A consensus-distributed fault-tolerant(CDFT)control law is proposed for a class of leader-following multi-vehicle cooperative attack(MVCA)systems in this paper.In particular,the switching communication topologies,stoc...A consensus-distributed fault-tolerant(CDFT)control law is proposed for a class of leader-following multi-vehicle cooperative attack(MVCA)systems in this paper.In particular,the switching communication topologies,stochastic multi-hop timevarying delays,and actuator faults are considered,which may lead to system performance degradation or on certain occasions even cause system instability.Firstly,the estimator of actuator faults for the following vehicle is designed to identify the actuator faults under a fixed topology.Then the CDFT control protocol and trajectory following error are derived by the relevant content of Lyapunov stability theory,the graph theory,and the matrix theory.The CDFT control protocol is proposed in the same manner,where a more realistic scenario is considered,in which the maximum trajectory following error and information on the switching topologies during the cooperative attack are available.Finally,numerical simulation are carried out to indicate that the proposed distributed fault-tolerant(DFT)control law is effective.展开更多
Road throughput can be increased by driving at small inter-vehicle time gaps. The amplification of velocity disturbances in upstream direction, however, poses limitations to the minimum feasible time gap. This effect ...Road throughput can be increased by driving at small inter-vehicle time gaps. The amplification of velocity disturbances in upstream direction, however, poses limitations to the minimum feasible time gap. This effect is covered by the notion of string stability. String-stable behavior is thus considered an essential requirement for the design of automatic distance control systems, which are needed to allow for safe driving at time gaps well below 1 s. Using wireless inter-vehicle communications to provide real-time information of the preceding vehicle, in addition to the information obtained by common Adaptive Cruise Control (ACC) sensors, appears to significantly decrease the feasible time gap, which is shown by practical experiments with a test fleet consisting of six passenger vehicles. The large-scale deployment of this system, known as Cooperative ACC (CACC), however, poses challenges with respect to the reliability of the wireless communication system. A solution for this scalability problem can be found in decreasing the transmission power and/or beaconing rate, or adapting the communications protocol. Although the main CACC objective is to increase road throughput, the first commercial application of CACC is foreseen to be in truck platooning, since short distance following is expected to yield significant fuel savings in this case.展开更多
The introduction of automated driving systems raised questions about how the human driver interacts with the automated system. Non-cooperative game theory is increasingly used for modelling and understanding such inte...The introduction of automated driving systems raised questions about how the human driver interacts with the automated system. Non-cooperative game theory is increasingly used for modelling and understanding such interaction, while its counterpart, cooperative game theory is rarely discussed for similar applications despite it may be potentially more suitable. This paper describes the modelling of a human driver’s steering interaction with an automated steering system using cooperative game theory. The distributed Model Predictive Control approach is adopted to derive the driver’s and the automated steering system’s strategies in a Pareto equilibrium sense, namely their cooperative Pareto steering strategies. Two separate numerical studies are carried out to study the influence of strategy parameters, and the influence of strategy types on the driver’s and the automated system’s steering performance. It is found that when a driver interacts with an automated steering system using a cooperative Pareto steering strategy, the driver can improve his/her performance in following a target path through increasing his/her effort in pursuing his/her own interest under the driver-automation cooperative control goal. It is also found that a driver’s adoption of cooperative Pareto steering strategy leads to a reinforcement in the driver’s steering angle control, compared to the driver’s adoption of non-cooperative Nash strategy. This in turn enables the vehicle to return from a lane-change maneuver to straight-line driving swifter.展开更多
Cooperative driving around intersections has aroused increasing interest in the last five years.Meanwhile,driving safety in non-signalized intersections has become an issue that has attracted attention globally.In vie...Cooperative driving around intersections has aroused increasing interest in the last five years.Meanwhile,driving safety in non-signalized intersections has become an issue that has attracted attention globally.In view of the potential collision risk when more than three vehicles approach a non-signalized intersection from different directions,we propose a driving model using cooperative game theory.First,the characteristic functions of this model are primarily established on each vehicle’s profit function and include safety,rapidity and comfort indicators.Second,the Shapley theorem is adopted,and its group rationality,individual rationality,and uniqueness are proved to be suitable for the characteristic functions of the model.Following this,different drivers’characteristics are considered.In order to simplify the calculation process,a zero-mean normalization method is introduced.In addition,a genetic algorithm method is adopted to search an optimal strategy set in the constrained multi-objective optimization problem.Finally,the model is confirmed as valid after simulation with a series of initial conditions.展开更多
