In this paper, we study some new systems of generalized quasi-variational inclusion problems in FC-spaces without convexity structure.By applying an existence theorem of maximal elements of set-valued mappings due to ...In this paper, we study some new systems of generalized quasi-variational inclusion problems in FC-spaces without convexity structure.By applying an existence theorem of maximal elements of set-valued mappings due to the author, some new existence theorems of solutions for the systems of generalized quasi-variational inclusion problems are proved in noncompact FC-spaces. As applications, some existence results of solutions for the system of quasi-optimization problems and mathematical programs with the systems of generalized quasi-variational inclusion constraints are obtained in FC-spaces.展开更多
In this paper, we introduce some new systems of generalized vector quasi-variational inclusion problems and system of generalized vector ideal (resp., proper, Pareto, weak) quasi-optimization problems in locally FC-...In this paper, we introduce some new systems of generalized vector quasi-variational inclusion problems and system of generalized vector ideal (resp., proper, Pareto, weak) quasi-optimization problems in locally FC-uniform spaces without convexity structure. By using the KKM type theorem and Himmelberg type fixed point theorem proposed by the author, some new existence theorems of solutions for the systems of generalized vector quasi-variational inclusion problems are proved. As to its applications, we obtain some existence results of solutions for systems of generalized vector quasi-optimization problems.展开更多
The sensitivity analysis for a class of generalized set-valued quasi-variational inclusion problems is investigated in the setting of Banach spaces. By using the resolvent operator technique, without assuming the diff...The sensitivity analysis for a class of generalized set-valued quasi-variational inclusion problems is investigated in the setting of Banach spaces. By using the resolvent operator technique, without assuming the differentiability and monotonicity of the given data, equivalence of these problems to the class of generalized resolvent equations is established.展开更多
By applying an existence theorem of maximal elements of set-valued mappings in FC-spaces proposed by the author, some new existence theorems of solutions for systems of generalized quasi-variational inclusion (disclu...By applying an existence theorem of maximal elements of set-valued mappings in FC-spaces proposed by the author, some new existence theorems of solutions for systems of generalized quasi-variational inclusion (disclusion) problems are proved in FC-spaces without convexity structures. These results improve and generalize some results in recent publications from closed convex subsets of topological vector spaces to FC-spaces under weaker conditions.展开更多
The purpose of this paper is to present an iterative scheme for finding a common element of the set of solutions to the variational inclusion problem with multivalued maximal monotone mapping and inverse-strongly mono...The purpose of this paper is to present an iterative scheme for finding a common element of the set of solutions to the variational inclusion problem with multivalued maximal monotone mapping and inverse-strongly monotone mappings and the set of fixed points of nonexpansive mappings in Hilbert space.Under suitable conditions, some strong convergence theorems for approximating this common elements are proved. The results presented in the paper not only improve and extend the main results in Korpelevich(Ekonomika i Matematicheskie Metody,1976,12(4):747-756),but also extend and replenish the corresponding results obtained by Iiduka and Takahashi(Nonlinear Anal TMA,2005,61(3):341-350),Takahashi and Toyoda(J Optim Theory Appl,2003, 118(2):417-428),Nadezhkina and Takahashi(J Optim Theory Appl,2006,128(1):191- 201),and Zeng and Yao(Taiwan Residents Journal of Mathematics,2006,10(5):1293-1303).展开更多
This paper introduces a general iterative algorithm to approximate a common element in the solution set of quasi-variational inclusion problems and the common fixed point set of an infinite family of nonexpansive mapp...This paper introduces a general iterative algorithm to approximate a common element in the solution set of quasi-variational inclusion problems and the common fixed point set of an infinite family of nonexpansive mappings. It is proven that the iterative sequences generated in the proposed iterative algorithm converge strongly to some common element in the framework of the real Hilbert spaces.展开更多
The purpose of this paper is to find the solutions to the quadratic mini- mization problem by using the resolvent approach. Under suitable conditions, some new strong convergence theorems are proved for approximating ...The purpose of this paper is to find the solutions to the quadratic mini- mization problem by using the resolvent approach. Under suitable conditions, some new strong convergence theorems are proved for approximating a solution of the above min- imization problem. The results presented in the paper extend and improve some recent results.展开更多
In this paper, the authors investigate the existence of solutions of impulsive boundary value problems for Sturm-Liouville type differential inclusions which admit non-convex-valued multifunctions on right hand side. ...In this paper, the authors investigate the existence of solutions of impulsive boundary value problems for Sturm-Liouville type differential inclusions which admit non-convex-valued multifunctions on right hand side. Two results under weaker conditions are presented. The methods rely on a fixed point theorem for contraction multi-valued maps due to Covitz and Nadler and Schaefer's fixed point theorem combined with lower semi-continuous multi-valued operators with decomposable values.展开更多
In this paper, we investigate the existence of solutions for impulsive first order ordinary differential inclusions which admitting nonconvex valued right hand side. We present two classes of results. In the first one...In this paper, we investigate the existence of solutions for impulsive first order ordinary differential inclusions which admitting nonconvex valued right hand side. We present two classes of results. In the first one, we rely on a fixed point theorem for contraction multivalued maps due to Covitz and Nadler, and for the second one, we use Schacfer's fixed point theorem combined with lower semi-continuous multivalued operators with decomposable values under weaker conditions.展开更多
基金supported by the Scientific Research Fun of Sichuan Normal University(09ZDL04)the Sichuan Province Leading Academic Discipline Project(SZD0406)
文摘In this paper, we study some new systems of generalized quasi-variational inclusion problems in FC-spaces without convexity structure.By applying an existence theorem of maximal elements of set-valued mappings due to the author, some new existence theorems of solutions for the systems of generalized quasi-variational inclusion problems are proved in noncompact FC-spaces. As applications, some existence results of solutions for the system of quasi-optimization problems and mathematical programs with the systems of generalized quasi-variational inclusion constraints are obtained in FC-spaces.
