilistic analysis method for the reliability evaluation of lifeline networks and may be more suitable for networks where the edges have low reliabilities.展开更多
In three-dimensional television (3DTV), an interactive free viewpoint selection application has received more attention so far. This paper presents a novel method that synthesizes a free-viewpoint based on multiple te...In three-dimensional television (3DTV), an interactive free viewpoint selection application has received more attention so far. This paper presents a novel method that synthesizes a free-viewpoint based on multiple textures and depth maps in multi-view camera configuration. This method solves the cracks and holes problem due to sampling rate by performing an inverse warping to retrieve texture images. This step allows a simple and accurate re-sampling of synthetic pixels. To enforce the spatial consistency of color and remove the pixels wrapped incorrectly because of inaccuracy depth maps, we propose some processing steps. The warped depth and warped texture images are used to classify pixels as stable, unstable and disoccluded pixels. The stable pixels are used to create an initial new view by weighted interpolation. To refine the new view, Graph cuts are used to select the best candidates for each unstable pixel. Finally, the remaining disoccluded regions are filled by our inpainting method based on depth information and texture neighboring pixel values. Our experiment on several multi-view data sets is encouraging in both subjective and objective results. Furthermore, our proposal can flexibly use more than two views in multi-view system to create a new view with higher quality.展开更多
The thermal conditions like the temperature distribution and the heat fluxes during metal cutting have a major influence on the machinability, the tool lifetime, the metallurgical structure and thus the functionality ...The thermal conditions like the temperature distribution and the heat fluxes during metal cutting have a major influence on the machinability, the tool lifetime, the metallurgical structure and thus the functionality of the work piece. This in particular applies for manufacturing processes like milling, drilling and turning for high-value turbomachinery components like impellers, combustion engines and compressors of the aerospace and automotive industry as well as energy generation, which play a major role in modern societies. However, numerous analytical and experimental efforts have been conducted in order to understand the thermal conditions in metal cutting, yet many questions still prevail. Most models are based on a stationary point of view and do not include time dependent effects like in intensity and distribution varying heat sources, varying engagement conditions and progressive tool wear. In order to cover such transient physics an analytical approach based on Green's functions for the solution of the partial differential equations of unsteady heat conduction in solids is used to model entire transient temperature fields. The validation of the model is carried out in orthogonal cutting experiments not only punctually but also for entire temperature fields. For these experiments an integrated measurement of prevailing cutting force and temperature fields in the tool and the chip by means of high-speed thermography were applied. The thermal images were analyzed with regard to thermodynamic energy balancing in order to derive the heat partition between tool, chips and workpiece. The thus calculated heat flow into the tool was subsequently used in order to analytically model the transient volumetric temperature fields in the tool. The described methodology enables the modeling of the transient thermal state in the cutting zone and particular in the tool, which is directly linked to phenomena like tool wear and workpiece surface modifications.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51175305)
文摘In recent decades, many additives with different characteristics have been applied to strengthen and toughen Al2O3-based ceramic cutting tool materials. Among them, SiC whiskers and SiC nanoparticles showed excellent performance in improving the material properties. While no attempts have been made to add SiC whiskers and SiC nanoparticles together into the ceramic matrix and the synergistically toughening effects of them have not been studied. An Al2O3-SiCw-SiC np advanced ceramic cutting tool material is fabricated by adding both one-dimensional SiC whiskers and zero-dimensional SiC nanoparticles into the Al2O3 matrix with an effective dispersing and mixing process. The composites with 25 vol% SiC whiskers and 25 vol% SiC nanoparticles alone are also investegated for comparison purposes. Results show that the Al2O3-SiCw-SiCnp composite with both 20 vo1% SiC whiskers and 5 vol% SiC nanoparticles additives have much improved mechanical properties. The flexural strength of Al2O3-SiCw-SiCnp is 730+ 95 MPa and fracture toughness is 5.6 ± 0.6 MPa.m1/2. The toughening and strengthening mechanisms of SiC whiskers and nanoparticles are studied when they are added either individually or in combination. It is indicated that when SiC whiskers and nanoparticles are added together, the grains are further refined and homogenized, so that the microstructure and fracture mode ratio is modified. The SiC nanoparticles are found helpful to enhance the toughening effects of the SiC whiskers. The proposed research helps to enrich the types of ceramic cutting tool and is benefit to expand the application range of ceramic cutting tool.