Autonomous driving is an emerging technology attracting interests from various sectors in recent years.Most of existing work treats autonomous vehicles as isolated individuals and has focused on developing separate in...Autonomous driving is an emerging technology attracting interests from various sectors in recent years.Most of existing work treats autonomous vehicles as isolated individuals and has focused on developing separate intelligent modules.In this paper,we attempt to exploit the connectivity among vehicles and propose a systematic framework to develop autonomous driving techniques.We first introduce a general hierarchical information fusion framework for cooperative sensing to obtain global situational awareness for vehicles.Following this,a cooperative intelligence framework is proposed for autonomous driving systems.This general framework can guide the development of data collection,sharing and processing strategies to realize different intelligent functions in autonomous driving.展开更多
At the 11th Forum on China-ASEAN Technology Transfer and Collaborative Innovation(hereinafter referred to as the China-ASEAN Innovation Forum)in July 2023,ASEAN Secretary-General Kao Kim Hourn highlighted the pivotal ...At the 11th Forum on China-ASEAN Technology Transfer and Collaborative Innovation(hereinafter referred to as the China-ASEAN Innovation Forum)in July 2023,ASEAN Secretary-General Kao Kim Hourn highlighted the pivotal role of technology transfer and innovation in driving economic growth.He emphasized that technology transfer can assist China and ASEAN in bypassing traditional developmental stages.展开更多
Cooperative driving is widely viewed as a promising method to better utilize limited road resources and alleviate traffic congestion.In recent years,several cooperative driving approaches for idealized traffic scenari...Cooperative driving is widely viewed as a promising method to better utilize limited road resources and alleviate traffic congestion.In recent years,several cooperative driving approaches for idealized traffic scenarios(i.e.,uniform vehicle arrivals,lengths,and speeds)have been proposed.However,theoretical analyses and comparisons of these approaches are lacking.In this study,we propose a unified group-by-group zipper-style movement model to describe different approaches synthetically and evaluate their performance.We derive the maximum throughput for cooperative driving plans of idealized unsignalized intersections and discuss how to minimize the delay of vehicles.The obtained conclusions shed light on future cooperative driving studies.展开更多
The burden of schistosomiasis remains a global public health problem,especially in sub-Saharan Africa despite progress in terms of morbidity control.Successful control efforts achieved by China in the last six decades...The burden of schistosomiasis remains a global public health problem,especially in sub-Saharan Africa despite progress in terms of morbidity control.Successful control efforts achieved by China in the last six decades came with considerable experience and lessons that could benefit schistosomiasis control programs in other endemic countries.China's role and commitment to global health cooperation has become increasingly important;this has created a platform for partnership with developing partners for the establishment of Forum on China-Africa health cooperation which prioritizes the pursuit of global elimination target for schistosomiasis and malaria,control of HIV/AIDS,and improved access to reproductive health care.Chinese government's commitment towards achieving schistosomiasis elimination in Africa prompted the establishment of Institution-based Network on China-Africa Cooperation for Schistosomiasis Elimination (INCAS),by the National Institute of Parasitic Diseases to promote schistosomiasis elimination in Africa.Schistosomiasis experts from six provincial institutions and counterparts from 10 African countries participated in the first workshop on China-Africa cooperation for Schistosomiasis Elimination in Africa at Lilongwe,Malawi,in 2015.Experts at the inaugural meeting shared experiences from their national schistosomiasis control programs,as well as identified areas for collaborative synergy targeting schistosomiasis elimination in Africa.The establishment of INCAS,which comprises of 28 member-institutions from China and Africa,was proposed at this meeting.We,therefore,provide information on INCAS activities,cooperation mechanism,as well as assess the strengths,weaknesses,opportunities,and threats as we target schistosomiasis elimination in Africa using the INCAS platform.展开更多