基金supported by the Natural Science Foundation of Sichuan Education Department of China(No. 07ZA092)the Sichuan Province Leading Academic Discipline Project (No. SZD0406)
文摘In this paper, we introduce some new systems of generalized vector quasi-variational inclusion problems and system of generalized vector ideal (resp., proper, Pareto, weak) quasi-optimization problems in locally FC-uniform spaces without convexity structure. By using the KKM type theorem and Himmelberg type fixed point theorem proposed by the author, some new existence theorems of solutions for the systems of generalized vector quasi-variational inclusion problems are proved. As to its applications, we obtain some existence results of solutions for systems of generalized vector quasi-optimization problems.
基金Project supported by the Teaching and Research Award Fund for Outstanding Young Teachers in Higher Education Institutions of Ministry of Education, China (No.0705)the Dawn Program Fund of Shanghai of China (No.BL200404)Shanghai Leading Academic Discipline Project (No.T0401)
文摘The sensitivity analysis for a class of generalized set-valued quasi-variational inclusion problems is investigated in the setting of Banach spaces. By using the resolvent operator technique, without assuming the differentiability and monotonicity of the given data, equivalence of these problems to the class of generalized resolvent equations is established.
基金Project supported by the Scientific Research Fund of Sichuan Normal University (No. 09ZDL04)the Sichuan Province Leading Academic Discipline Project (No. SZD0406)
文摘By applying an existence theorem of maximal elements of set-valued mappings in FC-spaces proposed by the author, some new existence theorems of solutions for systems of generalized quasi-variational inclusion (disclusion) problems are proved in FC-spaces without convexity structures. These results improve and generalize some results in recent publications from closed convex subsets of topological vector spaces to FC-spaces under weaker conditions.
基金the Natural Science Foundation of Yibin University of China(No.2007-Z003)
文摘The purpose of this paper is to present an iterative scheme for finding a common element of the set of solutions to the variational inclusion problem with multivalued maximal monotone mapping and inverse-strongly monotone mappings and the set of fixed points of nonexpansive mappings in Hilbert space.Under suitable conditions, some strong convergence theorems for approximating this common elements are proved. The results presented in the paper not only improve and extend the main results in Korpelevich(Ekonomika i Matematicheskie Metody,1976,12(4):747-756),but also extend and replenish the corresponding results obtained by Iiduka and Takahashi(Nonlinear Anal TMA,2005,61(3):341-350),Takahashi and Toyoda(J Optim Theory Appl,2003, 118(2):417-428),Nadezhkina and Takahashi(J Optim Theory Appl,2006,128(1):191- 201),and Zeng and Yao(Taiwan Residents Journal of Mathematics,2006,10(5):1293-1303).
基金Project supported by the National Natural Science Foundation of China(No.10901140)
文摘This paper introduces a general iterative algorithm to approximate a common element in the solution set of quasi-variational inclusion problems and the common fixed point set of an infinite family of nonexpansive mappings. It is proven that the iterative sequences generated in the proposed iterative algorithm converge strongly to some common element in the framework of the real Hilbert spaces.
基金supported by the Natural Science Foundation of Yibin University (No.2009-Z003)
文摘The purpose of this paper is to find the solutions to the quadratic mini- mization problem by using the resolvent approach. Under suitable conditions, some new strong convergence theorems are proved for approximating a solution of the above min- imization problem. The results presented in the paper extend and improve some recent results.
文摘In this paper, the authors investigate the existence of solutions of impulsive boundary value problems for Sturm-Liouville type differential inclusions which admit non-convex-valued multifunctions on right hand side. Two results under weaker conditions are presented. The methods rely on a fixed point theorem for contraction multi-valued maps due to Covitz and Nadler and Schaefer's fixed point theorem combined with lower semi-continuous multi-valued operators with decomposable values.
文摘In this paper, we investigate the existence of solutions for impulsive first order ordinary differential inclusions which admitting nonconvex valued right hand side. We present two classes of results. In the first one, we rely on a fixed point theorem for contraction multivalued maps due to Covitz and Nadler, and for the second one, we use Schacfer's fixed point theorem combined with lower semi-continuous multivalued operators with decomposable values under weaker conditions.