In many batch processes, there are related or independence relationships among process variables. The traditional monitoring method usually carries out a single statistical model according to the related or independen...In many batch processes, there are related or independence relationships among process variables. The traditional monitoring method usually carries out a single statistical model according to the related or independent method, and in the feature extraction there is not fully taken into account the characterization of fault information, it will make the process monitoring ineffective, so a fault monitoring method based on WGNPE(weighted global neighborhood preserving embedding)–GSVDD(greedy support vector data description) related and independent variables is proposed. First, mutual information method is used to separate the related variables and independent variables. Secondly, WGNPE method is used to extract the local and global structures of the related variables in batch process and highlight the fault information, GSVDD method is used to extract the process information of the independent variables quickly and effectively. Finally, the statistical monitoring model is established to achieve process monitoring based on WGNPE and GSVDD. The effectiveness of the proposed method was verified by the penicillin fermentation process.展开更多
In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop pro...In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop problem with the variable batches scheduling model is formulated.Second,we propose a batch optimization algorithm with inverse scheduling in which the batch size is adjusted by the dynamic feedback batch adjusting method.Moreover,in order to increase the diversity of the population,two methods are developed.One is the threshold to control the neighborhood updating,and the other is the dynamic clustering algorithm to update the population.Finally,a group of experiments are carried out.The results show that the improved multi-objective optimization algorithm can ensure the diversity of Pareto solutions effectively,and has effective performance in solving the flexible job shop scheduling problem with variable batches.展开更多
The batch splitting scheduling problem has recently become a major target in manufacturing systems, and the researchers have obtained great achievements, whereas most of existing related researches focus on equal-size...The batch splitting scheduling problem has recently become a major target in manufacturing systems, and the researchers have obtained great achievements, whereas most of existing related researches focus on equal-sized and consistent-sized batch splitting scheduling problem, and solve the problem by fixing the number of sub-batches, or the sub-batch sizes, or both. Under such circumstance and to provide a practical method for production scheduling in batch production mode, a study was made on the batch splitting scheduling problem on alternative machines, based on the objective to minimize the makespan. A scheduling approach was presented to address the variable-sized batch splitting scheduling problem in job shops trying to optimize both the number of sub-bathes and the sub-batch sizes, based on differential evolution(DE), making full use of the finding that the sum of values of genes in one chromosome remains the same before and after mutation in DE. Considering before-arrival set-up time and processing time separately, a variable-sized batch splitting scheduling model was established and a new hybrid algorithm was brought forward to solve both the batch splitting problem and the batch scheduling problem. A new parallel chromosome representation was adopted, and the batch scheduling chromosome and the batch splitting chromosome were treated separately during the global search procedure, based on self-adaptive DE and genetic crossover operator, respectively. A new local search method was further designed to gain a better performance. A solution consists of the optimum number of sub-bathes for each operation per job, the optimum batch size for each sub-batch and the optimum sequence of sub-batches. Computational experiments of four test instances and a realistic problem in a speaker workshop were performed to testify the effectiveness of the proposed scheduling method. The study takes advantage of DE's distinctive feature, and employs the algorithm as a solution approach, and thereby deepens and enriches the content of batch splitting scheduling.展开更多
针对多向核熵偏最小二乘(multi-way kernel entropy partial least squares,MKEPLS)利用的是数据的一阶和二阶统计特性未考虑数据的高阶统计特性,在进行特征提取时会造成有用数据丢失的问题,提出基于高阶统计量的多向核熵偏最小二乘方法...针对多向核熵偏最小二乘(multi-way kernel entropy partial least squares,MKEPLS)利用的是数据的一阶和二阶统计特性未考虑数据的高阶统计特性,在进行特征提取时会造成有用数据丢失的问题,提出基于高阶统计量的多向核熵偏最小二乘方法(higher order statistics multi-way kernel entropy partial least squares,HOS-MKEPLS).首先,通过构造样本的高阶统计量将数据从原始的数据空间映射到高阶统计量样本空间.然后,再建立MKEPLS监控模型进行质量相关的故障监控,当监控到有故障发生时进行故障变量的追溯.最后,将该方法应用到工业青霉素发酵过程的监测中并与MKEPLS进行比较.结果表明:该方法具有更好的监控和故障识别性能.展开更多
基金Supported by the National Natural Science Foundation of China(No.61763029)the Natural Science Foundation of Gansu Province(1610RJZA016)
文摘In many batch processes, there are related or independence relationships among process variables. The traditional monitoring method usually carries out a single statistical model according to the related or independent method, and in the feature extraction there is not fully taken into account the characterization of fault information, it will make the process monitoring ineffective, so a fault monitoring method based on WGNPE(weighted global neighborhood preserving embedding)–GSVDD(greedy support vector data description) related and independent variables is proposed. First, mutual information method is used to separate the related variables and independent variables. Secondly, WGNPE method is used to extract the local and global structures of the related variables in batch process and highlight the fault information, GSVDD method is used to extract the process information of the independent variables quickly and effectively. Finally, the statistical monitoring model is established to achieve process monitoring based on WGNPE and GSVDD. The effectiveness of the proposed method was verified by the penicillin fermentation process.