基金supported by the National Natural Science Foundation of China(61773387)the China Postdoctoral Fund(2016M5909712017T100770)。
文摘A consensus-distributed fault-tolerant(CDFT)control law is proposed for a class of leader-following multi-vehicle cooperative attack(MVCA)systems in this paper.In particular,the switching communication topologies,stochastic multi-hop timevarying delays,and actuator faults are considered,which may lead to system performance degradation or on certain occasions even cause system instability.Firstly,the estimator of actuator faults for the following vehicle is designed to identify the actuator faults under a fixed topology.Then the CDFT control protocol and trajectory following error are derived by the relevant content of Lyapunov stability theory,the graph theory,and the matrix theory.The CDFT control protocol is proposed in the same manner,where a more realistic scenario is considered,in which the maximum trajectory following error and information on the switching topologies during the cooperative attack are available.Finally,numerical simulation are carried out to indicate that the proposed distributed fault-tolerant(DFT)control law is effective.
文摘Road throughput can be increased by driving at small inter-vehicle time gaps. The amplification of velocity disturbances in upstream direction, however, poses limitations to the minimum feasible time gap. This effect is covered by the notion of string stability. String-stable behavior is thus considered an essential requirement for the design of automatic distance control systems, which are needed to allow for safe driving at time gaps well below 1 s. Using wireless inter-vehicle communications to provide real-time information of the preceding vehicle, in addition to the information obtained by common Adaptive Cruise Control (ACC) sensors, appears to significantly decrease the feasible time gap, which is shown by practical experiments with a test fleet consisting of six passenger vehicles. The large-scale deployment of this system, known as Cooperative ACC (CACC), however, poses challenges with respect to the reliability of the wireless communication system. A solution for this scalability problem can be found in decreasing the transmission power and/or beaconing rate, or adapting the communications protocol. Although the main CACC objective is to increase road throughput, the first commercial application of CACC is foreseen to be in truck platooning, since short distance following is expected to yield significant fuel savings in this case.
文摘The introduction of automated driving systems raised questions about how the human driver interacts with the automated system. Non-cooperative game theory is increasingly used for modelling and understanding such interaction, while its counterpart, cooperative game theory is rarely discussed for similar applications despite it may be potentially more suitable. This paper describes the modelling of a human driver’s steering interaction with an automated steering system using cooperative game theory. The distributed Model Predictive Control approach is adopted to derive the driver’s and the automated steering system’s strategies in a Pareto equilibrium sense, namely their cooperative Pareto steering strategies. Two separate numerical studies are carried out to study the influence of strategy parameters, and the influence of strategy types on the driver’s and the automated system’s steering performance. It is found that when a driver interacts with an automated steering system using a cooperative Pareto steering strategy, the driver can improve his/her performance in following a target path through increasing his/her effort in pursuing his/her own interest under the driver-automation cooperative control goal. It is also found that a driver’s adoption of cooperative Pareto steering strategy leads to a reinforcement in the driver’s steering angle control, compared to the driver’s adoption of non-cooperative Nash strategy. This in turn enables the vehicle to return from a lane-change maneuver to straight-line driving swifter.
基金Project(61673233)supported by the National Natural Science Foundation of ChinaProject(D171100006417003)supported by Beijing Municipal Science and Technology Program,China
文摘Cooperative driving around intersections has aroused increasing interest in the last five years.Meanwhile,driving safety in non-signalized intersections has become an issue that has attracted attention globally.In view of the potential collision risk when more than three vehicles approach a non-signalized intersection from different directions,we propose a driving model using cooperative game theory.First,the characteristic functions of this model are primarily established on each vehicle’s profit function and include safety,rapidity and comfort indicators.Second,the Shapley theorem is adopted,and its group rationality,individual rationality,and uniqueness are proved to be suitable for the characteristic functions of the model.Following this,different drivers’characteristics are considered.In order to simplify the calculation process,a zero-mean normalization method is introduced.In addition,a genetic algorithm method is adopted to search an optimal strategy set in the constrained multi-objective optimization problem.Finally,the model is confirmed as valid after simulation with a series of initial conditions.
