Large number of antennas and higher bandwidth usage in massive multiple-input-multipleoutput(MIMO)systems create immense burden on receiver in terms of higher power consumption.The power consumption at the receiver ra...Large number of antennas and higher bandwidth usage in massive multiple-input-multipleoutput(MIMO)systems create immense burden on receiver in terms of higher power consumption.The power consumption at the receiver radio frequency(RF)circuits can be significantly reduced by the application of analog-to-digital converter(ADC)of low resolution.In this paper we investigate bandwidth efficiency(BE)of massive MIMO with perfect channel state information(CSI)by applying low resolution ADCs with Rician fadings.We start our analysis by deriving the additive quantization noise model,which helps to understand the effects of ADC resolution on BE by keeping the power constraint at the receiver in radar.We also investigate deeply the effects of using higher bit rates and the number of BS antennas on bandwidth efficiency(BE)of the system.We emphasize that good bandwidth efficiency can be achieved by even using low resolution ADC by using regularized zero-forcing(RZF)combining algorithm.We also provide a generic analysis of energy efficiency(EE)with different options of bits by calculating the energy efficiencies(EE)using the achievable rates.We emphasize that satisfactory BE can be achieved by even using low-resolution ADC/DAC in massive MIMO.展开更多
Acquisition of accurate channel state information (CSI) at transmitters results in a huge pilot overhead in massive multiple input multiple output (MIMO) systems due to the large number of antennas in the base sta...Acquisition of accurate channel state information (CSI) at transmitters results in a huge pilot overhead in massive multiple input multiple output (MIMO) systems due to the large number of antennas in the base station (BS). To reduce the overwhelming pilot overhead in such systems, a structured joint channel estimation scheme employing compressed sensing (CS) theory is proposed. Specifically, the channel sparsity in the angular domain due to the practical scattering environment is analyzed, where common sparsity and individual sparsity structures among geographically neighboring users exist in multi-user massive MIMO systems. Then, by equipping each user with multiple antennas, the pilot overhead can be alleviated in the framework of CS and the channel estimation quality can be improved. Moreover, a structured joint matching pursuit (SJMP) algorithm at the BS is proposed to jointly estimate the channel of users with reduced pilot overhead. Furthermore, the probability upper bound of common support recovery and the upper bound of channel estimation quality using the proposed SJMP algorithm are derived. Simulation results demonstrate that the proposed SJMP algorithm can achieve a higher system performance than those of existing algorithms in terms of pilot overhead and achievable rate.展开更多
文摘Large number of antennas and higher bandwidth usage in massive multiple-input-multipleoutput(MIMO)systems create immense burden on receiver in terms of higher power consumption.The power consumption at the receiver radio frequency(RF)circuits can be significantly reduced by the application of analog-to-digital converter(ADC)of low resolution.In this paper we investigate bandwidth efficiency(BE)of massive MIMO with perfect channel state information(CSI)by applying low resolution ADCs with Rician fadings.We start our analysis by deriving the additive quantization noise model,which helps to understand the effects of ADC resolution on BE by keeping the power constraint at the receiver in radar.We also investigate deeply the effects of using higher bit rates and the number of BS antennas on bandwidth efficiency(BE)of the system.We emphasize that good bandwidth efficiency can be achieved by even using low resolution ADC by using regularized zero-forcing(RZF)combining algorithm.We also provide a generic analysis of energy efficiency(EE)with different options of bits by calculating the energy efficiencies(EE)using the achievable rates.We emphasize that satisfactory BE can be achieved by even using low-resolution ADC/DAC in massive MIMO.
基金Project supported by the Fundamental Research Funds for the Cen- tral Universities (No. HIT.MKSTISP.2016 13) and the National Natural Science Foundation of China (No. 61671176)
文摘Acquisition of accurate channel state information (CSI) at transmitters results in a huge pilot overhead in massive multiple input multiple output (MIMO) systems due to the large number of antennas in the base station (BS). To reduce the overwhelming pilot overhead in such systems, a structured joint channel estimation scheme employing compressed sensing (CS) theory is proposed. Specifically, the channel sparsity in the angular domain due to the practical scattering environment is analyzed, where common sparsity and individual sparsity structures among geographically neighboring users exist in multi-user massive MIMO systems. Then, by equipping each user with multiple antennas, the pilot overhead can be alleviated in the framework of CS and the channel estimation quality can be improved. Moreover, a structured joint matching pursuit (SJMP) algorithm at the BS is proposed to jointly estimate the channel of users with reduced pilot overhead. Furthermore, the probability upper bound of common support recovery and the upper bound of channel estimation quality using the proposed SJMP algorithm are derived. Simulation results demonstrate that the proposed SJMP algorithm can achieve a higher system performance than those of existing algorithms in terms of pilot overhead and achievable rate.