文摘The development and application of coated cemented carbide made in China are pres-ented. Three aspects of the coated carbide tool's performance: cutting forces, surface finish and toollife are studied. Furthermore speed-correcting coefficients of the tool are given. On the basis of thework, a data base for coated carbide tools has been built on a microcomputer. It consists of fivemodules. essential data base, tools' comparison and inquiry, recommending cutting regimes, exper.imental curve base and an expert system for tool selection.
基金provided by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China under Grant Nos.51261120375 and 51421064
文摘To solve the different time delays that exist in the control device installed on spatial structures, in this study, discrete analysis using a 2N precise algorithm was selected to solve the multi-time-delay issue for long-span structures based on the market-based control (MBC) method. The concept of interval mixed energy was introduced from computational structural mechanics and optimal control research areas, and it translates the design of the MBC multi-time-delay controller into a solution for the segment matrix. This approach transforms the serial algorithm in time to parallel computing in space, greatly improving the solving efficiency and numerical stability. The designed controller is able to consider the issue of time delay with a linear controlling force combination and is especially effective for large time-delay conditions. A numerical example of a long-span structure was selected to demonstrate the effectiveness of the presented controller, and the time delay was found to have a significant impact on the results.
基金Ministry of Science and Technology of China Under Grant No.SLDRCE09-B-12Natural Science Funds for Young Scholars of China Under Grant No.50808144
文摘In this paper, an improved cut-based recursive decomposition algorithm is proposed for lifeline networks. First, a complementary structural function is established and three theorems are presented as a premise of the proposed algorithm. Taking the minimal cut of a network as decomposition policy, the proposed algorithm constructs a recursive decomposition process. During the decomposition, both the disjoint minimal cut set and the disjoint minimal path set are simultaneously enumerated. Therefore, in addition to obtaining an accurate value after decomposing all disjoint minimal cuts and disjoint minimal paths, the algorithm provides approximate results which satisfy a prescribed error bound using a probabilistic inequality. Two example networks, including a large urban gas system, are analyzed using the proposed algorithm. Meanwhile, a part of the results are compared with the results obtained by a path-based recursive decomposition algorithm. These results show that the proposed algorithm provides a useful probabilistic analysis method for the reliability evaluation of lifeline networks and may be more suitable for networks where the edges have low reliabilities.
文摘In three-dimensional television (3DTV), an interactive free viewpoint selection application has received more attention so far. This paper presents a novel method that synthesizes a free-viewpoint based on multiple textures and depth maps in multi-view camera configuration. This method solves the cracks and holes problem due to sampling rate by performing an inverse warping to retrieve texture images. This step allows a simple and accurate re-sampling of synthetic pixels. To enforce the spatial consistency of color and remove the pixels wrapped incorrectly because of inaccuracy depth maps, we propose some processing steps. The warped depth and warped texture images are used to classify pixels as stable, unstable and disoccluded pixels. The stable pixels are used to create an initial new view by weighted interpolation. To refine the new view, Graph cuts are used to select the best candidates for each unstable pixel. Finally, the remaining disoccluded regions are filled by our inpainting method based on depth information and texture neighboring pixel values. Our experiment on several multi-view data sets is encouraging in both subjective and objective results. Furthermore, our proposal can flexibly use more than two views in multi-view system to create a new view with higher quality.
文摘The thermal conditions like the temperature distribution and the heat fluxes during metal cutting have a major influence on the machinability, the tool lifetime, the metallurgical structure and thus the functionality of the work piece. This in particular applies for manufacturing processes like milling, drilling and turning for high-value turbomachinery components like impellers, combustion engines and compressors of the aerospace and automotive industry as well as energy generation, which play a major role in modern societies. However, numerous analytical and experimental efforts have been conducted in order to understand the thermal conditions in metal cutting, yet many questions still prevail. Most models are based on a stationary point of view and do not include time dependent effects like in intensity and distribution varying heat sources, varying engagement conditions and progressive tool wear. In order to cover such transient physics an analytical approach based on Green's functions for the solution of the partial differential equations of unsteady heat conduction in solids is used to model entire transient temperature fields. The validation of the model is carried out in orthogonal cutting experiments not only punctually but also for entire temperature fields. For these experiments an integrated measurement of prevailing cutting force and temperature fields in the tool and the chip by means of high-speed thermography were applied. The thermal images were analyzed with regard to thermodynamic energy balancing in order to derive the heat partition between tool, chips and workpiece. The thus calculated heat flow into the tool was subsequently used in order to analytically model the transient volumetric temperature fields in the tool. The described methodology enables the modeling of the transient thermal state in the cutting zone and particular in the tool, which is directly linked to phenomena like tool wear and workpiece surface modifications.