基金in part supported by the Ministry National Key Research and Development Project under Grant 2017YFE0121400the Major Project from Beijing Municipal Science and Technology Commission under Grant Z181100003218007the National Natural Science Foundation of China under Grants 61622101 and 61571020
文摘Autonomous driving is an emerging technology attracting interests from various sectors in recent years.Most of existing work treats autonomous vehicles as isolated individuals and has focused on developing separate intelligent modules.In this paper,we attempt to exploit the connectivity among vehicles and propose a systematic framework to develop autonomous driving techniques.We first introduce a general hierarchical information fusion framework for cooperative sensing to obtain global situational awareness for vehicles.Following this,a cooperative intelligence framework is proposed for autonomous driving systems.This general framework can guide the development of data collection,sharing and processing strategies to realize different intelligent functions in autonomous driving.
文摘At the 11th Forum on China-ASEAN Technology Transfer and Collaborative Innovation(hereinafter referred to as the China-ASEAN Innovation Forum)in July 2023,ASEAN Secretary-General Kao Kim Hourn highlighted the pivotal role of technology transfer and innovation in driving economic growth.He emphasized that technology transfer can assist China and ASEAN in bypassing traditional developmental stages.
基金This work was supported by the National Natural Science Foundation of China(No.52272420)the Science and Technology Innovation Committee of Shenzhen(No.CJGJZD20200617102801005)the Tsinghua-Toyota Joint Research Institution.
文摘Cooperative driving is widely viewed as a promising method to better utilize limited road resources and alleviate traffic congestion.In recent years,several cooperative driving approaches for idealized traffic scenarios(i.e.,uniform vehicle arrivals,lengths,and speeds)have been proposed.However,theoretical analyses and comparisons of these approaches are lacking.In this study,we propose a unified group-by-group zipper-style movement model to describe different approaches synthetically and evaluate their performance.We derive the maximum throughput for cooperative driving plans of idealized unsignalized intersections and discuss how to minimize the delay of vehicles.The obtained conclusions shed light on future cooperative driving studies.
文摘The burden of schistosomiasis remains a global public health problem,especially in sub-Saharan Africa despite progress in terms of morbidity control.Successful control efforts achieved by China in the last six decades came with considerable experience and lessons that could benefit schistosomiasis control programs in other endemic countries.China's role and commitment to global health cooperation has become increasingly important;this has created a platform for partnership with developing partners for the establishment of Forum on China-Africa health cooperation which prioritizes the pursuit of global elimination target for schistosomiasis and malaria,control of HIV/AIDS,and improved access to reproductive health care.Chinese government's commitment towards achieving schistosomiasis elimination in Africa prompted the establishment of Institution-based Network on China-Africa Cooperation for Schistosomiasis Elimination (INCAS),by the National Institute of Parasitic Diseases to promote schistosomiasis elimination in Africa.Schistosomiasis experts from six provincial institutions and counterparts from 10 African countries participated in the first workshop on China-Africa cooperation for Schistosomiasis Elimination in Africa at Lilongwe,Malawi,in 2015.Experts at the inaugural meeting shared experiences from their national schistosomiasis control programs,as well as identified areas for collaborative synergy targeting schistosomiasis elimination in Africa.The establishment of INCAS,which comprises of 28 member-institutions from China and Africa,was proposed at this meeting.We,therefore,provide information on INCAS activities,cooperation mechanism,as well as assess the strengths,weaknesses,opportunities,and threats as we target schistosomiasis elimination in Africa using the INCAS platform.