基金supported by the National Key R&D Plan(2020YFB1712902)the National Natural Science Foundation of China(52075036).
文摘In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop problem with the variable batches scheduling model is formulated.Second,we propose a batch optimization algorithm with inverse scheduling in which the batch size is adjusted by the dynamic feedback batch adjusting method.Moreover,in order to increase the diversity of the population,two methods are developed.One is the threshold to control the neighborhood updating,and the other is the dynamic clustering algorithm to update the population.Finally,a group of experiments are carried out.The results show that the improved multi-objective optimization algorithm can ensure the diversity of Pareto solutions effectively,and has effective performance in solving the flexible job shop scheduling problem with variable batches.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2007AA04Z155)National Natural Science Foundation of China (Grant No. 60970021)Zhejiang Provincial Natural Science Foundation of China (Grant No. Y1090592)
文摘The batch splitting scheduling problem has recently become a major target in manufacturing systems, and the researchers have obtained great achievements, whereas most of existing related researches focus on equal-sized and consistent-sized batch splitting scheduling problem, and solve the problem by fixing the number of sub-batches, or the sub-batch sizes, or both. Under such circumstance and to provide a practical method for production scheduling in batch production mode, a study was made on the batch splitting scheduling problem on alternative machines, based on the objective to minimize the makespan. A scheduling approach was presented to address the variable-sized batch splitting scheduling problem in job shops trying to optimize both the number of sub-bathes and the sub-batch sizes, based on differential evolution(DE), making full use of the finding that the sum of values of genes in one chromosome remains the same before and after mutation in DE. Considering before-arrival set-up time and processing time separately, a variable-sized batch splitting scheduling model was established and a new hybrid algorithm was brought forward to solve both the batch splitting problem and the batch scheduling problem. A new parallel chromosome representation was adopted, and the batch scheduling chromosome and the batch splitting chromosome were treated separately during the global search procedure, based on self-adaptive DE and genetic crossover operator, respectively. A new local search method was further designed to gain a better performance. A solution consists of the optimum number of sub-bathes for each operation per job, the optimum batch size for each sub-batch and the optimum sequence of sub-batches. Computational experiments of four test instances and a realistic problem in a speaker workshop were performed to testify the effectiveness of the proposed scheduling method. The study takes advantage of DE's distinctive feature, and employs the algorithm as a solution approach, and thereby deepens and enriches the content of batch splitting scheduling.
文摘针对多向核熵偏最小二乘(multi-way kernel entropy partial least squares,MKEPLS)利用的是数据的一阶和二阶统计特性未考虑数据的高阶统计特性,在进行特征提取时会造成有用数据丢失的问题,提出基于高阶统计量的多向核熵偏最小二乘方法(higher order statistics multi-way kernel entropy partial least squares,HOS-MKEPLS).首先,通过构造样本的高阶统计量将数据从原始的数据空间映射到高阶统计量样本空间.然后,再建立MKEPLS监控模型进行质量相关的故障监控,当监控到有故障发生时进行故障变量的追溯.最后,将该方法应用到工业青霉素发酵过程的监测中并与MKEPLS进行比较.结果表明:该方法具有更好的监控和故障识别性能.