In order to reduce the feedback load of multi-user orthogonal frequency division multiplexing ( OFDM ) -based wireless systems, a practiral limited bits feedback precoding algorithm is proposed with direct source-de...In order to reduce the feedback load of multi-user orthogonal frequency division multiplexing ( OFDM ) -based wireless systems, a practiral limited bits feedback precoding algorithm is proposed with direct source-destination link based on amplify-and- forward cooperative relay network under frequency selective fading channels. Using joint minimum mean square error(MMSE) filter, the receiving decoding matrix is designed for each user in the paper. Source precoding (beamforming) matrix is optimized with convex function of weight mean square error (MSE). Relay precoding matrix is obtained under MSE decomposition and convex optimization. The precoding matrix index is fed back for clustered subcarrier of OFDM with limited feedback. Then using interpolation algorithm, all precoding matrices are achieved at base station (BS) and relay nodes. Simulations indicate the effectiveness of the proposed limited feedback joint precoding and beam_formlng design. The proposed method can improve bit error rate (BER) performance and obtain better sum-rate performance in contrast to existing algorithms. It displays the BER performance is close to that of the unquantified precoding feedback method.展开更多
In this paper, distributed relay diversity systems are analyzed, modeled and evaluated in an Orthogonal Frequency Division Multiplexing (OFDM) based networks. The investigated distributed relay diversity schemes exten...In this paper, distributed relay diversity systems are analyzed, modeled and evaluated in an Orthogonal Frequency Division Multiplexing (OFDM) based networks. The investigated distributed relay diversity schemes extend the ideas of a single hop transmit antenna schemes such as Cyclic Delay Diversity (CDD), Space Time Transmit Diversity (STTD), transmit Coherent Combining (CC) and Selection Diversity (SD) to distributed diversity systems. In contrast to the classical single hop system, the antennas in the distributed systems belongs to distributed relays instead of being co-located at the transmitter. The distributed relay diversity methods considered in this paper: Relay CDD (RCDD), Relay Alamouti (i.e.STTD), Relay CC (RCC) and Relay SD (RSD) are compared to the traditional 1-hop system. Analytical expressions for the received Signal to Interference Noise Ratio (SINR) are derived and used in a dynamic multi-cell multi-user simulator. Results show considerable SINR gains for both Round Robin and Max-SINR schedulers. The SINR gains translate into substantial cell throughput gains, up to 200%, compared to 1-hop systems. Despite its low complexity, the RCDD scheme has similar performance to that of other more sophisticated 2-hop schemes such as Relay Alamouti and Relay Coherent Combining. Marginally better results are observed for the Relay Selection Diversity scheme.展开更多
基金National Natural Science Foundation of China-Guangdong,Guangdong-Hong Kong Key Projects of Science and Technology,China,University-Industry Key Project of Department of Education of Guangdong Province,China,National Natural Science Foundation of China
文摘In order to reduce the feedback load of multi-user orthogonal frequency division multiplexing ( OFDM ) -based wireless systems, a practiral limited bits feedback precoding algorithm is proposed with direct source-destination link based on amplify-and- forward cooperative relay network under frequency selective fading channels. Using joint minimum mean square error(MMSE) filter, the receiving decoding matrix is designed for each user in the paper. Source precoding (beamforming) matrix is optimized with convex function of weight mean square error (MSE). Relay precoding matrix is obtained under MSE decomposition and convex optimization. The precoding matrix index is fed back for clustered subcarrier of OFDM with limited feedback. Then using interpolation algorithm, all precoding matrices are achieved at base station (BS) and relay nodes. Simulations indicate the effectiveness of the proposed limited feedback joint precoding and beam_formlng design. The proposed method can improve bit error rate (BER) performance and obtain better sum-rate performance in contrast to existing algorithms. It displays the BER performance is close to that of the unquantified precoding feedback method.
文摘In this paper, distributed relay diversity systems are analyzed, modeled and evaluated in an Orthogonal Frequency Division Multiplexing (OFDM) based networks. The investigated distributed relay diversity schemes extend the ideas of a single hop transmit antenna schemes such as Cyclic Delay Diversity (CDD), Space Time Transmit Diversity (STTD), transmit Coherent Combining (CC) and Selection Diversity (SD) to distributed diversity systems. In contrast to the classical single hop system, the antennas in the distributed systems belongs to distributed relays instead of being co-located at the transmitter. The distributed relay diversity methods considered in this paper: Relay CDD (RCDD), Relay Alamouti (i.e.STTD), Relay CC (RCC) and Relay SD (RSD) are compared to the traditional 1-hop system. Analytical expressions for the received Signal to Interference Noise Ratio (SINR) are derived and used in a dynamic multi-cell multi-user simulator. Results show considerable SINR gains for both Round Robin and Max-SINR schedulers. The SINR gains translate into substantial cell throughput gains, up to 200%, compared to 1-hop systems. Despite its low complexity, the RCDD scheme has similar performance to that of other more sophisticated 2-hop schemes such as Relay Alamouti and Relay Coherent Combining. Marginally better results are observed for the Relay Selection Diversity scheme.