Buckling-restrained braces(BRBs)are widely used to improve the seismic performance of buildings.This paper aims to introduce BRBs to suspension bridges and assess the seismic performance of bridges with BRBs.Taking th...Buckling-restrained braces(BRBs)are widely used to improve the seismic performance of buildings.This paper aims to introduce BRBs to suspension bridges and assess the seismic performance of bridges with BRBs.Taking the Dadu River Bridge as a case study,an FEA model of the bridge is established,and different seismic measures(BRBs between the deck and the tower,BRBs at the middle of the span to replace the inclined suspenders to connect the deck and the main cables,fluid viscous dampers(FVDs)between the deck and the tower,the combination of BRBs to replace the inclined suspenders as well as FVDs between the deck and the tower)are applied to the suspension bridge.The influence of the parameters of BRBs on the seismic response of the suspension bridge is studied,and the performance of the bridge with BRBs is compared with that of the bridge with FVDs.The results indicate that the use of BRBs in place of the inclined suspenders is beneficial to reduce the displacement of the deck and limit the shear force and bending moment of the tower.The seismic performance of the suspension bridge with BRBs and FVDs is better than that of the bridge with BRBs or FVDs.Therefore,the application of BRBs is a feasible method to improve the seismic performance of the suspension bridge.展开更多
Due to the limitations of railway route selection,some high-speed railways are inevitably built near or across fault zones.To study the distribution of rail-bridge interaction under different load history states of su...Due to the limitations of railway route selection,some high-speed railways are inevitably built near or across fault zones.To study the distribution of rail-bridge interaction under different load history states of suspension bridges under three types of near-fault pulse-type earthquakes,this paper takes China’s longest high-speed railway suspension bridge—Wufengshan Yangtze River Bridge-as the background and establishes a spatial model of the rail-bridge interaction of a suspension bridge.The results show that:under the constant load state,the distribution of additional force under three types of pulse-type earthquakes is generally consistent,and pulse-type earthquakes produce more significant responses than non-pulse-type earthquakes;with fling-step pulse being the largest,it is advised to specifically consider the influence of the fling-step pulse in the calculation.Under the initial condition of the main beam temperature loading history,all rail-bridge additional forces increase significantly,particularly affecting the steel rail system.The value of the rail-bridge interaction additional force under the near-fault earthquake in the initial state of the suspension bridge when the train deflection load is loaded from the tower to the mid-span is more significant and particularly unfavourable.The initial effect of the braking load will weaken the effect of the deflection load loading history.The results of the study indicate that the effect of the initial state of suspension bridges is an important factor influencing the rail-bridge interaction under near-fault pulse-type earthquakes,which needs to be considered in future seismic design.展开更多
基金supported by Scientific Research Start Foundation of Chengdu University of Technology(No.10900-KYQD-06455).
文摘Buckling-restrained braces(BRBs)are widely used to improve the seismic performance of buildings.This paper aims to introduce BRBs to suspension bridges and assess the seismic performance of bridges with BRBs.Taking the Dadu River Bridge as a case study,an FEA model of the bridge is established,and different seismic measures(BRBs between the deck and the tower,BRBs at the middle of the span to replace the inclined suspenders to connect the deck and the main cables,fluid viscous dampers(FVDs)between the deck and the tower,the combination of BRBs to replace the inclined suspenders as well as FVDs between the deck and the tower)are applied to the suspension bridge.The influence of the parameters of BRBs on the seismic response of the suspension bridge is studied,and the performance of the bridge with BRBs is compared with that of the bridge with FVDs.The results indicate that the use of BRBs in place of the inclined suspenders is beneficial to reduce the displacement of the deck and limit the shear force and bending moment of the tower.The seismic performance of the suspension bridge with BRBs and FVDs is better than that of the bridge with BRBs or FVDs.Therefore,the application of BRBs is a feasible method to improve the seismic performance of the suspension bridge.
基金Supported by grants from the Hunan Pro vince Inno vation Plat-form and Talent Plan Project(Grant No.2021RC3017).
文摘Due to the limitations of railway route selection,some high-speed railways are inevitably built near or across fault zones.To study the distribution of rail-bridge interaction under different load history states of suspension bridges under three types of near-fault pulse-type earthquakes,this paper takes China’s longest high-speed railway suspension bridge—Wufengshan Yangtze River Bridge-as the background and establishes a spatial model of the rail-bridge interaction of a suspension bridge.The results show that:under the constant load state,the distribution of additional force under three types of pulse-type earthquakes is generally consistent,and pulse-type earthquakes produce more significant responses than non-pulse-type earthquakes;with fling-step pulse being the largest,it is advised to specifically consider the influence of the fling-step pulse in the calculation.Under the initial condition of the main beam temperature loading history,all rail-bridge additional forces increase significantly,particularly affecting the steel rail system.The value of the rail-bridge interaction additional force under the near-fault earthquake in the initial state of the suspension bridge when the train deflection load is loaded from the tower to the mid-span is more significant and particularly unfavourable.The initial effect of the braking load will weaken the effect of the deflection load loading history.The results of the study indicate that the effect of the initial state of suspension bridges is an important factor influencing the rail-bridge interaction under near-fault pulse-type earthquakes,which needs to be considered in future seismic design.